HOMEWORK 4

1. Prove that every field is a Euclidean domain.
2. Prove that the ideal in $\mathbb{Z}[\sqrt{-5}]$ generated by 2 and $1+\sqrt{-5}$ is not principal.
3. Let $R=\mathbb{Z}[\sqrt{-1}]$ be the ring of Gauss integers.
a) Prove that 3 is prime in R.
b) Prove that 2 is not prime in R. Factor 2 into product of primes.
4. Let R be a P.I.D. and let a be a prime element in R. Prove that $R / a R$ is a field.
5. Prove that an element of a U.F.D. is prime if and only if it is irreducible.
6. Show that $R=\mathbb{Z}[\sqrt{-13}]$ is not a U.F.D. Is R a P.I.D.?
7. Prove that the product of two Noetherian rings is also Noetherian.
8. An integral domain in which every ideal generated by two elements is principal is called a Bezout domain. Prove that a ring R is a P.I.D. if and only if R is a Noetherian Bezout domain.
9. Define a chain of rings $R_{1} \subset R_{2} \subset R_{3} \subset \cdots$ inductively as follows: $R_{1}=\mathbb{Q}$, $R_{n+1}=R_{n}\left[X_{n}\right]$ (X_{n} is a variable). Prove the union of all R_{n} is a commutative ring that is not Noetherian.
10. Let R be a commutative ring. We define the product $I \cdot J$ of two ideals I and J in R as the ideal generated by the products $x y$ for all $x \in I$ and $y \in J$. Let $R=\mathbb{Z}[\sqrt{-5}], I=2 R+(1+\sqrt{-5}) R, J=3 R+(1+\sqrt{-5}) R$. Prove that $I \cdot J$ is the principal ideal $(1+\sqrt{-5}) R$.
