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Preface

These notes cover the material of a course on complex analysis that I taught
in the fall quarter of 2011 and the winter quarter of 2012. In many respects I
closely follow Rudin’s book on “Real and Complex Analysis”. Since Walter
Rudin is the unsurpassed master of mathematical exposition for whom I have
great admiration, I saw no point in trying to improve on his presentation of
subjects that are relevant for the course.

The notes give a fairly accurate account of the material covered in class.
They are rather terse as oral discussions that gave further explanations or
put results into perspective are mostly omitted. In addition, all pictures and
diagrams are currently missing as it is much easier to produce them on the
blackboard than to put them into print.
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1 Algebraic properties of complex numbers

1.1. Intuitive idea. Complex numbers are expressions of the form a + bi
with real numbers a and b. Here i is the imaginary unit. One computes (i.e.,
adds and multiplies) with complex numbers as usual, but sets i2 = i ·i := −1.
For example,

(3 + 5i)(2 + i) = 6 + 10i+ 3i+ 5i2 = 6 + 13i− 5 = 1 + 13i.

1.2. Definition of the complex numbers. For a rigorous definition we
let the set of complex numbers be

C := {(a, b) : a, b ∈ R}

with the correspondence (a, b) ∼= a+ bi in mind. Addition and multiplication
are defined accordingly:

(a, b) + (c, d) := (a+ c, b+ d),

(a, b) · (c, d) := (ac− bd, ad+ bc).

One often omits the multiplication sign and writes zw := z · w for z, w ∈
C. One also uses the convention that multiplication binds stronger than
addition. So u+ vw = u+ (v · w) for u, v, w ∈ C, etc.

That one computes with complex numbers “as usual” is mathematically
expressed by the following fact.

Theorem 1.3. (C,+, ·) is a field, that is:

1. (C,+) is an abelian group, which means that

1.1 the addition + is associative,

1.2 there exists a neutral element 0 := (0, 0) ∈ C with respect to
addition,

1.3 every element (a, b) ∈ C has an (additive) inverse (−a,−b) ∈ C,

1.4 the addition + is commutative.

2. (C,+, ·) is a commutative ring, which means that
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1 ALGEBRAIC PROPERTIES OF COMPLEX NUMBERS 9

2.1 (C,+) is an abelian group,

2.2 the multiplication · is associative and commutative,

2.3 the distributive law holds.

3. (C∗, ·) is a group, where C∗ := C \ {0}.
The proof is straightforward, but tedious, and so we skip it.

Remark 1.4. If we write (for the moment), ã := (a, 0) ∈ C for a ∈ R, then

ã+ b̃ = (a, 0) + (b, 0)

= (a+ b, 0) = ã+ b,

and

ã · b̃ = (a, 0) · (b, 0)

= (ab, 0) = ãb.

This means that with expressions ã, b̃, etc., one can compute in exactly the
same way as with the underlying real numbers a, b, etc. More precisely, the
map

ϕ : R→ C, a ∈ R 7→ ϕ(a) := ã,

is a field isomorphism of R onto its image in C.
Accordingly, one “identifies” the image of R under ϕ with R, writes a

instead of ã, and considers R as subset of C.
Now let i := (0, 1). Then for a, b ∈ R we have

(a, b) = (a, 0) + (0, b)

= (a, 0) + (b, 0) · (0, 1)

= ã+ b̃i = a+ bi.

So every complex number z ∈ C can uniquely be written as z = a+bi, where
a, b ∈ R. Note also that we have

i2 := i · i = (0, 1) · (0, 1)

= (−1, 0)

= −̃1 = −1.

Using these conventions we reconcile the precise definition of complex num-
bers and their operations with the intuitive notion that we took as out start-
ing point.
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Definition 1.5. Let z = a+ bi ∈ C, where a, b ∈ R. We define

(i) Re(z) := a (the real part of z),

(ii) Im(z) := b (the imaginary part of z),

(iii) z̄ := a− bi (the complex conjugate of z),

(iv) |z| :=
√
a2 + b2 (the absolute value of z).

1.6. Geometric interpretations. These concepts and also addition of
complex numbers have obvious geometric interpretations if one identifies z =
a+ bi with the point (a, b) in the plane R2.

1.7. Subtraction and division. As in every field one can define a notion of
subtraction and division of complex numbers. Namely, if z ∈ C, one denotes
the additive inverse of z by −z and defines

w − z := w + (−z)

for z, w ∈ C. If z = a+ bi, w = c+ di, then −z = (−a) + (−b)i, and so

w − z = (c− a) + (d− b)i.

If z 6= 0, then we denote by z−1 the (multiplicative) inverse of z. For z =
a+ bi 6= 0 we have

z−1 =
a

a2 + b2
− b

a2 + b2
i.

One defines
z/w =

z

w
:= w · z−1.

One can compute with fractions of complex numbers as usual (as in any field).
Using the fact that zz̄ = |z|2, one can simplify fractions of complex numbers
by multiplying in numerator and denominator by the complex conjugate of
the denominator. For example,

2 + i

3 + 5i
=

(2 + i)(3− 5i)

(3 + 5i)(3− 5i)

=
(6 + 5) + (−10 + 3)i

32 + 52

=
11− 7i

34
=

11

34
− 7

34
i.
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Theorem 1.8. Let z, w ∈ C. Then

(i) Re(z) = 1
2
(z + z̄),

(ii) Im(z) = 1
2i

(z − z̄),

(iii) Re(z + w) = Re(z) + Re(w),

(iv) Im(z + w) = Im(z) + Im(w),

(v) z ∈ R iff Im(z) = 0 iff z = z̄,

(vi) z̄ = z,

(vii) z + w = z̄ + w̄, z − w = z̄ − w̄,

(viii) z · w = z̄ · w̄,

(ix)
( z
w

)
=
z̄

w̄
,

(x) z · z̄ = |z|2,

(xi) |z| = 0 iff z = 0,

(xii) |z · w| = |z| · |w|,

(xiii)
∣∣∣ z
w

∣∣∣ =
|z|
|w|

,

(xiv) |z + w| ≤ |z|+ |w| (triangle inequality).

Proof. The proofs of these facts are straightforward, often tedious, and we
omit the details; as an example, we will prove (xii).

If z = a+ bi and w = c+ di, where a, b, c, d ∈ R, then

z · w = (ac− bd) + (ad+ bc)i,
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and so

|z · w|2 = (ac− bd)2 + (ad+ bc)2

= a2c2 + b2d2 + a2d2 + b2c2

= (a2 + b2)(c2 + d2)

= |z|2 · |w|2.

Hence
|z · w| = |z| · |w|.

(For this conclusion it is important that the terms on both sides are non-
negative).

Definition 1.9 (The exponential function for complex arguments). For z =
x+ iy, where x, y ∈ R, we define

ez = exp(z) := ex(cos y + i sin y).

Note that for z ∈ R, when y = Im(z) = 0, this agrees with the usual
exponential function. So the exponential function for complex arguments
is an extension of the exponential function for real arguments. Choosing
this particular extension seems arbitrary and unmotivated at this point. It
will become more natural after we have introduced power series, because we
will see that the complex exponential function can be represented by the
usual power series for the real exponential function. A deeper reason for
choosing this particular extension is that the complex exponential function
is holomorphic and by the uniqueness theorem every function on R has at
most one holomorphic extension to C. All this will be discussed later in the
course.

Theorem 1.10. The exponential function exp: C → C has the following
properties:

(i) eit = cos t+ i sin t for t ∈ R (Euler-Moivre formula),

(ii) ez+w = ez · ew for z, w ∈ C (functional equation of exp),

(iii) ez+2πi = ez for z ∈ C (exp is 2πi-periodic),

(iv) ez = 1 iff z = 2πik with k ∈ Z,
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(v) ew = ez iff w = z + 2πik with k ∈ Z.

