HOMEWORK 7

1. a) Let M be a left R-module. For any $a \in R$ consider the group endomorphism $f_{a}: M \rightarrow M$ defined by $f_{a}(x)=a x$. Prove that the map $f: R \rightarrow \operatorname{End}(M)$ taking $a \in R$ to f_{a} is a ring homomorphism.
b) Conversely, let M be an abelian group, R a ring and $f: R \rightarrow \operatorname{End}(M)$ a ring homomorphism. Show that the formula $a \cdot m=f(a)(m)$ defined a left R-module structure on M.
2 . Let M be a (left) R-module generated by one element. Prove that M is isomorphic to the factor module R / I where I is a (left) ideal of R.
2. Let R be a commutative ring. Show that for every two R-modules M and N, the group $\operatorname{Hom}_{R}(M, N)$ has a structure of an R-module.
3. Let M be a (left) R-module, $N \subset M$ a submodule. Prove that if N and M / N are finitely generated, then so is M.
4. Prove that for any (left) R-module M the groups $\operatorname{Hom}_{R}(R, M)$ and M are isomorphic. (Hint: show that an R-module homomorphism $f: R \rightarrow M$ is uniquely determined by the value $f(1)$.)
5. Let $f: R^{n} \rightarrow R^{m}$ be a right R-module homomorphism. Show that there is aunique $n \times m$-matrix A such that $f(x)=A \cdot x$ for any $x \in R^{n}$.
6. Show that \mathbb{Q} is not a free abelian group (\mathbb{Z}-module). (Hint: For any $x, y \in \mathbb{Q}$ there are nontrivial $a, b \in \mathbb{Z}$ such that $a x+b y=0$, i.e. any set of at least two elements in \mathbb{Q} is linearly dependent.)
7. Prove that a free finitely generated (left) R-module has a finite basis.
8. Let M be a (left) R-module, $I \subset R$ an ideal. Denote by $I M$ the submodule of M generated by the products $a m$ for all $a \in I$ and $m \in M$.
a) Assume that $I M=0$. Show that M admits a structure of a (left) module over the factor ring R / I.
b) Show that $M / I M$ admits a structure of a (left) module over the factor ring R / I.
c) Prove that if M is a free R-module then $M / I M$ is a free R / I-module. (Hint: Show that if S is a basis for M then the set of cosets $\{s+I M, s \in S\}$ is a basis for $M / I M$.)
d) Let R be a nonzero commutative ring. Prove that if (left) R-modules R^{n} and R^{m} are isomorphic, then $n=m$. Deduce that every two bases for a free finitely generated R-module have the same number of elements. (Hint: Consider modules over the factor ring R / I where I is a maximal ideal of R.)
9. Let A be an abelian group, $f \in \operatorname{End}(A)$. Show that A admits a $\mathbb{Z}[X]$ module structure such that $X \cdot a=f(a)$ for all $a \in A$.
