HOMEWORK 3

1. Prove that for an element a of a group, $a^{n} \cdot a^{m}=a^{n+m}$ and $\left(a^{-1}\right)^{n}=\left(a^{n}\right)^{-1}$ for every $n, m \in \mathbb{Z}$.
2. Show that $((a b) c) d=a(b(c d))$ for all elements a, b, c, d of a group.
3. Show that if G is a group in which $(a b)^{2}=a^{2} b^{2}$ for all $a, b \in G$, then G is abelian.
4. Find all elements of order 3 in $\mathbb{Z} / 18 \mathbb{Z}$.
5. Prove that the composite of two homomorphisms (resp. isomorphisms) is also a homomorphism (resp. isomorphism).
6. Prove that the group $(\mathbb{Z} / 9 \mathbb{Z})^{\times}$is isomorphic to $\mathbb{Z} / 6 \mathbb{Z}$.
7. Let G be an abelian group and let $a, b \in G$ have finite order n and m respectively. Suppose that n and m are relatively prime. Show that $a b$ has order $n m$.
8. a) Prove that for every natural integer n the set of all complex n-th roots of unity is a cyclic group of order n with respect to the complex multiplication.
b) Prove that if G is a cyclic group of order n and k divides n, then G has exactly one subgroup of order k.
9. Prove that if G is a finite group of even order, then G contains an element of order 2. (Hint: Consider the set of pairs $\left(a, a^{-1}\right)$.)
10. Find the order of $G L_{n}(\mathbb{Z} / p \mathbb{Z})$ for a prime integer p.