Proof. (i) Obvious from the definition.

(ii) If z = x+ iy and w = u+ iv with x, y, u, v ∈ R, then

z + w = (x+ u) + i(y + v).

Note that

cos(y + v) = cos y cos v − sin y sin v,

sin(y + v) = sin y cos v + cos y sin v.

Hence

ez · ew = ex(cos y + i sin y)eu(cos v + i sin v),

= ex+u
(
(cos y cos v − sin y sin v) + i(sin y cos v + cos y sin v)

)
= ex+u(cos(y + v) + i sin(y + v))

= e(x+u)+i(y+v) = ez+w.

(iv) Let z = x+ iy, x, y ∈ R. Then

ez = 1 ⇔ ex(cos y + i sin y) = 1

⇔ ex cos y = 1 and ex sin y = 0,

⇔ ex cos y = 1 and sin y = 0,

⇔ ex cos y = 1 and y = nπ for n ∈ Z,
⇔ ex(−1)n = 1 and y = nπ for n ∈ Z,
⇔ ex = 1 and y = nπ for some n ∈ Z even,

⇔ x = 0 and y = nπ for some n ∈ Z even,

⇔ z = x+ iy = 2πik for k ∈ Z.

(iii) Using (ii) and (iv) we have

ez+2πi = ez · e2πi = ez · 1 = ez

for z ∈ C.
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(v) Note that ez 6= 0 for z ∈ C, because ez · e−z = e0 = 1 6= 0. So for z, w ∈ C
we have by (iv),

ew = ez ⇔ ew−z = ew · e−z = ez · e−z = e0 = 1,

⇔ w − z = 2πik for some k ∈ Z,
⇔ w = z + 2πik for some k ∈ Z.

1.11. Mapping properties of exp. The exponential function maps lines
parallel to the real axis to rays starting at 0; lines parallel to the imaginary
axis are mapped to circles centered at 0.

The exponential function maps the strip

S = {x+ iy : x ∈ R, 0 < y < 2π}

bijectively onto C \ [0,∞).

1.12. Polar coordinates. If z = x + iy, x, y ∈ R, then by using polar
coordinates we can write

x = r cosϕ,

y = r sinϕ,

where r ≥ 0 and ϕ ∈ R. Hence every complex number can be written as

z = x+ iy = r(cosϕ+ i sinϕ) = reiϕ,

where r ≥ 0 and ϕ ∈ R. Note that r = |z| is the absolute value of z. The
angle ϕ is called the argument of z, written ϕ = arg(z). It is only determined
up to integer multiples of 2π. If Re(z) 6= 0, then

tanϕ =
Im(z)

Re(z)
.

This formular allows the computation of ϕ for given z.

1.13. Geometric interpretation of multiplication and division of
complex numbers. Let z = reiα and w = seiβ, where r, s ≥ 0 and α, β ∈ R.
Then

z · w = reiαseiβ = rsei(α+β),
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and
z

w
=
reiα

seiβ
=
r

s
eiαe−iβ =

r

s
ei(α−β), w 6= 0.

So complex numbers are mutliplied by mutiplying their absolute values and
adding their arguments. One divides them by dividing their absolute values
and subtracting their arguments.

These facts and their geometric interpretations will be used throughout;
for example, multiplication by i = eiπ/2, i.e., the map z ∈ C 7→ iz correspond
to counterclockwise rotation in the plane by 90o.

1.14. Computation of nth roots. For z ∈ C and n ∈ N we set

zn := z · · · z︸ ︷︷ ︸
n factors

.

We use the convention z0 := 1 for z ∈ C, and set zn := (z−1)|n| for n ∈ Z,
n < 0, z 6= 0. One then has the usual computational rules

znzk = zn+k,

(zn)k = znk,

(zw)n = znwn

for z, w ∈ C, z, w 6= 0, n, k ∈ Z.
Now let n ∈ N, a ∈ C, a 6= 0. Every solution z of the equation zn = a

(for given n and a) is called an nth root of a. As we will see momentarily,
every a 6= 0 has precisely n distinct nth roots; hence for complex numbers
a we will usually not use the ambiguous notation n

√
a, but we will use it for

positive real numbers a (where it denotes the unique positive real number
with ( n

√
a)n = a).

We write a = reiϕ with r > 0, ϕ ∈ R, and use the ansatz z = ρeiα, where
ρ > 0 and α ∈ R. Then

zn = z · · · z︸ ︷︷ ︸
n factors

= ρneinα = reiϕ.

Hence ρn = r and nα = ϕ+ 2πk for k ∈ Z. This implies ρ = n
√
r and

α =
ϕ

n
+

2π

n
k, k ∈ Z.
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We conclude that a complex number a = reiϕ, a 6= 0, has n distinct nth
roots

zk = n
√
reiαk ,

where

αk =
ϕ

n
+

2π

n
k with k ∈ {0, . . . , n− 1}.

1.15. Examples. (a) Third roots of a = −8: We have a = −8 = 8eiπ; so

zk =
3
√

8eiαk = 2eiαk ,

αk = π
3

+ 2π
3
k with k ∈ {0, 1, 2}.

Hence
α0 = π

3
, α1 = π, α2 = 5π

3
,

and

z0 = 2eiπ/3 = 2(cos π
3

+ i sin π
3
) = 2(1

2
+ i

√
3

2
) = 1 + i

√
3,

z1 = 2eiπ = −2,

z2 = 2ei5π/3 = 2(cos 5π
3

+ i sin 5π
3

) = 2(−1
2
− i

√
3

2
) = −1− i

√
3.

(b) Computation of square roots by a different method: To solve the
equation

z2 = −3 + 4i,

for example, we use the ansatz z = a+ bi with a, b ∈ R and solve for a and b:

z2 = (a+ bi)2 = a2 − b2 + 2abi = −3 + 4i.

Hence
a2 − b2 = −3 and 2ab = 4. (1)

Squaring both equations and adding leads to

(a2 − b2)2 + 4a2b2 = a4 + 2a2b2 + b4 = (a2 + b2)2 = (−3)2 + 42 = 25.

Thus,
a2 + b2 = 5.

Combining this with (1) gives

2a2 = 2 ⇒ a2 = 1 ⇒ a1 = 1, a2 = −1
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and
b1 = 2, b2 = −2.

So we get the solutions

z1 = 1 + 2i and z2 = −1− 2i.

Note that z2 = −z1 as it should be.

(c) Solutions of quadratic equations can be computed as usual by complet-
ing the square, etc. A more general fact is true: Every polynomial equation

zn + an−1z
n−1 + · · ·+ a1z + a0 = 0,

where a0, . . . , an−1 ∈ C has a solution z ∈ C. This Fundamental Theorem of
Algebra will be proved later in this course.



2 Topological properties of C
In this section we summarize some standard facts from point-set topology.
We will mostly omit proofs or only give a brief outline.

Definition 2.1. A metric space (X, d) is a set X together with a function
d : X ×X → [0,∞) such that for all x, y, z ∈ X the following properties are
true:

(i) d(x, y) = 0 iff x = y,

(ii) d(x, y) = d(y, x) (symmetry),

(iii) d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

If these axioms hold, then d is called a metric on X.
In a metric space (X, d) we define for a ∈ X and r > 0,

B(a, r) := {x ∈ X : d(x, a) < r},
B(a, r) := {x ∈ X : d(x, a) ≤ r},

and call this the open ball and the closed ball of radius r centered at a,
respectively.

Often one also calls B(a, r) the (open) r-neighborhood of a.

