HOMEWORK 8

1. Let G act on a set X. Prove that if $x, y \in X$ satisfy $a x=y$ for some $a \in G$ then $G_{y}=a \cdot G_{x} \cdot a^{-1}$.
2. Let G be a group, $a \in G$. Show that the number of elements in the conjugacy class $\left\{b a b^{-1}, b \in G\right\}$ divides $|G|$.
3. An action of a group G on a set X is called double transitive if for any two pairs $\left(x_{1}, x_{2}\right)$ and $\left(y_{1}, y_{2}\right)$ of elements of X such that $x_{1} \neq x_{2}$ and $y_{1} \neq y_{2}$ there is $a \in G$ such that $a x_{1}=y_{1}$ and $a x_{2}=y_{2}$. Prove that $|G| \geq|X|^{2}-|X|$. (Hint: Consider an action of G on $X \times X$.)
4. (a) Let H be a subgroup of a finite group G. Prove that the number of different conjugate subgroups $x H x^{-1}, x \in G$, is at most $[G: H]$.
(b) Let H be a subgroup of a finite group G. Prove that if G is the union of $x H x^{-1}$ over all $x \in G$, then $H=G$.
(c) Let a finite group G act transitively on a set X consisting of at least two elements. Prove that there exists a $g \in G$ fixing no element of X.
5. Determine all Sylow p-subgroups of A_{5}.
6. Find the number of all Sylow p-subgroups of S_{p} (p is prime).
7. Prove the following Useful Counting Result. Let H be a subgroup of a finite group G. Suppose that $|G|$ does not divide $[G: H]$!. Then G contains a nontrivial normal subgroup N such that N is a subgroup of H. In particular, G is not simple.
8. Prove that all groups of order $2 p^{n}$ and $3 p^{n}$ (p is prime, $n \geq 1$) are not simple.
9. a) Let $H \subset G$ be a subgroup. Prove that if H is contained in the center of G and the factor group G / H is cyclic, then G is abelian.
(b) Prove that any group of order p^{2} is abelian (p is prime).
10. Prove that a subgroup $H \subset A_{n}$ of index n is isomorphic to A_{n-1}. (Hint:

Consider the action of A_{n} on A_{n} / H by left translations.)

