Homework 3 (Due: We, 11/07)
Problem 1: Let μ be a positive Borel probability measure on the unit circle $\partial \mathbb{D}$, and define

$$
\begin{equation*}
p(z):=\int_{\partial \mathbb{D}} \frac{\zeta+z}{\zeta-z} d \mu(\zeta) \quad \text { for } z \in \mathbb{D} \text {. } \tag{1}
\end{equation*}
$$

a) Show that p is holomorphic on \mathbb{D}, and satisfies $p(0)=1$ and $\operatorname{Re} p(z) \geq 0$ for $z \in \mathbb{D}$.
b) Fix $r \in(0,1)$, let $f: \partial \mathbb{D} \rightarrow \mathbb{C}$ be continuous, and define

$$
f_{r}(\xi):=\int_{\partial \mathbb{D}} \operatorname{Re}\left[\frac{\zeta+r \xi}{\zeta-r \xi}\right] f(\zeta) d \sigma(\zeta) \quad \text { for } \xi \in \partial \mathbb{D}
$$

where σ is Lebesgue measure on $\partial \mathbb{D}$ normalized so that $\sigma(\partial \mathbb{D})=1$. Show that f_{r} is continuous on $\partial \mathbb{D}$ and that $f_{r} \rightarrow f$ uniformly on $\partial \mathbb{D}$ as $r \rightarrow 1$.
c) Show that μ in (1) is uniquely determined by p. Hint: Suppose ν is another Borel probability measure on $\partial \mathbb{D}$ that gives the function p in (1) (if we replace μ by ν). Show that then $\int_{\partial \mathbb{D}} f d \mu=\int_{\partial \mathbb{D}} f d \nu$ for all continuous functions $f: \partial \mathbb{D} \rightarrow \mathbb{C}$.

Problem 2: Let $\varphi: \mathbb{D} \rightarrow \mathbb{C}$ be a holomorphic function satisfying $\varphi(\mathbb{D}) \subseteq \mathbb{D}$, $\varphi(0)=0$, and $\varphi^{\prime}(0)=c \in(0,1]$.
a) Show that then

$$
\begin{equation*}
|\varphi(z)-z| \leq(1-c)|z| \frac{1+|z|}{1-c|z|} \quad \text { for } z \in \mathbb{D} . \tag{2}
\end{equation*}
$$

Prove that this inequality is best possible in the sense that for given $z \in \mathbb{D}$, there exists a function φ satisfying the above hypotheses for which we have equality in (2). Hint: First prove that φ can be written in the form

$$
\varphi(z)=z \frac{\psi(z)+c}{1+c \psi(z)} \quad \text { for } z \in \mathbb{D}
$$

where $\psi: \mathbb{D} \rightarrow \mathbb{C}$ is a holomorphic function satisfying $\psi(\mathbb{D}) \subseteq \mathbb{D}$ and $\psi(0)=0$.
b) Find the best possible upper bound for $\left|\varphi^{\prime \prime}(0)\right|$ (as a function of c).