Example 2.2. If we define d(z, w) := |z−w| for z, w ∈ C, then d is a metric
on C, called the Euclidean metric. From now on we consider C as a metric
space equipped with the Euclidean metric.

Definition 2.3. Let (X, d) be a metric space, and M ⊆ X. A point x ∈ X
is called

(i) an interior point of M if there exists ε > 0 such that B(x, ε) ⊆M ,

(ii) an exterior point of M if there exists ε > 0 such that B(x, ε) ⊆ X \M .

(iii) a boundary point of M if M ∩ B(x, ε) 6= ∅ and (X \M) ∩ B(x, ε) 6= ∅
for all ε > 0.

The set of interior points of M is denoted by int(M), and the set of
boundary points by ∂M .

18



2 TOPOLOGICAL PROPERTIES OF C 19

Remark 2.4. Every point in X is an interior point, an exterior point, or a
boundary point of M , and these cases are mutually exclusive. An interior
point of M always belongs to M , while an exterior point always lies in the
complement of M in X. A boundary point of M may or may not belong to
M .

Definition 2.5. Let (X, d) be a metric space, and M ⊆ X. Then M is called
open if it has only interior points, i.e., for all x ∈ M there exists ε > 0 such
that B(x, ε) ⊆M .

The set M is called closed if it contains all of its boundary points.

Example 2.6. D := {z ∈ C : |z| < 1} is an open set in C, called the open
unit disk. The set D := {z ∈ C : |z| ≤ 1} is a closed set in C, called the
closed unit disk. The set M = D ∪ {1} is neither open nor closed.

Definition 2.7. Let (X, d) be a metric space, and M ⊆ X. Then M :=
M ∪ ∂M is called the closure of M .

One can show that M is the smallest closed set in X containing M .
Our notation for the closed unit disk D was motivated by the fact that

this set is the closure of D.

Theorem 2.8. Let (X, d) be a metric space. Then the following statements
are true:

(i) a set in X is

{
open

closed

}
if its complement is

{
closed
open

}
,

(ii)

{
a union

an intersection

}
of a family of

{
open

closed

}
sets in X is

{
open

closed

}
,

(iii)

{
an intersection

a union

}
of a finite family of

{
open

closed

}
sets in X is

{
open

closed

}
.

Remark 2.9. Suppose X is a set together with a family O of its subsets
called open sets. If ∅, X ∈ O and if the properties (ii) and (iii) in the previous
theorem are satisfied, then (X,O) is called a topological space and the system
O a topology on X.

By what we have seen, every metric d on a set X determines a natural
system O of open sets that form a topology on X. One calls this the topology
induced by d.
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Definition 2.10. Let (X, d) be a metric space, and {xn} be a sequence of
points in X.

(i) The sequence {xn} is called convergent if there exists a point x ∈ X
(the limit of {xn}) such that for all ε > 0 there exists N ∈ N such that
for all n ∈ N with n ≥ N we have d(x, xn) < ε.

One can show that if the limit x exists, then it is unique, and one writes
x = lim

n→∞
xn or simply xn → x.

(ii) The sequence {xn} is called a Cauchy sequence if for all ε > 0 there
exists N ∈ N such that for all n, k ∈ N with n, k ≥ N we have
d(xn, xk) < ε.

(iii) A point x ∈ X is called a sublimit of {xn} if there exists a subsequence
{xnk
} of {xn} such that lim

k→∞
xnk

= x. In this case, we say that {xn}
subconverges to x.

Proposition 2.11. A sequence {zn} in C converges if and only if the se-
quences {Re(zn)} and {Im(zn)} of real numbers converge.

In case of convergence we have

lim
n→∞

zn = lim
n→∞

Re(zn) + i lim
n→∞

Im(zn).

Proof. ⇒: Suppose {zn} converges, and let z := lim
n→∞

zn. Note that |Re(w)| ≤
|w| for w ∈ C. Hence

|Re(zn)− Re(z)| ≤ |zn − z|

for n ∈ N. This implies that lim
n→∞

Re(zn) = Re(z). Similarly, lim
n→∞

Im(zn) =

Im(z).

⇐: Suppose {Re(zn)} and {Im(zn)} converge. Let a := lim
n→∞

Re(zn),

b := lim
n→∞

Im(zn), and z := a+ bi. Note that for all w ∈ C we have

|w| =
√

Re(w)2 + Im(w)2 ≤ |Re(w)|+ | Im(w)|.

Hence
|zn − z| ≤ |Re(zn)− a|+ | Im(zn)− b|.

It follows that lim
n→∞

zn = z.
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Remark 2.12. The usual computational rules for limits are true for se-
quences in C. If {zn} and {wn} are sequences in C with zn → z and wn → w,
then

(i) zn + wn → z + w,

(ii) znwn → zw,

(iii) Re(zn)→ Re(z), Im(zn)→ Im(z), zn → z, |zn| → |z|,

(iv)
wn
zn
→ w

z
, if, in addition, z 6= 0 and zn 6= 0 for n ∈ N.

Definition 2.13. A metric space (X, d) is called complete if every Cauchy
sequence in X converges.

Theorem 2.14. The space C (equipped with the Euclidean metric) is com-
plete.

Proof. This follows from the completeness of R and Proposition 2.11.

Proposition 2.15. A subset A of a metric space (X, d) is closed if and only
if every convergent sequence in A has its limit also in A.

Definition 2.16. A subset K of a metric space (X, d) is called compact if
every open cover of K has a finite subcover; i.e., whenever {Ui : i ∈ I} is a
family of open sets in X with K ⊆

⋃
i∈I Ui, then there exist i1, . . . , in ∈ I

such that K ⊆ Ui1 ∪ · · · ∪ Uin .

Theorem 2.17. Let (X, d) be a metric space. Then K ⊆ X is compact if
and only if every sequence {xn} in K has a sublimit in K, i.e., there exists
a subsequence {xnk

} of {xn} that converges and x = lim
n→∞

xn ∈ K.

The last condition is called sequential compactness. So a set in a metric
space is compact if and only if it is sequentially compact.

Proposition 2.18. (a) Every compact metric space is complete.

(b) Every compact subset of a metric space is closed.

Theorem 2.19 (Heine-Borel). A subset K ⊆ C is compact if and only if it
is closed and bounded.
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Remark 2.20. A subset M of a metric space is called bounded if its diameter
defined as

diam(M) := sup{d(x, y) : x, y ∈M}

is finite. This is equivalent to the requirement that there exists a ∈ X and
r > 0 such that M ⊆ B(a, r).

Definition 2.21. Let (X, d) and (Y, ρ) be metric spaces, and f : X → Y be
a map.

(i) We say that f approaches the limit y ∈ Y as x approaches a ∈ X,
written as lim

x→a
f(x) = y, if for all ε > 0 there exists δ > 0 such that for

all x ∈ X we have that

0 < d(x, a) < δ implies ρ(f(x), y) < ε.

(ii) The map f is called continuous at a ∈ X if lim
x→a

f(x) = f(a).

(iii) The map f is called continuous (on X) if it is continuous at all points
a ∈ X.

Note that in (i) it does not matter what happens for x = a.

Proposition 2.22. Let (X, d) and (Y, ρ) be metric spaces, and f : X → Y
be a map. Then the following condition are equivalent:

(i) f is continuous,

(ii) for every convergent sequence {xn} in X, the sequence {f(xn)} also
converges and we have

lim
n→∞

f(xn) = f
(

lim
n→∞

xn
)
,

(iii) for all x ∈ X and all ε > 0 there exists δ > 0 such that

f(B(x, δ)) ⊆ B(f(x), ε),
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(iv) preimages of open sets are open, i.e., f−1(V ) is open in X whenever
V ⊆ Y is open in Y .

