HOMEWORK 7

1. Write out the disjoint cycle decomposition of (1234)(456)(145).
2. a) What is the order of $(1234)(567)$ in S_{7} ?
b) What is the order of a cycle $\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ of length k ?
c) What is the order of a product of disjoint cycles of lengths $k_{1}, k_{2}, \ldots, k_{r}$?
3. Find the largest order of an element in S_{5}.
4. Find all elements in S_{5} which commute with the cycle (123).
5. a) We write $a \sim b$ for $a, b \in G$ if a and b are conjugate in G. Prove that \sim is an equivalence relation.
b) Find all conjugacy classes in S_{3}, and S_{4}.
c) How many conjugacy classes are there in S_{5} ?
6. (a) Prove that S_{n} is generated by $(1,2),(1,3), \ldots(1, n)$. (Hint: Use $(1, j)(1, i)(1, j)=(i, j)$.)
(b) Prove that S_{n} is generated by $(1,2),(2,3), \ldots(n-1, n)$.
(c) Prove that S_{n} is generated by the two cycles $(1,2)$ and $(1,2, \ldots, n)$. (Hint: Use $(1,2, \ldots, n)(i-1, i)(1,2, \ldots, n)^{-1}=(i, i+1)$.)
7. Show that $A_{n}(n \geq 4)$ and $S_{n}(n \geq 3)$ have trivial centers.
8. Show that $\operatorname{Aut}\left(S_{3}\right)$ consists of only inner automorphisms and is isomorphic to S_{3}.
9. Let $N=\{e,(12)(34),(13)(24),(14)(23)\} \subset S_{4}$. Show that S_{4} / N is isomorphic to S_{3}.
10. Prove that the canonical homomorphism $\pi: S_{4} \rightarrow S_{4} / N$ has a right inverse, i.e., a homomorphism $f: S_{4} / N \rightarrow S_{4}$ such that the composition $\pi \circ f$ is the identity of S_{4} / N.
