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ABSTRACT:  All approaches to high performance computing is naturally divided into three main directions: development of 
computational elements and their networks, advancement of computational methods and procedures, and evolution of the 
computed structures. In the paper the second direction is developed in the context of the theory of super-recursive 
algorithms. It is demonstrated that such super-recursive algorithms as inductive Turing machines are more adequate for 
simulating many processes, have much more computing power, and are more efficient than recursive algorithms.  
 
 
1. INTRODUCTION 

The variety of approaches to high performance computing is naturally divided into three main directions. The first 
one is aimed mostly at the development of computational elements and their networks. It is the hardware oriented 
approach. The second direction is focused on the advancement of computational methods and procedures. It is the 
software oriented approach. The third direction is pointed at the evolution of the computed structures (such as 
data and knowledge) and enhancement of the processed information. It is the infware oriented approach. 

Our main topic here is related to the second direction. However, to elaborate more efficient software in practice, it 
is necessary to have sufficiently powerful hardware. Consequently, some issues of the first direction are also 
treated here in connection with the problems of computational methods and procedures under discussion. 

As it has been demonstrated by the history of computer science and computing practice, development of the 
second direction can go on by enhancing and enriching the existing methods and procedures, but only inventing 
extremely original computational structures usually performs the real breakthrough. 

In the theory of algorithms such a step has been made by transition from the ordinary, recursive algorithms (such 
as Turing machines, partial recursive functions, Minsky machines, random access machines (RAM), Kolmogorov 
algorithms etc.) to the super-recursive algorithms violating the famous Turing-Church thesis (Burgin 1987). 

 

2. RECURSIVE AND SUPER-RECURSIVE ALGORITHMS 
Development of the theory of algorithms inspired different authors to suggest new mathematical models for a 
general definition of algorithm. However, in all cases considered as algorithmic, it was proved that all 
mathematical models of algorithms were functionally equivalent. It caused introduction of the famous Turing-
Church thesis (conjecture). It claims that any mathematical model of an algorithm is functionally equivalent to a 
Turing machine. For many years, attempts to find more powerful models than Turing machines gave no positive 
results. 

The traditional formalism for a substantive concept of algorithm in general presupposes three essential 
conditions:  

1) finiteness and constructibility of the input, processed, and output information over a finite interval of time;  
2) finiteness and constructibility of the system of rules for realization of the processing;  
3) purposefulness of the system of rules. In this context constructibility means that it is possible to generate and 

transform data as well as to realize the rules by means of a simple mechanical device. 

In contrast to the informal notion of algorithm, other conditions of algorithm specification appear only in 
mathematical models of algorithms. One of these extra conditions is the demand that to obtain a result of a 
computation, it is necessary to finish the computational process. However, it is superfluous in many situations 
because quantities of processes that are naturally considered as algorithmic do not satisfy this restriction. That is 
why, a problem of extension of ordinary models of algorithm has been very essential for a long period of time. 
The solution has been given by elaboration of the super-recursive algorithms that allow obtaining results even in 
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the cases when the operation of the device realizing the algorithm is not terminated. It makes possible to increase 
to a great extent performance abilities of systems of algorithms. 

The first models of super-recursive algorithms were suggested and studied in the simultaneously published papers 
of E.M.Gold (1965) and H.Putnam (1965). These models had the form of limit recursive and partial limit 
recursive functions. They introduced the concept of computability in a limit (or, as it is more correctly to call it, 
inductive computability) and were aimed at a description of the computations in the limit as well as other 
algorithmic processes (e.g., learning a language or development of mathematics). At the first glance, they did not 
look like real algorithms because no computing device was corresponded to the functional representation of 
algorithms introduced by Gold and Putnam. An existence of such a correspondence is usually included (explicitly 
or implicitly) in the descriptive definitions of algorithms. Consequently, description of some, at least abstract, 
device, realizing algorithm, is considered as a necessary condition for a definition of algorithm. 

Nine years later another formal construction was suggested for an algorithmic representation of the limit 
computations (Freyvald 1974). It was a Turing machine with two tapes for which the result of its functioning was 
defined in a similar way to that in (Gold 1965; Putnam 1965). It was functionally (but not procedurally) 
equivalent to the functional models from (Gold 1965; Putnam 1965). 

Definition 1 (Burgin 1980). Two algorithms A and U are called functionally equivalent if they define the same 
function. 

However, other mathematical constructions (e.g., inductive inference, learning in the limit and so on) that 
described various infinite algorithmic processes have been elaborated. Some of them have been extensively 
studied. For example, now inductive inference is a flourishing field in the theory of algorithms. 

Recently the paper (Hintikka and Mutanen 1998) appeared in which the concepts of the trial-and-error (tae) 
computability and satisfiability are introduced. This model is based on the standard construction of a Turing 
machine with two tapes, a working tape and a bookkeeping (result recording) tape. The ordinary (recursive) 
computability is extended by a more general definition of a result of computation. That is, the described above 
Turing machine T computes the value of a function f for an argument x if: 1) T begins its process of computation 
with x written on the working tape;  2) the content of the result recording tape will not change from some finite 
stage of the computation. This content a of the result recording tape is called the result of applying T to x, or the 
value f(x), i.e., in this case f(x)=a. A thorough methodological analysis of the concept of tae-computability and 
some theoretical results are given in (Hintikka and Mutanen 1998). It is emphasized that the extra condition of 
finiteness of computational processes looks unnatural if it is considered as knowledge of how far the search for 
the value f(x) need to be carried out. 

