Homework 2 (Due: We, 10/24)

Problem 1: Prove the following two analytic facts (they were used in class).

- a) Let $f: \mathbb{D} \to \Omega := f(\mathbb{D}) \subseteq \mathbb{C}$ be a conformal map with f(0) = 0 and f'(0) = 1. Then $g = f^{-1}: \Omega \to \mathbb{D}$ is defined on $B(0, 1/4) \subseteq \Omega$. Show that if $\epsilon > 0$, then g is L-Lipschitz on $B_{\epsilon} := B(0, 1/4 - \epsilon)$ (i.e., $|g(w_1) - g(w_2)| \leq L|w_1 - w_2|$ for $w_1, w_2 \in B_{\epsilon}$) with $L = L(\epsilon)$ only depending on ϵ .
- b) Suppose that the sequence $\{f_n\}$ forms a normal family of holomorphic functions on a region $\Omega \subseteq \mathbb{C}$. Show that $\{f_n\}$ converges to a function $f: \Omega \to \mathbb{C}$ locally uniformly on Ω if and only if we have g = h whenever gand h are two subsequential limits of $\{f_n\}$ with respect to locally uniform convergence on Ω .

Problem 2: Let $w_0 \in \mathbb{C}$. Suppose that Ω and Ω_n for $n \in \mathbb{N}$ are regions in \mathbb{C} containing w_0 . Show that $\Omega_n \to \Omega$ in the sense of kernel convergence with respect to w_0 if and only if the following two conditions are true:

- (i) if $K \subseteq \Omega$ is compact, then $K_n \subseteq \Omega_n$ for sufficiently large n.
- (ii) if $w \in \partial \Omega$ is arbitrary, then there exist points $w_n \in \partial \Omega_n$ for large n such that $w_n \to w$ as $n \to \infty$.