Homework 5 (due: Fr, 2/6)

Problem 1: Let N and X_n for $n \in \mathbb{N}$ be independent random variables. Suppose N takes values in \mathbb{N}_0 and each X_n has a Bernoulli distribution with parameter $p \in (0, 1)$, i.e., $\mathbb{P}(X_n = 1) = p$ and $\mathbb{P}(X_n = 0) = 1 - p$. Define two random variables Y and Z as

$$Y = \#\{n \in \mathbb{N} : X_n = 1 \text{ and } n \leq N\}, \quad Z = \#\{n \in \mathbb{N} : X_n = 0 \text{ and } n \leq N\}.$$

Then $N = Y + Z$ and Y and Z are obtained by “thinning” N.

Show that if Y and Z are independent, then N has a Poisson distribution.

Problem 2: Let X be a random variable, and \mathcal{A} and \mathcal{B} be σ-algebras contained in the σ-algebra of the underlying probability space. Show that if \mathcal{B} and $\sigma(\sigma(X), \mathcal{A})$ and independent, then

$$\mathbb{E}(X|\sigma(\mathcal{A}, \mathcal{B})) = \mathbb{E}(X|\mathcal{A}).$$

Hint: Apply Dynkin’s π-λ-theorem.