HOMEWORK 6

1. Prove that the factor ring $R[X] /(X \cdot R[X])$ is isomorphic to R.
2. Factor the following polynomials:
a) $X^{2}+X+1$ in $(\mathbb{Z} / 2 \mathbb{Z})[X]$.
b) $X^{3}+X+1$ in $(\mathbb{Z} / 3 \mathbb{Z})[X]$.
c) $X^{4}+1$ in $(\mathbb{Z} / 5 \mathbb{Z})[X]$.
3. Find all monic irreducible polynomials of degree ≤ 3 in $(\mathbb{Z} / 2 \mathbb{Z})[X]$.
4. Let $f \in \mathbb{Z}[X], a, b \in \mathbb{Z}, a \neq b$. Prove that $b-a$ divides $f(b)-f(a)$. (Hint:
$b-a$ divides $b^{n}-a^{n}$.)
5. Prove that $X^{n}-13$ is irreducible in $\mathbb{Z}[i][X]$. (Hint: Use Eisenstein's Criterion.)
6. Prove that $X^{2}+Y^{2}-1$ is irreducible in $\mathbb{Z}[X, Y]$.
7. Let f be a monic polynomial in $\mathbb{Z}[X]$. Prove that if $a \in \mathbb{Q}$ is a root of f then $a \in \mathbb{Z}$. (Hint: Write $a=\frac{b}{c}$ with relatively prime b, c and show that $c= \pm 1$.)
8. Prove that $X^{3}-3 X+1$ is irreducible in $\mathbb{Q}[X]$ and $\mathbb{Z}[X]$.
9. Find all roots of $f=X^{p}-X$ in $(\mathbb{Z} / p \mathbb{Z})[X]$ (p prime) and factor f into a product of irreducibles. (Hint: Use Fermat's Little Theorem.)
10. Determine whether $X^{4}+64$ is irreducible in $\mathbb{Q}[X]$.