Being more powerful than ordinary (or recursive) algorithms, such new models of computability are called super-
recursive algorithms. Limit Turing machines, introduced in (Burgin 1983; 1992), constitute the most powerful 
class of the super-recursive algorithms known now. Here we consider a special class of limit Turing machines. 
They are called, inductive Turing machines (Burgin 1983). It is demonstrated that inductive Turing machines with 
recursive memory are such super-recursive systems that are the closest to the ordinary (or recursive) algorithms 
(Burgin and Borodyanskii 1991). 

 

3. INDUCTIVE TURING MACHINES 

An inductive Turing machine M is a triad  (H, Q, K) where  H is the object domain of M ,  Q is the state domain 
of M, and  K is the memory domain, or the structured memory of M . All these domains are structured. The first 
of these domains has two structures: the generating and operating ones. If the set H of elements of H  is some 
formal language the set of words of which is denoted by L, then its generating structure has the form (A, G, L) 
where A is the alphabet of L and G is the set of rules generating words from L using the symbols from A. In a 
general case, the generating structure of H determines how the objects from H are generated. The operating 
structure of H has the form (H, R, H) where H is the set of elements of H and R is the set of operations by which 
the machine M transforms elements from H. As a rule, inductive Turing machine works with words of some 
formal language, i.e., in this case  H = L while its rules are similar (but not identical) to those of the (ordinary) 
Turing machines.  

The state domain Q also has two similar structures: the generating and operating ones. If  Q  is a formal language 
L, then its generating structure has the form (A,G,L) where A is the alphabet of L and G is the set of rules 
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generating the words from L. In a general case, the generating structure of Q determines how the objects from Q 
representing states of the machine M are generated. The operating structure of Q has the form (Q, J, Q) where Q 
is the set of elements of Q and J is the set of the state transitions of the machine M .  

The memory domain K also has two structures: the connectivity and functional ones. The connectivity structure 
has the form  (K, M, K) where K is the set of elements of K and M is a binary relation of a determined type. For 
example M may be a recursive relation. The functional structure defines a partition of K related to the functions of 
K. For example, K usually has three parts: input, output, and working memories.  

In contrast to an ordinary Turing machine, an inductive Turing machine does not need to stop to produce a result 
of a computation. Such a result is obtained when after some step of the computation the state of the output 
memory does not change independently of what is going on in other parts of the whole memory. The computing 
abilities of the inductive Turing machines are demonstrated with respect to such object domains as sets of words 
or numbers defined by formulas. Such sets are, as a rule, treated in the theory of algorithms and computations as 
universal object domains for algorithms.  

Let R  be an n-ary relation on  H, that is, R is a subset of the direct product Hn. 

Definition 2. R is called recursive (inductive) if there is some (inductive) Turing machine T such that T(r) = 1 
if r∈ R and T(r) = 0  if    r∉ R . 

Definition 3. R is called recursively (inductively) computable) if it is computable by some recursive algorithm, 
i.e., some (inductive) Turing machine T computes all elements from R and only such elements. 

Remark 1. The tae-computability (Hintikka and Mutanen 1998) as well as the model elaborated in (Freyvald 
1974)  are special cases of inductive computability. 

Lemma 1. Any inductive relation is inductively computable.  

Remark 2. For recursive relations a similar result is proved in the standard theory of algorithms. 

Definition 4. A quantifier Q is called (inductively) recursively computable if for any recursive relation  R  on  
H with  n  free variables including x  the relation  QxR  is computable by some ( inductive) Turing machine. 

Remark 3. Here we consider not only ordinary quantifiers ∃, ∀ of the classical mathematical logic but arbitrary 
quantifiers in the sense of (Burgin 1986). 

Proposition 1. The following quantifiers are inductively computable: ∀ - for all, ∀∀ - for almost all, i.e., for all 
but the finite number; ∀n � for all but n; ∃ - it exists; ∃n � there exist n objects such that;  ∃>n  - there exist more 
than n objects such that ; ∃<n - there exist less than n objects such that. 

Remark 4. In contrast to this result, the quantifiers ∃, ∃n, ∃<n are recursively computable while the quantifiers 
∀, ∀n, ∀∀, ∃>n are recursively non-computable. 

 

4. EFFICIENCY OF SUPER-RECURSIVE ALGORITHMS 
Proposition 1 demonstrates that the inductive computability is more powerful than the recursive computability. 
Really, by Proposition 1, there are such relations R in Hn that the set defined by the expression ∀xR is computable 
by an inductive Turing machine and non-computable by any (conventional) Turing machine. But it is only a part 
of the diverse possibilities of super-recursive algorithms. In other words, inductive Turing machines can solve 
problems unsolvable by recursive algorithms. However, the next result makes possible to demonstrate that the 
power of the inductive Turing machines is much bigger than that of the recursive algorithms as well as of those 
super-recursive algorithms that have been introduced prior to the construction of the inductive Turing machines. 