(v) preimages of closed sets are closed.

Remark 2.23. We will be mostly interested in limits of functions f : M → C,
where M ⊆ R or M ⊆ C. In this case, one has the usual computational rules
for function limits. For example, if f : M → C and g : M → C are functions,
and a ∈M , then

lim
x→a

f(x)g(x) =
(
lim
x→a

f(x)
)(

lim
x→a

g(x)
)

if the limits on the right hand side exist, etc. Based on this one can prove
that if f : M → C and g : M → C are continuous, then f + g is continuous,
fg is continuous, etc.

Theorem 2.24. Let (X, d) and (Y, ρ) be metric spaces, and f : X → Y
be a continuous map. If K ⊆ X is compact, then f(K) ⊆ Y is compact
(continuous images of compact sets are compact).

Proof. Suppose that K ⊆ X is compact, and let {yn} be an arbitrary se-
quence in f(K). Then for all n ∈ N there exists xn ∈ K such that yn = f(xn).
Then {xn} is a sequence in K. Since K is compact, by Theorem 2.17 the
sequence {xn} has a convergent subsequence {xnk

} with a limit in K, say
xnk
→ x ∈ K. By continuity of f it follows that

ynk
= f(xnk

)→ f(x) ∈ f(K).

So {yn} has a sublimit in f(K). Hence f(K) is compact by Theorem 2.17.

Remark 2.25. There are other important statements involving compactness
and continuity: a real-valued function f : X → R on a compact metric space
(X, d) attains maximum and minimum. A continuous map f : X → Y be-
tween a compact metric space (X, d) and a metric space (Y, ρ) is uniformly
continuous, i.e., for all ε > 0 that exists δ > 0 such that for all x, y ∈ X we
have that

d(x, y) < δ implies ρ(f(x), f(y)) < ε.

Definition 2.26. A subset M of a metric space (X, d) is called connected if
the following condition is true: if U, V ⊆ X are open sets with M ⊆ U ∪ V
and U ∩ V = ∅, then M ⊆ U or M ⊆ V .
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Remark 2.27. (a) For M = X this statement can be reformulated in equiv-
alent form in the following way: a metric space X is connected if every
decomposition X = U ∪V , U ∩V = ∅, into open subsets U, V ⊆ X is trivial,
i.e., U = M or V = M . Equivalently, X is connected if ∅ and X are the only
subsets of X that are both open and closed.

(b) For subsets M of a metric space (X, d) one can characterize connected-
ness in a similar way if one uses relatively closed and open sets. By definition
a set A ⊆M is called relatively closed or relatively open in M if there exists
a closed or an open set B ⊆ X, respectively, such that A = B ∩M .

The restriction dM := d|M ×M of d to M is a metric on M . It is not
hard to see that A ⊆ M is relatively closed or relatively open in M if A is
closed or open in the metric space (M,dM), respectively.

Using this terminology one can show that a subset M of a metric space
is connected if and only if ∅ and M are the only subsets of M that are both
relatively closed and relatively open in M (exercise!).

Proposition 2.28. A non-empty subset M ⊆ R is connected if and only if
M is an interval (possibly degenerate).

Here we call an interval degenerate if it consists of only one point. All
intervals in R are of the form [a, b], [a, b), (a, b], (a, b), (−∞, a], (−∞, a),
[a,+∞), (a,+∞), or (−∞,+∞) = R, where a, b ∈ R, a ≤ b.

Proposition 2.29. Let (X, d) and (Y, ρ) be metric spaces, and f : X → Y
be a continuous map. If M ⊆ X is connected, then f(M) ⊆ Y is connected
(continuous images of connected sets are connected).

Proof. Under the given assumptions, assume that M ⊆ X is connected. To
show that f(M) is connected, let U, V ⊆ Y be arbitrary open sets with
f(M) ⊆ U ∪ V and U ∩ V = ∅. Since f is continuous, the sets U ′ := f−1(U)
and V ′ := f−1(V ) are open. Moreover,

U ′ ∪ V ′ = f−1(U) ∪ f−1(V ) = f−1(U ∪ V ) ⊇ f−1(f(M)) ⊇M,

and
U ′ ∩ V ′ = f−1(U) ∩ f−1(V ) = f−1(U ∩ V ) = f−1(∅) = ∅.

Since M is connected, we have M ⊆ U ′ or M ⊆ V ′, say M ⊆ U ′. Then

f(M) ⊆ f(U ′) = f(f−1(U)) ⊆ U.

Hence f(M) is connected.
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Definition 2.30. A non-empty set Ω ⊆ C is called a region if it is open and
connected.

Theorem 2.31. A non-empty open set Ω ⊆ C is a region if and only if any
two points a, b ∈ Ω can be joined by a polygonal path in Ω.

If z, w ∈ C we denote by

[z, w] := {(1− t)z + tw : t ∈ [0, 1]}

the closed line segment with endpoints z and w. A polygonal path P in C is
a set of the form

P = [z0, z1] ∪ · · · ∪ [zn−1, zn],

where n ∈ N, z1, . . . , zn ∈ C. Such a path joins two points z and w if z0 = z
and w = zn.

Proof. ⇒: Assume that Ω is a region. Fix a point a ∈ Ω, and consider the
points set M of points b ∈ Ω that can be joined to a by a polygonal path in
Ω. It suffices to show that M = Ω.

Note that a ∈M , and so M 6= ∅. In order to conclude that M = Ω, it is
enough to show that M is open and relatively closed in Ω.

1. M is open.
If y ∈ M ⊆ Ω, then, since Ω is open, there exists ε > 0 such that

B(y, ε) ⊆ Ω. If z ∈ B(y, ε) we can find a polygonal path in Ω joining a
and z as a union of a polygonal path joining a and y and the line segment
[y, z] ⊆ B(y, ε) ⊆ Ω. Hence B(y, ε) ⊆M , and so M is open.

2. M is relatively closed.
Let {xn} be an arbitrary sequence in M that converges in the “ambient”

space Ω. So xn → x ∈ Ω. We have to show that x ∈M .
Since Ω is open, there exists ε > 0 such that B(x, ε) ⊆ Ω. Since xn → x,

there exists k ∈ N such that xk ∈ B(x, ε). Now xk ∈M and [xk, x] ⊆ B(x, ε).
So we can find a polygonal path in Ω joining a and x by first joining a and
xk by a polygonal path in Ω followed by the line segment [xk, x]. So x ∈M ,
and M is relatively closed.
⇐: Suppose any two points in Ω can be joined by a polygonal path in

Ω. Fix a ∈ Ω. Then for every point b ∈ Ω there exists a polygonal path
Pb ⊆ Ω joining a and b. Then Ω =

⋃
b∈Ω Pb and a ∈

⋂
b∈Ω Pb. Moreover, each

polygonal path is the image of an interval in R and hence connected.
We conclude that Ω is connected, because a union of a family of connected

sets with non-empty intersection is connected (exercise!).



3 Differentiation

Remark 3.1. An obvious extension of differential calculus of real-valued
functions of one real variable is to complex-valued functions of one real vari-
able; so if f : I → C is a complex-valued function on an interval I ⊆ R, we
call f differentiable at x0 ∈ I, if the limit

lim
x∈x0

f(x)− f(x0)

x− x0

exists. This limit is denoted by f ′(x0) and called the derivative of f at x0.
It (essentially) follows from Proposition 2.11 that f is differentiable at x0

if and only if the functions Re(f) and Im(f) are differentiable at x0. In this
case

f ′(x0) = (Re(f))′(x0) + i(Im(f))′(x0).

