
Math 246C Spring 2014

Final Exam (Due: Mo, 6/9, 2pm)

There are four problems with a total of 100 pts.

Problem 1: Here we consider Green’s functions for bounded regions in C defined
as minimal elements in certain classes of superharmonic functions. On Riemann
surfaces we defined Green’s functions as pointwise supremums of certain classes
of subharmonic functions. The purpose of this problem is to reconcile these two
notions.

(a) Let U and V be bounded regions in C, and GU and GV be their respective
Green’s functions. Show that if U ⊆ V , then GU(z, w) ≤ GV (z, w) for all z, w ∈ U .

(5 pts)

(b) Let U and Un for n ∈ N be bounded regions in C, and G and Gn be
their respective Green’s functions. Suppose that Un ⊆ Un+1 for n ∈ N, and
U =

⋃
n∈N Un. Show that then

G(z, w) = lim
n→∞

Gn(z, w)

for all z, w ∈ U (note that Gn(z, w) is defined for sufficently large n). Hint: Fix
w ∈ U , and consider the pointwise limit of the right hand side in the asserted
equality as a function of z. (5 pts)

(c) Let U be a bounded region in C. Outline an argument for the existence of
a sequence of regions Un, n ∈ N, with the following properties: Un is compactly
contained in U , each boundary point of Un is regular for the Dirichlet problem,
Un ⊆ Un+1 for n ∈ N, and

⋃
n∈N Un = U . (5 pts)

(d) Let V be a bounded region in C such that every boundary point of V is
regular for the Dirichlet problem, and GV be its Green’s function. Show that if
w ∈ V and we define a function v : C \ {w} → R by setting v(z) = G(z, w) for
z ∈ V \{w} and v(z) = 0 for z ∈ C\V , then v is continuous subharmonic function
on C \ {w}. (5 pts)

(e) Let U be a bounded region in C and GU be its Green’s function. Fix w ∈ U
and let F be the set of all continuous subharmonic function v on U \ {w} with
the following properties:

(i) lim supz→w(v(z) + log |z − w|) < +∞,

(ii) there exists a compact set K with w ∈ K ⊆ U such that v(z) = 0 for all
z ∈ U \K.



Show that then
GU(z, w) = sup

v∈F
v(z)

for all z ∈ U \ {w}. (5 pts)

Problem 2: The purpose of this problem is to show that if a Riemann surface
Y can be represented as Y = X \ N , where X is another Riemann surface and
N ⊆ X is a closed set with non-empty interior, then the Green’s function GY (·, p0)
on Y exists for each p0 ∈ Y .

For the construction we pick a coordinate disk D whose closure is contained in
the interior of N (this is possible by the hypotheses). Let p0 ∈ Y be arbitrary. We
pick another coordinate disk D0 and a chart z on X defined in a neighborhood of
D0 such that p0 ∈ D0, z(p0) = 0 and D0 ∩D = ∅. Set D′0 = z−1(B(0, 1/2)). Note

that then D
′
0 ⊆ D0.

(a) Consider the class F of all continuous and subharmonic functions on Z :=

X \ (D ∪ D′0) such that for each v ∈ F there exists a compact set K ⊆ X such
that v|(Z \K) ≡ 0, and

lim sup
p→q

v(p) ≤
{

0 for q ∈ ∂D,
1 for q ∈ ∂D′0.

Let u = supv∈F v be the pointwise supremum on Z. Show that u is a harmonic
function on Z and that u has a continuous extension to Z = X \ (D ∪D′0) such
that u|∂D = 0 and u|∂D′0 = 1 (for the last part it is enough to give a sketch of
the argument). (5 pts)

(b) Show that 0 < u < 1 on Z and that there exists δ > 0 such that u|∂D0 ≤
1− δ. (5 pts)

(c) Pick M ≥ log 2 such that Mδ > log 2, where δ as in (b). Define a function
w on X \ (D ∪ {p0}) by setting

w(p) :=


L(p) := log 1

|z(p)| +M − log 2 for p ∈ D′0 \ {p0},

min{L(p),Mu(p)} for p ∈ D0 \D′0,

Mu(p) for p ∈ X \ (D0 ∪D).

