HOMEWORK 2

- 1. Show that (a, b) = (a, c) if $b \equiv c \pmod{a}$.
- 2. Show that $(a + b)^p \equiv a^p + b^p \pmod{p}$ if p is prime.
- 3. Find all classes $X \in \mathbb{Z}/300\mathbb{Z}$ such that:
 - (i) $[7] \cdot X = [2],$ (ii) $[120] \cdot X = [80],$
 - (iii) $[9] \cdot X = [48].$
- 4. Find all $m \in \mathbb{N}$ such that $[5] \cdot [17] = [3] \cdot [4]$ in $\mathbb{Z}/m\mathbb{Z}$.
- 5. Show that every nonzero class $[a] \in \mathbb{Z}/13\mathbb{Z}$ is equal to $[2]^i$ for some *i*.
- 6. Find the (multiplicative) inverse of [100] in $\mathbb{Z}/173\mathbb{Z}$.
- 7. Solve $X^2 = [5]$ in $\mathbb{Z}/11\mathbb{Z}$.
- 8. Find all $k \in \mathbb{N}$ such that $[2]^k = [1]$ in $\mathbb{Z}/17\mathbb{Z}$.

9. Let X be the set of all pairs (a, b), $a, b \in \mathbb{R}$ such that $a^2 + b^2 > 0$. We write $(a, b) \sim (c, d)$ if ad = bc. Show that \sim is an equivalence relation and determine all equivalence classes.

10. Prove that for every odd integer $a, a^{2^{n-2}} \equiv 1 \pmod{2^n}$ for any $n \geq 3$. (Hint: Use Induction 1 on n)