For example, let f : R → C, f(x) := eix for x ∈ R. Then f(x) =
cosx+ i sinx, and so

f ′(x) = − sinx+ i cosx

= i(cosx+ i sinx) = ieix.

One is tempted to use the chain rule here:

d

dx
eix =

dez

dz

∣∣∣∣
z=ix

· d(ix)

dx
= ez|z=ix · i = ieix.

At the moment this is not justified, because we have not yet defined deriva-
tives of complex-valued functions of a complex variable.

Definition 3.2. Let U ⊆ C be open, and f : U → C be a function.

(i) f is called differentiable at z0 ∈ U if

lim
z→z0

f(z)− f(z0)

z − z0

exists. This limit is called the derivative of f at z0 and denoted by

f ′(z0),
df

dz
(z0), etc.

26
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(ii) f is called holomorphic (on U) if it is differentiable at every point
z0 ∈ U .

(iii) We denote by H(U) the set of all holomorphic functions on U .

Theorem 3.3. Let U, V ⊆ C be open sets.

(a) If f ∈ H(U), then f is continuous on U .

(b) Let a, b ∈ C, and f, g ∈ H(U). Then

(i) af + bg ∈ H(U), and (af + bg)′ = af ′ + bg′,

(ii) fg ∈ H(U) and (fg)′ = f ′g + fg′ (product rule),

(iii)
f

g
∈ H(U) and

(
f

g

)′
=
f ′g − fg′

g2
if we assume in addition that

g(z) 6= 0 for z ∈ U (quotient rule).

(c) Let f ∈ H(U), g ∈ H(V ), and f(U) ⊆ V . Then g ◦ f ∈ H(U) and
(g ◦ f)′ = (g′ ◦ f) · f ′ (chain rule).

Proof. The standard proofs from real analysis transfer to this setting. For
illustration we will prove (a) and (c).

(a) Let z0 ∈ U be arbitary. Then

lim
z→z0

(f(z)− f(z0)) = lim
z→z0

f(z)− f(z0)

z − z0

(z − z0)

=

(
lim
z→z0

f(z)− f(z0)

z − z0

)
·
(

lim
z→z0

(z − z0)

)
= f ′(z0) · 0 = 0.

Hence
lim
z→z0

f(z) = f(z0),

and so f is continuous at z0.
(c) A function h : W → C on an open set W ⊆ C is differentiable at

z0 ∈ W if and only if there exists a constant c ∈ C, and a function s : W → C
with lim

z→z0
s(z) = 0 such that

h(z)− h(z0) = (z − z0)(c+ s(z))
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for all z ∈ W . If this is true, then c = h′(z0).
Now suppose f and g are as in the statement, and let z0 ∈ U be arbitrary.

Set w0 = f(z0). Then there exist functions s : U → C and t : V → C with
lim
z→z0

s(z) = 0 and lim
w→w0

t(w) = 0 such that

f(z)− f(z0) = (z − z0)(f ′(z0) + s(z)), z ∈ U,
g(w)− g(w0) = (w − w0)(g′(w0) + t(w)), w ∈ V.

Hence for all z ∈ U we have

g(f(z)︸︷︷︸
w

)− g(f(z0)︸ ︷︷ ︸
w0

) = (f(z)− f(z0))
(
g′(w0) + t(f(z))

)
,

= (z − z0)
(
f ′(z0) + s(z)

)(
g′(w0) + t(f(z))

)
= (z − z0)

(
g′(w0)f ′(z0) + g′(w0)s(z) + f ′(z0)t(f(z)) + s(z)t(f(z))︸ ︷︷ ︸

r(z)

)
.

Note that f(z)→ f(z0) = w0 as z → z0 by continuity of f , and so

lim
z→z0

r(z) = lim
z→z0

(
g′(w0)s(z) + f ′(z0)t(f(z)) + s(z)t(f(z))

)
= g′(w0) lim

z→z0
s(z) + f ′(z0) lim

w→w0

t(w) +
(

lim
z→z0

s(z)
)(

lim
w→w0

t(w)
)

= g′(w0) · 0 + f ′(z0) · 0 + 0 · 0 = 0.

Hence g ◦ f is differentiable at z0 and

(g ◦ f)′(z0) = g′(w0)f ′(z0) = g′(f(z0))f ′(z0).

The claim follows.

Remark 3.4. Similar statements hold for complex-valued functions on in-
tervals. One can also prove a chain rule for a function given by a (post-)
composition of a complex-valued function on interval by a holomorphic func-
tion.

Theorem 3.5. Let Ω ⊆ C be a region, and f ∈ H(Ω). If f ′ = 0, then f is
a constant function.

Proof. Fix z0 ∈ Ω. We will show that f(z) = f(z0) for all z ∈ Ω.
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Let z ∈ Ω be arbitrary. By Theorem 2.31 there exists a polygonal path

P = [z0, z1] ∪ · · · ∪ [zn−1, zn] ⊆ Ω,

where zn = z. So it is enough to show that f is constant on each segment
[u, v] ⊆ Ω.

To see this, let u, v ∈ Ω be arbitrary, and consider h : [0, 1]→ C, h(t) :=
f(u+ (v − u)t) for t ∈ [0, 1]. Then by the chain rule,

h′(t) = f ′(u+ (v − u)t)(v − u) = 0

for all t ∈ [0, 1]. Hence h is constant on [0, 1], and so f is constant on
[u, v].

Remark 3.6. By using the previous statements, one can produce a certain,
although limited, supply of holomorphic functions; namely, it follows from
the definitions that a constant function z 7→ c ∈ C, and the function z 7→ z
are holomophic in C, and we have

dc

dz
= 0 and

dz

dz
= 1.

By induction it follows from the product rule that z 7→ zn is holomorphic in
C for all n ∈ N, and

dzn

dz
= nzn−1.

This implies that each polynomial P , i.e., each function P : C → C of the
form

z 7→ P (z) := a0 + a1z + · · ·+ anz
n,

where n ∈ N0, a0, . . . , an ∈ C, is holomorphic on C. Finally, every rational
function

R(z) =
P (z)

Q(z)
,

where P and Q 6= 0 are polynomials, is holmorphic on the complement
C \Q−1(0) of the zero-set of Q.

Remark 3.7. For the rest of this section we identify C with R2 by the
correspondence z = x + iy ∈ C ∼= (x, y) ∈ R2. We write a complex-valued
function f : U → C on U ⊆ C in the form f = u+ iv, where u = Re(f) and
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v = Im(f). Then u and v are considered as functions of (x, y) ∈ U ⊆ R2,
and we have

f(x+ iy) = u(x, y) + iv(x, y),

where x+ iy ∼= (x, y) ∈ U .

We will denote by ux, uy, . . . partial derivatives; so ux =
∂u

∂x
, etc.

Theorem 3.8. Let U ⊆ C be open, f : U → C, f = u+ iv.
Then f is holomorphic on U if and only if u and v are C1-smooth on U

and the so-called Cauchy-Riemann equations

ux = vy, uy = −vx

are valid on U .
In this case,

f ′(x+ iy) = ux(x, y) + ivx(x, y)

=
1

i
(uy(x, y) + ivy(x, y)),

whenever x+ iy ∈ U .

For the proof of the implication ⇒ we will use the following

Fact: If U ⊆ C is open, and f ∈ H(U), then f ′ ∈ H(U).

This will be proved later in this course (independently of the previous
theorem of course).

Proof. ⇒: Suppose f is holomorphic on U . Then for each z = x + iy ∈ U
we have,

f ′(z) = lim
w→0

f(z + w)− f(z)

w
.

