HOMEWORK 1

1. Show that if $1=0$ in a ring R, then R is the zero ring.
2. Find an example of a subring of \mathbb{Q} different from \mathbb{Z} and \mathbb{Q}.
3. Find all zero divisors in $\mathbb{Z} / m \mathbb{Z}$.
4. Prove that the ring $\operatorname{End}(\mathbb{Z})$ is isomorphic to \mathbb{Z}.
5. Show that a subring of an integral domain is an integral domain. Is it true that a subring of a field is a field?
6. Prove that a finite integral domain is a field.
7. (a) Find a ring A such that for any ring R there is exactly one ring homomorphism $A \rightarrow R$.
(b) Find a ring B such that for any ring R there is exactly one ring homomorphism $R \rightarrow B$.
8. (a) Let $f: R \rightarrow S$ be a ring homomorphism, I an ideal of R, J an ideal of S. Show that $f^{-1}(J)$ is an ideal of R that contains $\operatorname{Ker}(f)$.
(b) Prove that if f is surjective, then $f(I)$ is an ideal of S. Show that if f is not surjective, $f(I)$ need not be an ideal of S.
9. (a) An element a of a ring R is called nilpotent, if $a^{n}=0$ for some $n \in \mathbb{N}$. Show that if R is a commutative ring, then the set $\operatorname{Nil}(R)$ of all nilpotent elements in R is an ideal (called the nilradical of R).
(b) Prove that a polynomial $f(X)=a_{0}+a_{1} X+\cdots+a_{n} X^{n} \in R[X](R$ is a commutative ring) is nilpotent if and only if all a_{i} are nilpotent in R.
10. (a) Prove that if a is a nilpotent element of a ring R, then the element $1+a$ is invertible. (Hint: Use the identity $1-X^{n}=(1-X)\left(1+X+\cdots X^{n-1}\right)$.)
(b) Prove that a polynomial $f(X)=a_{0}+a_{1} X+\cdots+a_{n} X^{n} \in R[X](R$ is a commutative ring) is invertible in $R[X]$ if and only if a_{0} is invertible and all a_{i} are nilpotent in R for $i \geq 1$. (Hint: Let $g(X)=b_{0}+b_{1} X+\cdots+b_{m} X^{m} \in R[X]$ be the inverse of $f(X)$. Prove first that $a_{n}^{m+1}=0$. Then use induction.)
