HOMEWORK 8

1. Let R be a PID and let M be a torsion finitely generated R-module with the invariant factors $d_1|d_2| \dots |d_k$. Set

$$I = \{a \in R \text{ such that } aM = 0\}.$$

Prove that $I = d_k R$.

2. Classify all abelian groups of order 300.

3. Find the rank of the subgroup in \mathbb{Z}^3 generated by (2, -2, 0), (0, 4, -4) and (5, 0, -5).

4. Determine the invariant factors of the factor group \mathbb{Z}^3/N , where N is generated by (3, -3, 3), (0, 6, -12) and (9, 0, -9).

5. Let M be a finitely generated torsion module over a PID R. Prove that M is cyclic if and only if every two elementary divisors of M are relatively prime.

6. Find an example of a non-free submodule $N \subset M$ of a free module M over some ring R.

7. Let n be an integer. Prove that every abelian group A with nA = 0 has the structure of a $\mathbb{Z}/n\mathbb{Z}$ -module.

8. Classify all finite $\mathbb{Z}/n\mathbb{Z}$ -modules up to isomorphism. (Hint: Use the classification of finite abelian groups.)

9. Find two non-free modules M and N over $\mathbb{Z}/6\mathbb{Z}$ such that $M \oplus N$ is free.

10. Show that a submodule N of a module M generated by n elements over a PID also can be generated by n elements. (Hint: Consider a surjection $F \to M$ with free F of rank n.)