Setting w = h or w = ik, where h, k ∈ R, and h→ 0 or k → 0, we obtain

f ′(x+ iy) = lim
h→0

f(z + h)− f(z)

h

= lim
h→0

u(x+ h, y)− u(x, y)

h
+ i lim

h→0

v(x+ h, y)− v(x, y)

h
= ux(x, y) + ivx(x, y),
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and

f ′(x+ iy) = lim
k→0

f(z + ik)− f(z)

ik

=
1

i
lim
k→0

u(x, y + k)− u(x, y)

k
+

1

i
· i lim

k→0

v(x, y + k)− v(x, y)

k

=
1

i
(uy(x, y) + ivy(x, y)).

In particular, the partial derivatives of u and v exist, and

ux + ivx =
1

i
(uy + ivy) = vy − iuy

on U ; so ux = vy and vx = −uy.
Moreover, we have that

ux = Re(f ′), vx = Im(f ′), uy = − Im(f ′), vy = Re(f ′).

Since by the fact mentioned above, f ′ is holomorphic and hence continuous
on U , the partial derivatives of u and v are also continuous on U . It follows
that u and v are C1-smooth.

⇐: Suppose that u and v are C1-smooth and that the Cauchy-Riemann
equations hold. Since the functions u and v are C1-smooth, they are differ-
entiable on U ; this means that for each point (x, y) ∈ U and (h, k) ∈ R2 with
|(h, k)| :=

√
h2 + k2 small we have

u(x+ h, y + k) = u(x, y) + ux(x, y)h+ uy(x, y)k + r(h, k),

v(x+ h, y + k) = v(x, y) + vx(x, y)h+ vy(x, y)k + s(h, k),

where
r(h, k)

|(h, k)|
→ 0 and

s(h, k)

|(h, k)|
→ 0

as |(h, k)| → 0.
If we set z = x + iy, w = h + ik, and c = ux(x, y) + ivx(x, y), then for
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small |w| 6= 0, we have by the Cauchy-Riemann equations,∣∣∣∣f(z + w)− f(z)

w
− c
∣∣∣∣ =

∣∣∣∣f(z + w)− f(z)− (h+ ik)c

w

∣∣∣∣
=

1

|w|
∣∣f(z + w)− f(z)− hux(x, y)− ihvx(x, y)− kuy(x, y)− ikvy(x, y)

∣∣
≤ 1

|w|
∣∣u(x+ h, y + k)− u(x, y)− hux(x, y)− kuy(x, y)

∣∣+
1

|w|
∣∣v(x+ h, y + k)− v(x, y)− hvx(x, y)− kvy(x, y)

∣∣
≤ |r(h, k)|+ |s(h, k)|

|(h, k)|
→ 0 as w = h+ ik → 0.

It follows that f is differentiable at z. Since z ∈ U was arbitrary, f is
holomorphic on U .

Example 3.9. By using the previous theorem, one can see that the expo-
nential function is holomorphic on X; indeed,

ez = ex+iy = ex cos y + iex sin y,

and so
u(x, y) = ex cos y and v(x, y) = ex sin y.

Hence u and v are C1-smooth in R2. Moreover, we have

ux = ex cos y = vy and uy = −ex sin y = −vx,

and so the Cauchy-Riemann equations hold.
For the derivative of the exponential function we obtain

d

dz
ez = ux + ivx = ex cos y + iex sin y = ez.

Remark 3.10. If f = u + iv is holomorphic, then u and v are C1-smooth
and the first partial derivatives of u and v are again real and imaginary parts
of a holomorphic function (ux = Re(f ′), etc.). It follows that the first partial
derivatives of u and v are C1-smooth, and so u and v are C2-smooth. If we
repeat this argument, we conclude that u and v are C∞-smooth.
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Definition 3.11. Let U ⊆ R2 be open, and h : U → R be C2-smooth. The
Laplacian ∆h of h is defined as

∆h = hxx + hyy =
∂2h

∂x2
+
∂2h

∂y2
.

The function h is called harmonic on U if its Laplacian vanishes on U ,
i.e., if ∆h = 0 on U .

Theorem 3.12. Let U ⊆ C be open, f ∈ H(U), f = u + iv. Then u and v
are harmonic on U .

Proof. The functions u and v are C∞-smooth by Remark 3.10. Moreover,
ux = vy and uy = −vx by the Cauchy-Riemann equations. Hence

∆u = uxx + uyy = vyx − vxy = 0,

∆v = vxx + vyy = −uyx + uxy = 0.

Remark 3.13. If f = u+iv is a complex-valued function of (x, y) ∈ U ⊆ R2,
one defines its partial derivatives as

∂f

∂x
:=

∂u

∂x
+ i

∂v

∂x
, and

∂f

∂y
:=

∂u

∂y
+ i

∂v

∂y
.

Usually, it is better to work with the so-called z- and z̄-derivatives or Wirtinger
derivatives defined as

∂f

∂z
:=

1

2

(
∂f

∂x
− i∂f

∂y

)
, and

∂f

∂z̄
:=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
.

So symbolically,

∂

∂z
=

1

2

(
∂

∂x
− i ∂

∂y

)
, and

∂

∂z̄
=

1

2

(
∂

∂x
+ i

∂

∂y

)
.

Note that

∂z

∂z
=

1

2

(
∂(x+ iy)

∂x
− i∂(x+ iy)

∂y

)
=

1

2
(1 + 1) = 1,

∂z̄

∂z
=

1

2

(
∂(x− iy)

∂x
− i∂(x− iy)

∂y

)
=

1

2
(1− 1) = 0.
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Similarly,
∂z̄

∂z
= 0 and

∂z̄

∂z̄
= 1.

So with respect to the operator
∂

∂z
the function z 7→ z behaves as expected,

and z 7→ z̄ like a constant, and we have a similar behavior for the operator
∂

∂z̄
.

Moreover, the usual computational rules hold for these operators (product
rule, quotient rule, etc.). This allows computations such as

∂|z|2

∂z
=
∂(zz̄)

∂z
=
∂z

∂z
z̄ +

∂z̄

∂z
z = z̄.

We also have a version of the chain rule: suppose that h = h(w, w̄) and
w = w(z, z̄). Then

∂h

∂z
=
∂h

∂w
· ∂w
∂z

+
∂h

∂w̄
· ∂w̄
∂z

, and
∂h

∂z̄
=
∂h

∂w
· ∂w
∂z̄

+
∂h

∂w̄
· ∂w̄
∂z̄

.

Note also (
∂w

∂z

)
=
∂w̄

∂z̄
, and

(
∂w

∂z̄

)
=
∂w̄

∂z
.

Theorem 3.14. Let U ⊆ C be open, f : U → C, f = u + iv. Then f is
holomorphic on U if and only if f is C1-smooth (i.e., u and v are C1-smooth)
and

∂f

∂z̄
= 0

on U (complex version of the Cauchy-Riemann equations).

In this case, f ′ =
∂f

∂z
.

Proof. We have

∂f

∂z̄
=

1

2
(fx + ify) =

1

2
(ux + ivx) +

i

2
(uy + ivy)

=
1

2
(ux − vy) +

i

2
(vx + uy).

So the condition
∂f

∂z̄
= 0 is equivalent to the Cauchy-Riemann equations.

The first part of the statement follows from Theorem 3.8.
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In case of holomorphicity we have

f ′ = ux + ivx =
1

i
(uy + ivy).

Hence

f ′ =
1

2
(ux + ivx)−

i

2
(uy + ivy) =

∂u

∂z
+ i

∂v

∂z
=
∂f

∂z
.

Example 3.15. Let f(z) = z|z|2 for z ∈ C. Is f anywhere holomorphic in
C? Obviously, f ∈ C∞(C), and we have

∂f

∂z̄
=
∂(z2z̄)

∂z̄
= z2.

