
Math 275C Spring 2015

Midterm (due: Mo, 5/18)

Problem 1: Let X be a Zd-valued random variable, where d ∈ N, and let ϕ(u) =
E(ei(u·X)), u ∈ Rd, be its characteristic function. Suppose that Xn, n ∈ N, are
i.i.d. random variables with the same distribution as X. We consider the random
walk on Zd defined as S0 = 0 and Sn = X1 + · · ·+Xn for n ∈ N.

(a) Show that for r ∈ [0, 1) we have
∞∑
n=0

P(Sn = 0)rn =
1

(2π)d

∫
[−π,π]d

Re

(
1

1− rϕ(u)

)
du.

(2pts)

(b) Show that Sn is recurrent (in the sense that 0 is a recurrent state for the
Markov chain Sn) if and only if

lim
r→1−

∫
[−π,π]d

Re

(
1

1− rϕ(u)

)
du = +∞.

(2pts)

(c) Suppose that d = 1 and ϕ′(0) = 0. Show that Sn is recurrent. (4pts)

(d) Suppose that d = 1 and E(|X|) <∞. Show that Sn is recurrent if and only
if and E(X) = 0. (2pts)

(e) Suppose that d = 2, E(|X|2) <∞, and E(X) = 0. Show that Sn is recurrent.
(2pts)

Problem 2: We use the same notation as in Problem 1. We assume that d = 1,
E(|X|) <∞, and E(X) = 0. We also assume that there is no proper subgroup of
Z that contains the support of the distribution µ = X∗(P) of X.

(a) Denote by N(x) = #{n ∈ N0 : Sn = x} the number of visits of the random
walk to x ∈ Z. Show that we have N(x) = +∞ for all x ∈ Z almost surely. (2pts)

(b) Let T := inf{n > 0 : Sn = 0} be the first time that the random walk returns
to 0. Then T is a stopping time with respect to the filtration Fn = σ(X0, . . . , Xn),
n ∈ N0. Show that T < +∞ almost surely. (2pts)

(c) Let NT (x) = #{0 ≤ n < T : Sn = x} be the number of visits to x ∈ Z
before the return time T . Show that E(NT (x)) = 1 for all x ∈ Z.

Hint: Establish a property of the function f(x) = E(NT (x)) that will imply this.
It may help to consider simple random walk first. The argument has to include a
justification why E(NT (x)) <∞. (5pts)

(d) Show that E(T ) = +∞. Hint: Use (c). (3pts)



Problem 3: Let (X, d) be a complete separable metric space. The purpose of
this problem is to show that X is homeomorphic to a Borel subset of a compact
metric space. This allows us to apply probabilistic methods (such as Kolmogorov’s
consistency theorem or the construction of Markov chains) to random variables
that take values in such a space X.

For the proof we consider the set Z = [0, 1]N = {u : N→ [0, 1]} and two metrics
ρ and σ on Z defined as

ρ(u, v) := sup
n∈N
|u(n)− v(n)| and σ(u, v) :=

∞∑
n=1

1

2n
|u(n)− v(n)|

for u, v ∈ Z.

(a) Show that the metric space (Z, σ) is compact. (2pts)

We will assume without loss of generality that (X, d) has diameter bounded by 1
(if this is not true, then we replace the original metric d on X by the topologically

equivalent metric d̃ = d ∧ 1). Let xn, n ∈ N, be a countable dense subset in X
and define F : X → Z by assigning to x ∈ X the element F (x) ∈ Z defined as
F (x)(n) = d(x, xn) for n ∈ N. Let S = F (X).

(b) Show that the map F is an isometry of (X, d) onto a (S, ρ) and that S is
closed in (Z, ρ). (2pts)

(c) Show that F is a homeomorphism of (X, d) onto (S, σ). (2pts)

(d) For k ∈ N let Vk be the set of all points u ∈ Z for which there exists a set
N ⊆ Z such that u ∈ N , N is open in (Z, σ), N ∩ S 6= ∅, diamσ(N) < 1/k, and
diamρ(N ∩S) < 1/k (here “diam” refers to the diameter of a set and the subscript
to the underlying metric).

Show that Vk is open in (Z, σ) and that S ⊆ Vk for each k ∈ N. (3pts)

(e) Show that S =
⋂
k∈N Vk and conclude that X is homeomorphic to a Borel

subset of a compact metric space. (3pts)

Problem 4: Let Zn, n ∈ N, be independent random variables with a standard
normal distribution defined on some underlying probability space (Ω,F ,P). Let
fn, n ∈ N, be an arbitrary Hilbert space basis of L2([0, 1]) and define

gn(t) =

∫ t

0

fn(u) du

for n ∈ N and t ∈ [0, 1]. Note that each function gn is continuous on [0, 1]. Now
set

(1) Bt(ω) =
∞∑
n=1

Zn(ω)gn(t)

for ω ∈ Ω and t ∈ [0, 1]. The purpose of this problem is to show that for almost
every ω ∈ Ω the series in (1) converges uniformly for t ∈ [0, 1]. Then the process



Bt, t ∈ [0, 1], has continuous sample paths almost surely. By the discussion in
class this implies that Bt is a version of Brownian motion on [0, 1].

(a) Let a = {an}n∈N be a sequence of real numbers with

‖a‖2 :=

( ∞∑
n=1

a2n

)1/2

<∞.

Define Xn :=
n∑
k=1

akZk for n ∈ N and X∗ = sup
n∈N
|Xn|. Show that then there exists

a constant C ≥ 0 independent of a such that E(X4
∗ ) ≤ C‖a‖42. (3pts)

(b) For n ∈ N we denote by Dn the set of dyadic intervals I of the form

I = [(i− 1)/2n, i/2n] for i = 1, . . . , 2n.

If h is an arbitary function on [0, 1] and I = [(i− 1)/2n, i/2n], we write

∆(h, I) := h(i/2n)− h((i− 1)/2n).

Show that if h : [0, 1]→ R is a continuous function with h(0) = 0, then

sup
t∈[0,1]

|h(t)| ≤
∞∑
n=1

sup
I∈Dn

|∆(h, I)|.

(3pts)

(c) Let N ∈ N and I ⊆ [0, 1] be a dyadic interval. Then for t ∈ [0, 1] and ω ∈ Ω
we define

SN(t, ω) :=
N∑
i=1

Zi(ω)gi(t),

∆N(I)(ω) := ∆(SN(·, ω), I) and ∆∗N(I)(ω) := sup
n≥N
|∆n(I)(ω)−∆N(I)(ω)|.

Show that for each n ≥ N ,

sup
t∈[0,1]

|Sn(t, ω)− SN(t, ω)| ≤
∞∑
i=1

sup
I∈Di

∆∗N(I)(ω) =: εN(ω).

(2pts)

(d) Use (a) to find a good estimate for E[∆∗N(I)4] and use this to show that for
the random variable εN defined in (c) we have E(εN)→ 0 as N →∞. (4pts)

(e) Show that for almost every ω ∈ Ω we have

sup
t∈[0,1]

|Sk(t, ω)− Sn(t, ω)| → 0

as k, n→∞ and conclude that the series in (1) converges uniformly. (2pts)