Let  R  be a recursive (recursively computable) n-ary relation on H,  m≤n , and  Q1 , � ,Qm  be inductively 
computable quantifiers.  

Theorem 1. The relation Q1x1 � QmxmR is inductively solvable (computable) for any m. 

Remark 5. The theorem, that states that all sets in the arithmetical hierarchy are inductive (thus, being 
inductively computable) is proved in (Burgin 1983). This theorem is a direct corollary of Theorem 1.. 
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Remark 6. This result makes possible to achieve a new understanding of the famous Gödel incompleteness 
theorems. According to Theorem 1,formulated above, the statement of the first Gödel incompleteness theorem is 
not an ultimate law that states existence of such true statements in a system containing formal arithmetic that 
cannot be proved in this system. The real meaning is that in the historical process of mathematical practice 
different methods of truth definition for mathematical propositions have been developed. One of them is the usual 
deduction or proof in formal systems. This method is connected with a universal class U of recursive algorithms 
that are working with mathematical expressions.  

Another method of reasoning is related to some class A of inductive Turing machines. In this context the first 
Gödel incompleteness theorem means that U is a proper subclass of A. Consequently, recursive algorithms are 
insufficient for truth adjustment of developed mathematical systems. Only super-recursive algorithms can solve 
this problem. The same is true for the second Gödel incompleteness theorem demonstrating impossibility of a 
consistency proof inside a theory for developed mathematical systems (such as arithmetic or set theory).   

In addition to the higher computational power, the class of inductive Turing machines contains more efficient 
algorithms than any class of recursive algorithms. It is demonstrated by the following result. 

Let A be some class of recursive algorithms working with words in some alphabet. 

Theorem 2. For any algorithms A from A, there is an inductive Turing machine M that is functionally 
equivalent to A and has the linear time complexity. 

Time complexity reflects the speed of computations. Consequently, Theorem 2 states that for any recursive 
algorithm A, it is possible to find such an inductive Turing machine M that computes the same functions as A but 
with much greater speed if the function is sufficiently complex. 

 
5. CONCLUDING REMARKS 

The concept of the inductive computability suggested in (Gold 1965; Putnam 1965) as well as its development in 
(Burgin 1983) are rooted in the constructions of non-standard analysis (Robinson 1966) and inductive definition 
of sets (Spector 1959). At the same time, inductive computability is a partial case of the topological computability 
defined in (Burgin 1983) being the case when the output domain has the discrete topology. 

However, it is a mistake to think that super-recursive algorithms are always purely theoretical constructions. 
There are many processes which are algorithmic but for which super-recursive algorithms provide much more 
adequate models than recursive algorithms. As an example we can take computations with real numbers. Methods 
used in numerical analysis are super-recursive algorithms that are only approximated by recursive algorithms. 
Such constructions have been used in the definition of constructive real numbers (Rice 1951; Mostowski 1957). 
Numerical methods form a class of super-recursive algorithms distinct from inductive Turing machines because 
they are working in a domain with a continuous topology. These algorithms are limit Turing machines that work 
with a domain having the topology of the field of real numbers. 

A biological population gives another example, where super-recursive algorithms are important as a tool of 
investigation. Simulation of their functioning essentially involves infinite processes though contemporary 
methods of modeling in biology and ecology ignore this fact. Consequently, utilization of super-recursive 
algorithms provides new powerful facilities for simulation of such processes. 

The same is true for investigation, evaluation, and simulation of social processes (Burgin 1993) or for social, 
political, and/or ecological monitoring. 

 Many optimization problems, which are solved with or without an aid of a computer, also demand super-
recursive representation (Burgin and Shmidskii 1996). 

Super-recursive algorithms better than recursive algorithms describe even functioning of a modern computer. 
Really, when a programmer or user is working with the monitor, the result exists on the screen only when the 
computer is operating. If the computer stops, then the result on its screen disappears. It means that a result exists 
only when the algorithm of computer functioning continues its work. This contrasts the condition on ordinary 
(recursive) algorithms that demands to stop to give a result. 

However, working with a printer, we reduce super-recursive algorithms to recursive algorithms. It demonstrates 
that recursive algorithms are sufficient for modeling those computers and programs that produce their final results 
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by means of a printer. This situation was true for all computers many years ago but it does not correspond to 
reality now. However, people, considering only intermediate results, reduce super-recursive algorithms to the 
recursive ones. 

In spite of all benefits of super-recursive algorithms, any modern computer (even the fastest one) cannot cram an 
infinite number of computations in bounded time. It is a challenge for computer engineers to create such a 
computer that will be able to do this (Stewart 1991). However, it appears to be theoretically possible within 
classical mechanics. As the matter of fact, it has been proved (Xia 1988) that systems of point masses under 
Newtonian gravitation law can hurl themselves off to infinity in finite period of time. 
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