HOMEWORK 1

1. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be two maps. Prove that if f and g are injective (resp. surjective), then so is the composition $g \circ f$.
2. Prove that $(1+2+\cdots+n)^{2}=1^{3}+2^{3}+\cdots+n^{3}$.
3. Prove that 13 divides $14^{n}-1$ for any $n \in \mathbb{N}$.
4. Show that if $a^{n}-1$ is prime and $n>1$, then $a=2$ and n is prime. If $2^{n}+1$ is prime, what can you say about n ?
5. Find all integer solutions of $93 x+39 y=-6$.

6 . Let a, b, c be non-zero integers and let $d=\operatorname{gcd}(a, b)$. Prove that the equation $a x+b y=c$ has a solution x, y in integers if and only if $d \mid c$. Moreover, if $d \mid c$ and x_{0}, y_{0} is a solution in integers then the general solution in integers is $x=x_{0}+\frac{b}{d} k, y=y_{0}-\frac{a}{d} k$ for all integers k.
7. Show that if for $a, b \in \mathbb{N}, a b$ is a square of an integer and $(a, b)=1$, then a and b are squares.
8. Prove that if $(a, n)=1$ and $(b, n)=1$ then $(a b, n)=1$
9. Is $2^{10}+5^{12}$ a prime? (Hint: use the identity $4 x^{4}+y^{4}=\left(2 x^{2}+y^{2}\right)^{2}-(2 x y)^{2}$.)
10. Show that there are infinitely many primes $p \equiv 2(\bmod 3)$. (Hint: consider $3 p_{1} p_{2} \ldots p_{n}-1$.)

