Math 275C

Homework 1 (due: Fr, 3/10)

Problem 1: Suppose (X, \mathcal{A}) , (Y, \mathcal{B}) , (Z, \mathcal{C}) are measurable spaces. In the following products of these spaces are equipped with the corresponding product σ -algebras.

Let $f: X \times Y \times Z \to \mathbb{R}$ be a bounded measurable function and $p: Y \times \mathcal{C} \to [0, 1]$ be a Markov kernel (i.e., $C \in \mathcal{C} \mapsto p_y(C) := p(y, C)$ defines a probability measure for each $y \in Y$ and $y \in Y \mapsto p(y, C)$ is a measurable function for each $C \in \mathcal{C}$).

Show that then the function $g: X \times Y \to \mathbb{R}$ defined as

$$g(x,y) = \int f(x,y,z) \, dp_y(z) \text{ for } (x,y) \in X \times Y$$

is also measurable.

Hint: Apply the π - λ -theorem and the monotone class theorem.

Problem 2: Let (S, \mathcal{S}) be a Lusin space, $p: S \times \mathcal{S} \to [0, 1]$ be a Markov kernel, and for $x \in S$ let \mathbb{P}_x be the unique probability measure on S^{∞} representing the Markov chain with the kernel p and the initial distribution $\mu = \delta_x$.

For $n \in \mathbb{N}$ let $\pi_n \colon S^{\infty} \to S^n$ be the projection onto the first *n* coordinates and $\mu_n^x = (\pi_n)_*(\mathbb{P}_x)$ be the *n*-th marginal of \mathbb{P}_x . We denote by \mathcal{S}_{∞} and \mathcal{S}_n the Borel σ -algebras on S^{∞} and S^n , respectively.

- a) Show that if $n \in \mathbb{N}$ and $A \in \mathcal{S}_n$, then the function $x \in S \mapsto \mu_n^x(A)$ is measurable.
- b) Show that if $A \in \mathcal{S}_{\infty}$, then the function $x \in S \mapsto \mathbb{P}_x(A)$ is measurable.
- c) Show that if Z is bounded random variable defined on S^{∞} , then the function $x \in S \mapsto \mathbb{E}_x(Z)$ is measurable.