HOMEWORK 5

1. Show that over any field there exist infinitely many non-associate irreducible polynomials.
2. Prove that if p is a prime integer such that $p \equiv 3(\bmod 4)$, then p is a prime element in $\mathbb{Z}[i]$.
3. A Laurent polynomial over a field F is a rational function $\frac{f(X)}{X^{n}}$ where $f(X)$ is a polynomial over F and $n \geq 0$.
a) Show that Laurent polynomials form a subring R of the field of all rational functions $F(X)$.
b) Prove that R is a P.I.D.
4. Show that the ring $R=\mathbb{Z}\left[X_{1}, X_{2}, \ldots\right]$ (the union of $\mathbb{Z}\left[X_{1}, X_{2}, \ldots, X_{n}\right]$ for all n) is a U.F.D.
5. Let $d=\operatorname{gcd}(a, b)$ in a P.I.D. R. Prove that $d R=a R+b R$.
6. Find $\operatorname{gcd}(2,5+i)$ in $\mathbb{Z}[i]$.
7. Prove that the factor ring $\mathbb{Z}[i] /(1+i) \mathbb{Z}[i]$ is a field of two elements.
8. Let $f, g \in \mathbb{Q}[X]$ with $f g \in \mathbb{Z}[X]$. Prove that there is $a \in \mathbb{Q}$ such that $a f \in \mathbb{Z}[X]$ and $a^{-1} g \in \mathbb{Z}[X]$.
9. Let S be a set of (not necessarily all) prime integers. Let R be the set of all rational numbers $\frac{a}{b}$ such that all prime divisors of b belong to S.
a) Prove that R is a subring of \mathbb{Q}.
b) Show that R is a P.I.D. Find all irreducible elements in R.
10. Let F be a field. Prove that the set R of all polynomials in $F[X]$ whose X-coefficient is equal to 0 is a subring of $F[X]$ and that R is not a U.F.D. (Hint: Use $X^{6}=\left(X^{2}\right)^{3}=\left(X^{3}\right)^{2}$.)
