Spring 2015

Math 275C

Midterm (due: Mo, 5/18)

Problem 1: Let X be a \mathbb{Z}^d -valued random variable, where $d \in \mathbb{N}$, and let $\varphi(u) = \mathbb{E}(e^{i(u \cdot X)})$, $u \in \mathbb{R}^d$, be its characteristic function. Suppose that X_n , $n \in \mathbb{N}$, are i.i.d. random variables with the same distribution as X. We consider the random walk on \mathbb{Z}^d defined as $S_0 = 0$ and $S_n = X_1 + \cdots + X_n$ for $n \in \mathbb{N}$.

(a) Show that for $r \in [0, 1)$ we have

$$\sum_{n=0}^{\infty} \mathbb{P}(S_n = 0) r^n = \frac{1}{(2\pi)^d} \int_{[-\pi,\pi]^d} \operatorname{Re}\left(\frac{1}{1 - r\varphi(u)}\right) du.$$
(2pts)

(b) Show that S_n is recurrent (in the sense that 0 is a recurrent state for the Markov chain S_n) if and only if

$$\lim_{r \to 1^{-}} \int_{[-\pi,\pi]^d} \operatorname{Re}\left(\frac{1}{1 - r\varphi(u)}\right) du = +\infty.$$

(2pts)

(c) Suppose that d = 1 and $\varphi'(0) = 0$. Show that S_n is recurrent. (4pts)

(d) Suppose that d = 1 and $\mathbb{E}(|X|) < \infty$. Show that S_n is recurrent if and only if and $\mathbb{E}(X) = 0$. (2pts)

(e) Suppose that d = 2, $\mathbb{E}(|X|^2) < \infty$, and $\mathbb{E}(X) = 0$. Show that S_n is recurrent. (2pts)

Problem 2: We use the same notation as in Problem 1. We assume that d = 1, $\mathbb{E}(|X|) < \infty$, and $\mathbb{E}(X) = 0$. We also assume that there is no proper subgroup of \mathbb{Z} that contains the support of the distribution $\mu = X_*(\mathbb{P})$ of X.

(a) Denote by $N(x) = \#\{n \in \mathbb{N}_0 : S_n = x\}$ the number of visits of the random walk to $x \in \mathbb{Z}$. Show that we have $N(x) = +\infty$ for all $x \in \mathbb{Z}$ almost surely. (2pts)

(b) Let $T := \inf\{n > 0 : S_n = 0\}$ be the first time that the random walk returns to 0. Then T is a stopping time with respect to the filtration $\mathcal{F}_n = \sigma(X_0, \ldots, X_n),$ $n \in \mathbb{N}_0$. Show that $T < +\infty$ almost surely. (2pts)

(c) Let $N_T(x) = \#\{0 \le n < T : S_n = x\}$ be the number of visits to $x \in \mathbb{Z}$ before the return time T. Show that $\mathbb{E}(N_T(x)) = 1$ for all $x \in \mathbb{Z}$.

Hint: Establish a property of the function $f(x) = \mathbb{E}(N_T(x))$ that will imply this. It may help to consider simple random walk first. The argument has to include a justification why $\mathbb{E}(N_T(x)) < \infty$. (5pts)

(d) Show that $\mathbb{E}(T) = +\infty$. Hint: Use (c). (3pts)

Problem 3: Let (X, d) be a complete separable metric space. The purpose of this problem is to show that X is homeomorphic to a Borel subset of a compact metric space. This allows us to apply probabilistic methods (such as Kolmogorov's consistency theorem or the construction of Markov chains) to random variables that take values in such a space X.

For the proof we consider the set $Z = [0, 1]^{\mathbb{N}} = \{u \colon \mathbb{N} \to [0, 1]\}$ and two metrics ρ and σ on Z defined as

$$\rho(u, v) := \sup_{n \in \mathbb{N}} |u(n) - v(n)| \text{ and } \sigma(u, v) := \sum_{n=1}^{\infty} \frac{1}{2^n} |u(n) - v(n)|$$

for $u, v \in Z$.

(a) Show that the metric space (Z, σ) is compact.

We will assume without loss of generality that (X, d) has diameter bounded by 1 (if this is not true, then we replace the original metric d on X by the topologically equivalent metric $\tilde{d} = d \wedge 1$). Let $x_n, n \in \mathbb{N}$, be a countable dense subset in Xand define $F: X \to Z$ by assigning to $x \in X$ the element $F(x) \in Z$ defined as $F(x)(n) = d(x, x_n)$ for $n \in \mathbb{N}$. Let S = F(X).

