HOMEWORK 2

1. Show that $(a, b)=(a, c)$ if $b \equiv c(\bmod a)$.
2. Show that $(a+b)^{p} \equiv a^{p}+b^{p}(\bmod p)$ if p is prime.
3. Find all classes $X \in \mathbb{Z} / 300 \mathbb{Z}$ such that:
(i) $[7] \cdot X=[2]$,
(ii) $[120] \cdot X=[80]$,
(iii) $[9] \cdot X=[48]$.
4. Find all $m \in \mathbb{N}$ such that $[5] \cdot[17]=[3] \cdot[4]$ in $\mathbb{Z} / m \mathbb{Z}$.
5. Show that every nonzero class $[a] \in \mathbb{Z} / 13 \mathbb{Z}$ is equal to $[2]^{i}$ for some i.
6. Find the (multiplicative) inverse of $[100]$ in $\mathbb{Z} / 173 \mathbb{Z}$.
7. Solve $X^{2}=[5]$ in $\mathbb{Z} / 11 \mathbb{Z}$.
8. Find all $k \in \mathbb{N}$ such that $[2]^{k}=[1]$ in $\mathbb{Z} / 17 \mathbb{Z}$.
9. Let X be the set of all pairs $(a, b), a, b \in \mathbb{R}$ such that $a^{2}+b^{2}>0$. We write $(a, b) \sim(c, d)$ if $a d=b c$. Show that \sim is an equivalence relation and determine all equivalence classes.
10. Prove that for every odd integer $a, a^{2^{n-2}} \equiv 1\left(\bmod 2^{n}\right)$ for any $n \geq 3$. (Hint: Use Induction 1 on n)