So the Cauchy-Riemann equations are true only for z = 0. Hence there is no
open set U ⊆ C where f |U is holomorphic.

Definition 3.16. Let U ⊆ C be open, u : U → R be C2-smooth and har-
monic. A harmonic function v : U → R is called a harmonic conjugate of u
in U if f = u+ iv is holomorphic.

Remark 3.17. (a) It easily follows from the Cauchy-Riemann equations
that if a harmonic conjugate exists on a region U , then it is unique up to an
additive constant (exercise!).

(b) In general a harmonic conjugate need not exist. If U satisfies a special
geometric condition, then every harmonic function u on U has a harmonic
conjugate. The requirement is that U should have “no holes” and is simply
connected. This concept will be later discussed in detail in this course.

Example 3.18. (a) Let u(x, y) = x2−y2 for (x, y) ∈ R2. Then u ∈ C∞(R2),
ux = 2x, uy = −2y, and uxx = 2, uyy = −2. Hence ∆u = 0, and so u is
harmonic.

Does u have a harmonic conjugate, and how to find it? We use the
Cauchy-Riemann equation that a harmonic conjugate v of u must satisfy:

vx = −uy = 2y, vy = ux = 2x.

By the first equation we have

v(x, y) =

∫
2y dx+ C(y) = 2xy + C(y).
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Using this, we get
vy = 2x+ C ′(y) = ux = 2x.

Hence C ′(y) = 0, and so C(y) ≡ const. =: c ∈ R. So v(x, y) = 2xy+ c. If we
set

f(x+ iy︸ ︷︷ ︸
z

) := u(x, y) + iv(x, y) = x2 − y2 + 2ixy + c = z2 + c,

then f is indeed holomorphic.
(b) Let u(x, y) = 1

2
log(x2 + y2) for (x, y) ∈ U := R2 \ {0}. Then u ∈

C∞(R2 \ {0}),

ux =
x

x2 + y2
, uy =

y

x2 + y2
, uxx =

−x2 + y2

(x2 + y2)2
, uyy =

x2 − y2

(x2 + y2)2
.

Hence ∆u = 0, and so u is harmonic on U .
Does u have a harmonic conjugate v? If so, then

vy = ux =
x

x2 + y2
,

and so at least locally, where x 6= 0,

v =

∫
x

x2 + y2
dy + C(x) = arctan(y/x) + C(x).

Then
vx = − y

x2 + y2
+ C ′(x) = −uy = − y

x2 + y2
,

so C(x) ≡ const. =: c, and

v(x, y) = arctan(y/x) + c

locally near points (x, y) where x 6= 0.
If we introduce polar coordinates, and set z = x+ iy = reiϕ, then locally

near points (x, y) where x 6= 0,

v(x, y) = arctan(y/x) + c = ϕ+ c′,

where c′ is locally constant.
If u had a harmonic conjugate, then by continuity necessarily

v(x, y) = ϕ+ c′,
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for all (x, y) ∈ U ; but there is no well-defined function (x, y) 7→ ϕ on all
of U (it exists locally near each point, or on the slit plane C \ (−∞, 0], for
example).

The conclusion is that u has no harmonic conjugate on U ; on a more
intuitive level, u has a locally harmonic conjugate (unique up to constant),
but it changes globally by the period 2π if we run around 0 counter-clockwise
once.

This is an instance of a more general fact: on arbitrary regions U every
harmonic function has a local harmonic conjugate v, but v changes by certain
additive periods if we run around the “holes” of U .



4 Path integrals

Definition 4.1. A path is a continuous map γ : [a, b] → C defined on a
compact interval [a, b] ⊆ R. The image or trace of the path is the set γ([a, b])
denoted by γ∗. The endpoints of γ are γ(a) and γ(b). The path is a loop if
γ(a) = γ(b). If γ∗ ⊆ U ⊆ C, then we say γ is a path in U .

The path γ is called piecewise smooth if there exists a partition t0 =
a < t1 < · · · < tn = b of [a, b] such that γ is differentiable on each interval
[tk−1, tk], k ∈ {1, . . . , n}, with continuous derivative γ′.

Definition 4.2. Let h : [a, b] → C be a function. We call h (Riemann)
integrable if Re(h) and Im(h) are (Riemann) integrable on [a, b]. If h is
integrable, we define∫ b

a

h(t) dt :=

∫ b

a

(Reh)(t) dt+ i

∫ b

a

(Imh)(t) dt.

Proposition 4.3. Let [a, b] ⊆ R be compact interval, f, g, h : [a, b] → C be
integrable functions, and α, β ∈ C. Then the following statements are true:

(a)

∫ b

a

(αf + βg)(t) dt = α

∫ b

a

f(t) dt+ β

∫ b

a

g(t) dt,

(b)

∣∣∣∣∫ b

a

h(t) dt

∣∣∣∣ ≤ ∫ b

a

|h(t)| dt,

(c) if h has a primitive H, i.e., H is differentiable on [a, b] and H ′ = h,
then ∫ b

a

h(t) dt = H(b)−H(a).

Proof. The statements (a) and (c) follow from the corresponding statements
for integrals of real-valued functions if we split the relevant expressions up
into real and imaginary parts.

(b) Assume h = u + iv, where u = Re(h) and v = Im(h). Define α :=∫ b
a
u(t) dt and β :=

∫ b
a
v(t) dt. Then by the Cauchy-Schwarz inequality we

38
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have ∣∣∣∣∫ b

a

h(t) dt

∣∣∣∣2 = α2 + β2 =

∫ b

a

(
αu(t) + βv(t)

)
dt

≤ (α2 + β2)1/2

∫ b

a

(
u(t)2 + v(t)2

)1/2
dt

=

∣∣∣∣∫ b

a

h(t) dt

∣∣∣∣ · ∫ b

a

|h(t)| dt.

Inequality (b) follows.

Definition 4.4 (Path integrals). Let γ : [a, b] → C be a piecewise smooth
path, and f : γ∗ → C be a continuous function. Then we define the (path)
integral of f over γ (denoted by

∫
γ
f(z) dz,

∫
γ
f , etc.), as∫

γ

f(z) dz :=

∫ b

a

f(γ(t))γ′(t) dt.

Example 4.5. Let a ∈ C, r > 0, and

γ(t) = a+ reit, t ∈ [0, 2π].

This is a positively-oriented parametrization of the circle of radius r centered
at a. Let f(z) = (z − a)n, n ∈ Z. Then γ′(t) = ireit, and so∫

γ

(z − a)n dz =

∫ 2π

0

(reit)nireit dt = irn+1

∫ 2π

0

ei(n+1)t dt

=


i

∫ 2π

0

dt = 2πi, n = −1,

irn+1

i(n+ 1)
ei(n+1)t

∣∣∣∣2π
0

= 0, n 6= −1.

If we run through the circle with different speed (e.g., γ(t) = a + re2πit,
t ∈ [0, 1]), or with different orientation (γ(t) = a + re−it, t ∈ [0, 2π]), then
the integrals are unchanged or change sign, respectively.

4.6. Reparametrization of paths. Let α : [a, b] → C and β : [c, d] → C
be piecewise smooth paths. Then β is called a reparametrization of α if
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there exists a bijection ϕ : [c, d]→ [a, b] such that ϕ and ϕ−1 are C1-smooth,
ϕ(c) = a, ϕ(d) = b, and β = α ◦ ϕ.

Integrals do not change under reparametrizations: if β is a reparametri-
zation of α and f : α∗ = β∗ → C is continous, then∫

β

f =

∫
α

f.

