HOMEWORK 2

1. Prove that every (left) ideal of the product $R \times S$ of two rings is a product $I \times J$, where $I \subset R$ and $J \subset S$ are (left) ideals.
2. a) Find all idempotents in $\mathbb{Z} / 105 \mathbb{Z}$.
b) Prove that $\mathbb{Z} / p^{n} \mathbb{Z}, p$ a prime, has no nontrivial idempotents.
3. Let e be a central idempotent of a ring R (i.e. e commutes with any $a \in R$).
a) Prove that $R e$ is a ring. Is $R e$ a subring of R ?
b) Prove that $f=1-e$ is also an idempotent. Show that R is isomorphic to the product of two rings $R e \times R f$.
4. Describe all homomorphisms from $\mathbb{Z} \times \mathbb{Z}$ to \mathbb{Z}. In each case describe the kernel and the image.
5. Let R be an integral domain and let $a, b \in R$. Prove that $R a=R b$ if and only if $a=b u$ for some $u \in R^{\times}$.
6. Prove that an element a of a commutative ring R is invertible if and only if a does not belong to any maximal ideal of R.
7. Determine all maximal and prime ideals of $\mathbb{Z} / n \mathbb{Z}$.
8. Let R be a commutative ring. The $\operatorname{radical} \operatorname{Rad}(R)$ of R is the intersection of all maximal ideals in R.
a) Determine $\operatorname{Rad}(\mathbb{Z})$ and $\operatorname{Rad}(\mathbb{Z} / 12 \mathbb{Z})$.
b) Prove that $\operatorname{Rad}(R)$ consists of all elements $a \in R$ such that $1+a b$ is invertible for all $b \in R$.
9. a) Prove that the nilradical $\operatorname{Nil}(R)$ of a commutative ring R is contained in every prime ideal of R.
b) Prove that $N i l(R) \subset \operatorname{Rad}(R)$.
10. Let A be an abelian group (written additively). Define a product on the (additive) group $R=\mathbb{Z} \oplus A$ by $(n, a) \cdot(m, b)=(n m, n b+m a)$. Prove that R is a ring. Determine all prime and maximal ideals in R.
