Math 275C Spring 2015

Midterm (due: Mo, 5/18)

Problem 1: Let X be a Z%valued random variable, where d € N, and let ¢(u) =
E(e’®X)), u € R? be its characteristic function. Suppose that X,,, n € N, are
i.i.d. random variables with the same distribution as X. We consider the random

walk on Z% defined as Sy =0 and S,, = X; +---+ X,, for n € N.
(a) Show that for r € [0,1) we have

nf;n»(sn Oy = # /[_M]d Re(%) du.

(2pts)
(b) Show that S, is recurrent (in the sense that 0 is a recurrent state for the
Markov chain S,,) if and only if

1
lim R(—> du = +oo.
[—7'(771']‘1

r1- 1 —re(u)
(2pts)
(¢) Suppose that d =1 and ¢'(0) = 0. Show that .S, is recurrent. (4pts)
(d) Suppose that d = 1 and E(|X|) < co. Show that S, is recurrent if and only
if and E(X) = 0. (2pts)
(e) Suppose that d = 2, E(|X|?) < oo, and E(X) = 0. Show that S, is recurrent.
(2pts)

Problem 2: We use the same notation as in Problem 1. We assume that d = 1,
E(|X]|) < 00, and E(X) = 0. We also assume that there is no proper subgroup of
Z that contains the support of the distribution p = X, (P) of X.

(a) Denote by N(x) = #{n € Ny : S,, = x} the number of visits of the random
walk to z € Z. Show that we have N(x) = 400 for all z € Z almost surely. (2pts)

(b) Let T :=inf{n > 0 : S, = 0} be the first time that the random walk returns
to 0. Then T is a stopping time with respect to the filtration F,, = o(Xo, ..., X,),
n € Ny. Show that T < +oo almost surely. (2pts)

(¢) Let Np(z) = #{0 < n < T : S, = z} be the number of visits to x € Z
before the return time 7. Show that E(Nr(x)) =1 for all x € Z.

Hint: Establish a property of the function f(z) = E(Np(z)) that will imply this.
It may help to consider simple random walk first. The argument has to include a
justification why E(Nr(z)) < oco. (5pts)

(d) Show that E(T") = 4o00. Hint: Use (c). (3pts)



Problem 3: Let (X,d) be a complete separable metric space. The purpose of
this problem is to show that X is homeomorphic to a Borel subset of a compact
metric space. This allows us to apply probabilistic methods (such as Kolmogorov’s
consistency theorem or the construction of Markov chains) to random variables
that take values in such a space X.

For the proof we consider the set Z = [0, 1]N = {u: N — [0, 1]} and two metrics
p and o on Z defined as

o

1
plun,v) 1= suplu(n) —v(m)] and o(u,v) = 3 L u(n) — o)
neN n—1 2
for u,v € Z.
(a) Show that the metric space (Z, o) is compact. (2pts)

We will assume without loss of generality that (X, d) has diameter bounded by 1
(if this is not true, then we replace the original metric d on X by the topologically
equivalent metric d=dn 1). Let z,, n € N, be a countable dense subset in X
and define F': X — Z by assigning to x € X the element F(x) € Z defined as
F(x)(n) =d(x,z,) for n € N. Let S = F(X).

(b) Show that the map F' is an isometry of (X, d) onto a (S, p) and that S is
closed in (Z, p). (2pts)

(c) Show that F'is a homeomorphism of (X, d) onto (S5, 0). (2pts)

(d) For k € N let Vi be the set of all points u € Z for which there exists a set
N C Z such that u € N, N is open in (Z,0), NN S # ), diam,(N) < 1/k, and
diam,(NNS) < 1/k (here “diam” refers to the diameter of a set and the subscript
to the underlying metric).

Show that Vj is open in (Z, o) and that S C V} for each k € N. (3pts)
(e) Show that S = (,cy Vi and conclude that X is homeomorphic to a Borel
subset of a compact metric space. (3pts)

Problem 4: Let Z,, n € N, be independent random variables with a standard
normal distribution defined on some underlying probability space (€2, F,P). Let
fn, n € N, be an arbitrary Hilbert space basis of L*([0,1]) and define

l0) = [ 5w

for n € N and ¢ € [0,1]. Note that each function g, is continuous on [0, 1]. Now
set

1 Biw) = 3 Zu(w)gu(?)

for w € Q and t € [0,1]. The purpose of this problem is to show that for almost
every w € ) the series in (1) converges uniformly for ¢ € [0,1]. Then the process



By, t € [0,1], has continuous sample paths almost surely. By the discussion in
class this implies that B; is a version of Brownian motion on [0, 1].

(a) Let a = {a, }nen be a sequence of real numbers with

00 1/2
|all2 = (Z ai) < 00.

n=1

Define X,, Z apZy for n € N and X, = sup|X,,|. Show that then there exists

neN
a constant C' ; (IJ independent of a such that E(X?) < C||a|3- (3pts)
(b) For n € N we denote by D,, the set of dyadic intervals I of the form
I'=[(i-1)/2"4/2"] fori=1,...,2"
If h is an arbitary function on [0, 1] and I = [(¢ — 1)/2",i/2"], we write
A(h,I) :=h(i/2") — h((i —1)/2").
Show that if h: [0,1] — R is a continuous function with ~(0) = 0, then

sup |h(t)] < sup A(h, I
s 1K1 <3 sup A1)

(3pts)
(c) Let N € Nand I C [0, 1] be a dyadic interval. Then for ¢ € [0,1] and w € 2

we define
N

=3 Z@lt)
An(Dw) = AlSx(w), D) and A (Dw) i=sup A, (D) ~ Av(D(E))
Show that for each n > NN, )

sup | S, (t,w) — Sy (t,w)| < Zsup A% (D) (w) =: en(w).

t€[0,1] IeD;
(2pts)
(d) Use (a) to find a good estimate for E[A% (I)*] and use this to show that for
the random variable €y defined in (c) we have E(ey) — 0 as N — oc. (4pts)

(e) Show that for almost every w € Q we have

sup |Sk(t,w) — Sp(t,w)| — 0
te(0,1]

as k,n — oo and conclude that the series in (1) converges uniformly. (2pts)



