$Math \ 246C$

Spring 2014

Homework 4 (Due: Fr, 5/9)

Problem 1: Let $\Omega \subseteq \mathbb{C}$ be a bounded and open set, and u be a subharmonic function on Ω that is bounded from above. Suppose that there exists a finite set $F \subseteq \partial \Omega$ such that

$$\limsup_{z \to z_0} u(z) \le 0$$

for all $z_0 \in \partial \Omega \setminus F$. Show that then $u \leq 0$.

Problem 2: Let $\Omega = \mathbb{D} \setminus \{0\}$, and define $f: \partial \Omega = \partial \mathbb{D} \cup \{0\} \to \mathbb{R}$ by setting f(z) = 0 for $z \in \partial \mathbb{D}$ and f(0) = 1. Show that then $\underline{H}_f = \overline{H}_f \equiv 0$.

Problem 3: Let $f: \partial \mathbb{D} \to \mathbb{R}$ be an integrable function (w.r.t. Lebesgue measure on $\partial \mathbb{D}$), and

$$u(z) = \frac{1}{2\pi} \int_0^{2\pi} \frac{1 - |z|^2}{|z - e^{it}|^2} f(e^{it}) dt, \quad z \in \mathbb{D},$$

be its Poisson extension.

Show that then

$$\liminf_{\zeta \in \partial \mathbb{D} \to \zeta_0} f(\zeta) \le \liminf_{z \in \mathbb{D} \to \zeta_0} u(z) \le \limsup_{z \in \mathbb{D} \to \zeta_0} u(z) \le \limsup_{\zeta \in \partial \mathbb{D} \to \zeta_0} f(\zeta)$$

for all $\zeta_0 \in \partial \mathbb{D}$.

Problem 4: Let $\Omega \subseteq \mathbb{C}$ be a bounded and open set, and u be subharmonic function on Ω . Show that then $u(z_0) = \limsup u(z)$ for all $z_0 \in \Omega$.

$$z \rightarrow z_0$$