HOMEWORK 7

- 1. Write out the disjoint cycle decomposition of (1234)(456)(145).
- 2. a) What is the order of (1234)(567) in S_7 ?
- b) What is the order of a cycle (a_1, a_2, \ldots, a_k) of length k?
- c) What is the order of a product of disjoint cycles of lengths $k_1, k_2, ..., k_r$?

3. Find the largest order of an element in S_5 .

4. Find all elements in S_5 which commute with the cycle (123).

5. a) We write $a \sim b$ for $a, b \in G$ if a and b are conjugate in G. Prove that \sim is an equivalence relation.

b) Find all conjugacy classes in S_3 , and S_4 .

c) How many conjugacy classes are there in S_5 ?

6. (a) Prove that S_n is generated by $(1,2), (1,3), \dots (1,n)$. (Hint: Use (1,j)(1,i)(1,j) = (i,j).)

(b) Prove that S_n is generated by $(1, 2), (2, 3), \ldots, (n - 1, n)$.

(c) Prove that S_n is generated by the two cycles (1, 2) and (1, 2, ..., n). (Hint: Use $(1, 2, ..., n)(i - 1, i)(1, 2, ..., n)^{-1} = (i, i + 1)$.)

7. Show that A_n $(n \ge 4)$ and S_n $(n \ge 3)$ have trivial centers.

8. Show that $Aut(S_3)$ consists of only inner automorphisms and is isomorphic to S_3 .

9. Let $N = \{e, (12)(34), (13)(24), (14)(23)\} \subset S_4$. Show that S_4/N is isomorphic to S_3 .

10. Prove that the canonical homomorphism $\pi : S_4 \to S_4/N$ has a right inverse, i.e., a homomorphism $f : S_4/N \to S_4$ such that the composition $\pi \circ f$ is the identity of S_4/N .