(2pts)

(b) Show that the map F is an isometry of (X, d) onto a (S, ρ) and that S is closed in (Z, ρ) . (2pts)

(c) Show that F is a homeomorphism of (X, d) onto (S, σ) . (2pts)

(d) For $k \in \mathbb{N}$ let V_k be the set of all points $u \in Z$ for which there exists a set $N \subseteq Z$ such that $u \in N$, N is open in (Z, σ) , $N \cap S \neq \emptyset$, diam_{σ}(N) < 1/k, and diam_{ρ} $(N \cap S) < 1/k$ (here "diam" refers to the diameter of a set and the subscript to the underlying metric).

Show that V_k is open in (Z, σ) and that $S \subseteq V_k$ for each $k \in \mathbb{N}$. (3pts)

(e) Show that $S = \bigcap_{k \in \mathbb{N}} V_k$ and conclude that X is homeomorphic to a Borel subset of a compact metric space. (3pts)

Problem 4: Let Z_n , $n \in \mathbb{N}$, be independent random variables with a standard normal distribution defined on some underlying probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Let $f_n, n \in \mathbb{N}$, be an arbitrary Hilbert space basis of $L^2([0, 1])$ and define

$$g_n(t) = \int_0^t f_n(u) \, du$$

for $n \in \mathbb{N}$ and $t \in [0, 1]$. Note that each function g_n is continuous on [0, 1]. Now set

(1)
$$B_t(\omega) = \sum_{n=1}^{\infty} Z_n(\omega) g_n(t)$$

for $\omega \in \Omega$ and $t \in [0, 1]$. The purpose of this problem is to show that for almost every $\omega \in \Omega$ the series in (1) converges uniformly for $t \in [0, 1]$. Then the process $B_t, t \in [0, 1]$, has continuous sample paths almost surely. By the discussion in class this implies that B_t is a version of Brownian motion on [0, 1].

(a) Let $a = \{a_n\}_{n \in \mathbb{N}}$ be a sequence of real numbers with

$$||a||_2 := \left(\sum_{n=1}^{\infty} a_n^2\right)^{1/2} < \infty.$$

Define $X_n := \sum_{k=1}^n a_k Z_k$ for $n \in \mathbb{N}$ and $X_* = \sup_{n \in \mathbb{N}} |X_n|$. Show that then there exists

a constant $C \ge 0$ independent of a such that $\mathbb{E}(X^4_*) \le C ||a||_2^4$. (3pts)

(b) For $n \in \mathbb{N}$ we denote by \mathcal{D}_n the set of dyadic intervals I of the form

$$I = [(i-1)/2^n, i/2^n]$$
 for $i = 1, \dots, 2^n$

If h is an arbitrary function on [0, 1] and $I = [(i-1)/2^n, i/2^n]$, we write

$$\Delta(h, I) := h(i/2^n) - h((i-1)/2^n).$$

Show that if $h: [0,1] \to \mathbb{R}$ is a continuous function with h(0) = 0, then

$$\sup_{t\in[0,1]} |h(t)| \le \sum_{n=1}^{\infty} \sup_{I\in\mathcal{D}_n} |\Delta(h,I)|.$$

(3pts)

(c) Let $N \in \mathbb{N}$ and $I \subseteq [0, 1]$ be a dyadic interval. Then for $t \in [0, 1]$ and $\omega \in \Omega$ we define N

$$S_N(t,\omega) := \sum_{i=1}^N Z_i(\omega)g_i(t),$$

$$\Delta_N(I)(\omega) := \Delta(S_N(\cdot,\omega), I) \quad \text{and} \quad \Delta_N^*(I)(\omega) := \sup_{n \ge N} |\Delta_n(I)(\omega) - \Delta_N(I)(\omega)|.$$

Show that for each $n \ge N$,

$$\sup_{t \in [0,1]} |S_n(t,\omega) - S_N(t,\omega)| \le \sum_{i=1}^{\infty} \sup_{I \in \mathcal{D}_i} \Delta_N^*(I)(\omega) =: \epsilon_N(\omega).$$

(2pts)

(d) Use (a) to find a good estimate for $\mathbb{E}[\Delta_N^*(I)^4]$ and use this to show that for the random variable ϵ_N defined in (c) we have $\mathbb{E}(\epsilon_N) \to 0$ as $N \to \infty$. (4 pts)(e) SI е

(e) Show that for almost every
$$\omega \in \Omega$$
 we have

$$\sup_{t\in[0,1]}|S_k(t,\omega)-S_n(t,\omega)|\to 0$$

as $k, n \to \infty$ and conclude that the series in (1) converges uniformly. (2pts)