Show that w is superharmonic on X \ (D ∪ {p0}). (10 pts)

(d) Show that the Green’s function GY (·, p0) exists. (5 pts)

Problem 3: Let S be the family of all conformal maps f : D → f(D) ⊆ C
satisfying f(0) = f ′(0)− 1 = 0. The purpose of this problem is to show that S is
a normal family (this easily follows from the Koebe distortion theorem, but your
arguments should not rely on this).



(a) Show that if f ∈ S, and df := inf{|w| : w ∈ C \ f(D)}, then the infimum is
attained as a minimum and 0 < df ≤ 1. (4 pts)

(b) For f ∈ S consider the auxiliary function gf := f/wf − 1, where wf ∈
C \ f(D) satisfies |wf | = df . Then gf has a holomorphic square root denoted
by hf , and by a suitable choice of the branch we may assume hf (0) = i (justify
these statements!). Show that there exists r > 0 independent of f such that
B(−i, r) ∩ hf (D) = ∅. (7 pts)

(c) Show that S is a normal family. Hint: It suffices to show that S is locally
uniformly bounded. Argue by contradiction, and suppose {fn} is a sequence in S
and {zn} is a sequence of points in some compact set K ⊆ D such that |fn(zn)| ≥ n
for all n ∈ N. Now consider the functions kn := 1/(hn + i), where hn := hfn for
n ∈ N is defined as in (b). (7 pts)

(d) The previous argument actually shows that the family {gf : f ∈ S} of the
auxiliary maps as defined in (b) is locally uniformly bounded (why?). Use this to
show that there exists ρ0 > 0 such that B(0, ρ0) ⊆ f(D) for all f ∈ S.

(The largest possible value of ρ0 in the last statement is known as the Koebe
radius. One can show that ρ0 = 1/4.) (7 pts)

Problem 4: The purpose of this problem is to outline the proof of the Uniformiza-
tion Theorem in the general case.

(a) Show that if Ω is a simply connected region in a Riemann surface X such
that X \ Ω has non-empty interior, then Ω is biholomorphic to D. (2 pts)

Now let X be an arbitrary simply connected Riemann surface. Then one can find
simply connected regions Ωn ⊆ X for n ∈ N0 such that Ωn ⊆ Ωn+1 for n ∈ N0 and
X ′ :=

⋃
n∈N0

Ωn = X if X is open (i.e., non-compact), and X ′ =
⋃

n∈N0
Ω = X\{p}

for a suitable point p ∈ X if X is compact.
The existence of such an exhaustion is obvious if one relies on the topological

classification of surfaces (it implies that X is homeomorphic to C or Ĉ), but non-
trivial to prove from scratch. In the following we will assume the existence of the
exhaustion.

(b) Pick a basepoint p0 ∈ Ω0. Show that for n ∈ N0 there exists a biholo-
morphism ϕn of Ωn onto a Euclidean disk B(0, rn) of radius rn > 0 such that
ϕn(p0) = 0 and (ϕn ◦ ϕ−10 )′(0) = 1 for n ∈ N0. (3 pts)

(c) Show that rn+1 > rn for n ∈ N0. (2 pts)

Let R = supn∈N0
rn ∈ (0,+∞].

(d) Show that if R < +∞, then the sequence {ϕn} subconverges (in a suitable
sense) to a biholomorphic map ϕ : X ′ → B(0, R) and X ′ = X. (7 pts)



(e) Show that if R = +∞, then the sequence {ϕn} subconverges to a biholo-
morpic map ϕ : X ′ → C. (7 pts)

(f) Show that X is biholomorphic to D, C, or Ĉ. (4 pts)


