(2 pts)

Math 33A

Practice Midterm

Problem 1: a) Let V be a subset of \mathbb{R}^n . When is V called a *subspace* of \mathbb{R}^n ? Give a precise definition! (3 pts)

b) Consider the subset V of \mathbb{R}^4 consisting of all vectors (x_1, x_2, x_3, x_4) in \mathbb{R}^4 such that $x_1 \ge -1$, that is,

$$V = \{ (x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 \ge -1 \}.$$

Is V a subspace of \mathbb{R}^4 ? Justify your answer!

c) Suppose U and V are subsets of \mathbb{R}^n . Then the intersection $U \cap V$ of U and V is defined to be the set of all vectors x in \mathbb{R}^n that belong both to U and V, that is,

 $U \cap V = \{ x \in \mathbb{R}^n : x \in U \text{ and } x \in V \}.$

Show that if U and V are subspaces of \mathbb{R}^n , then $U \cap V$ is also a subspace of \mathbb{R}^n . (5 pts)

Problem 2: Use the method of least squares to find the optimal fit of the data points (0, 2), (1, 1), (2, 4), (3, 3) by a line in the *x-y*-plane. (10 pts)

Problem 3: An $(n \times n)$ -matrix A is called *nilpotent* if there exists $k \in \mathbb{N}$ such that $A^k = \mathbf{0}$. Here $\mathbf{0}$ denotes the $(n \times n)$ -matrix whose all entries are equal to 0.

a) Give an example of a (3×3) -matrix $A \neq 0$ that is nilpotent. (5 pts)

b) Show that no nilpotent matrix A is invertible. (5 pts)

Hint: Argue by "contradiction"; that is, assume that there exists an invertible nilpotent matrix A. Derive a consequence that you know is false and conclude that your hypothesis (namely, that there exists an invertible nilpotent matrix) must also be false.

Problem 4: Let v_1, \ldots, v_k be orthonormal vectors in \mathbb{R}^n . Show that then the vectors v_1, \ldots, v_k are linearly independent. (5 pts)

Problem 5: Let V be a subspace of \mathbb{R}^n . Recall that the *orthogonal complement* V^{\perp} of V is defined to be the set of all vectors $u \in \mathbb{R}^n$ that are orthogonal to all vectors in V, i.e.,

 $V^{\perp} = \{ u \in \mathbb{R}^n : u \cdot v = 0 \text{ for all } v \in V \}.$

We choose a basis v_1, \ldots, v_k of V, and a basis u_1, \ldots, u_l of V^{\perp} .

a) Show that the vectors $v_1, \ldots, v_k, u_1, \ldots, u_l$ are linearly independent. (3 pts)

b) Show that every vector $x \in \mathbb{R}^n$ can be uniquely represented as $x = p + p^{\perp}$, where $p \in V$ and $p^{\perp} \in V^{\perp}$. (3 pts)

c) Show that the vectors $v_1, \ldots, v_k, u_1, \ldots, u_l$ form a basis of \mathbb{R}^n . (2 pts)

d) Show that $\dim V + \dim V^{\perp} = n.$ (2 pts)

Problem 6: Let A be an $(n \times n)$ -matrix and suppose that Ax = x for all $x \in \mathbb{R}^n$. Show that then A is equal to the unit matrix I_n . (10 pts)