Indeed, ∫
β

f =

∫
β

f(w) dw =

∫ d

c

f(β(s))β′(s) ds

=

∫ d

c

f(α(ϕ(s)))α′(ϕ(s))ϕ′(s) ds (t = ϕ(s))

=

∫ b

a

f(α(t))α′(t) dt =

∫
α

f(z) dz =

∫
α

f.

The paths α and β are called equivalent if β is a reparametrization of α (this
is indeed an equivalence relation for paths!).

The oriented interval [a, b] for a, b ∈ C is the path γ : [0, 1]→ C, γ(t) :=
(1 − t)a + tb, t ∈ [0, 1] (or any equivalent path). In this case, one writes∫

[a,b]
f(z) dz instead of

∫
γ
f(z) dz.

4.7. Computational rules for path integrals. (a) Let γ : [a, b] → C be
a piecewise smooth path, f, g : γ∗ → C be continuous, and c, d ∈ C. Then∫

γ

(
cf(z) + dg(z)

)
dz = c

∫
γ

f(z) dz + d

∫
γ

g(z) dz.

(b) Suppose γ1 and γ2 are piecewise smooth paths such that the endpoint
of γ1 is equal to the initial point of γ2. Then we may without loss of generality
assume that γ1 : [0, 1] → C, γ2 : [1, 2] → C and γ1(1) = γ2(1). Then the
concatenation of γ1 and γ2 is the path γ : [0, 2]→ C defined as

γ(t) =

{
γ1(t), t ∈ [0, 1],
γ2(t), t ∈ [1, 2].

If f : γ∗1 ∪ γ∗2 → C is continuous, then∫
γ

f(z) dz =

∫
γ1

f(z) dz +

∫
γ2

f(z) dz.



4 PATH INTEGRALS 41

(c) Let U ⊆ C be open, γ : [a, b] → U be a piecewise smooth path, and
f : U → C be a continuous function.

If f has a primitive F , i.e., F ∈ H(U) and F ′ = f , then∫
γ

f(z) dz = F (γ(b))− F (γ(a)).

In particular,

∫
γ

f(z) dz = 0 if γ is a loop. Indeed,

d

dt
F (γ(t)) = F ′(γ(t))γ′(t) = f(γ(t))γ′(t),

and so∫
γ

f(z) dz =

∫ b

a

f(γ(t))γ′(t) dt = F (γ(t))

∣∣∣∣b
a

= F (γ(b))− F (γ(a)).

4.8. Lengths of paths. Let γ : [a, b] → X be a path in a metric space
(X, d). One defines its length `(γ) ∈ [0,∞] as

`(γ) := sup
a=t0<t1<···<tn=b

n∑
k=1

d(γ(tk−1), γ(tk)),

where the supremum is taken over all partitions of [a, b]. One says that γ is
rectifiable if `(γ) <∞.

If γ : [a, b]→ C is piecewise smooth path, one can show that γ is rectifiable
and

`(γ) =

∫ b

a

|γ′(t)| dt. (2)

Since we are only interested in piecewise smooth paths in C, we can take (2)
as the definition of the length of such a path.

This notion of length has the expected properties (such as invariance
under reparametrizations, or additivity under concatenation of paths).

Lemma 4.9. Let γ : [a, b] → C be a piecewise smooth path, f : γ∗ → C be a
continuous function, and M ≥ 0 be such that |f(z)| ≤M for z ∈ γ∗. Then∣∣∣∣∫

γ

f(z) dz

∣∣∣∣ ≤M`(γ).
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Proof. ∣∣∣∣∫
γ

f(z) dz

∣∣∣∣ =

∣∣∣∣∫ b

a

f(γ(t))γ′(t) dt

∣∣∣∣
≤
∫ b

a

∣∣f(γ(t))
∣∣ · ∣∣γ′(t)∣∣ dt (by Prop. 4.3 (b))

≤M

∫ b

a

∣∣γ′(t)∣∣ dt = M`(γ).



5 Power series

Definition 5.1. With a given sequence {an} in C we associate another se-
quence {sn} defined by

sn = a1 + · · ·+ an

for n ∈ N. The sequence {sn} is symbolically represented by the symbol
∞∑
n=1

an, called an infinite series. The terms sn are called the partial sums

of this infinite series. We say that
∞∑
n=1

an converges or diverges depending

on whether the limit lim
n→∞

sn exists or not. In case of convergence, we also

denote by
∞∑
n=1

an the limit lim
n→∞

sn.

Theorem 5.2. Let an ∈ C for n ∈ N.

(a) If
∞∑
n=1

an converges, then lim
n→∞

an = 0.

(b) If
∞∑
n=1

|an| converges (in which case we say that
∞∑
n=1

an converges abso-

lutely), then
∞∑
n=1

an converges.

(c) Let bn ≥ 0 for n ∈ N. If |an| ≤ bn for n ∈ N and
∞∑
n=1

bn converges, then

∞∑
n=1

an converges (comparison test).

(d) Suppose that an 6= 0 for n ∈ N and lim sup
n→∞

∣∣∣∣an+1

an

∣∣∣∣ < 1. Then
∞∑
n=1

an

converges (ratio test).

(e) Suppose that lim sup
n→∞

n
√
|an| < 1. Then

∞∑
n=1

an converges (root test).

43
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Proof. The proofs are similar to the proofs for series of real numbers. We
will prove (c) and (e).

(c) Let sn =
n∑
k=1

ak and tn =
n∑
k=1

bk for n ∈ N. By completeness of C it is

enough to show that {sn} is a Cauchy sequence.
To see this let ε > 0 be arbitrary. Since {tn} converges, this sequence is a

Cauchy sequence. Hence there exists N ∈ N such that |tn− tm| < ε whenever
m,n ≥ N .

Suppose n,m ≥ N . Without loss of generality we may also assume that
n ≥ m. Then

|sn − sm| =
∣∣∣∣ n∑
k=1

ak −
m∑
k=1

ak

∣∣∣∣
=

∣∣∣∣ n∑
k=m+1

ak

∣∣∣∣ ≤ n∑
k=m+1

|ak|

≤
n∑

k=m+1

bk = tn − tm < ε.

So {sn} is indeed a Cauchy sequence.
(e) The number s∗ = lim sup

n→∞
cn for a bounded sequence of real numbers

{cn} is characterized by the following properties:

(i) If s1 < s∗, then there are infinitely many n ∈ N with s1 ≤ cn.

(ii) If s∗ < s2, then there are only finitely many n ∈ N with s2 ≤ cn.

Now let q := lim sup
n→∞

n
√
|an| < 1. Pick s such that q < s < 1. Then by (ii)

we have
s ≤ n

√
|an|

for only finitely many n ∈ N. Hence there exists N ∈ N such that

n
√
|an| ≤ s for all n ∈ N, n ≥ N .

This implies that
|an| ≤ sn for all n ∈ N, n ≥ N .
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Since
∞∑
n=N

sn converges (geometric series!), the series
∞∑
n=N

an also converges

by the comparison test. Hence
∞∑
n=1

an converges.

Example 5.3. (a) For z ∈ C the series
∞∑
n=0

zn converges precisely if |z| < 1,

and we have
∞∑
n=0

zn =
1

1− z
, |z| < 1.

This easily follows from the fact that

n∑
k=0

zk =
1− zn+1

1− z

for z 6= 1.

(b) The series
∞∑
n=0

zn

n!
converges for all z ∈ C by the ratio test. Indeed,

convergence is clear for z = 0. For z 6= 0 put an =
zn

n!
for n ∈ N0. Then

lim sup
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim sup
n→∞

|z|n+1

(n+ 1)!
· n!

|z|n

= lim
n→∞

|z|
n+ 1

= 0 < 1.

Definition 5.4 (Power series). A series of the form

∞∑
n=0

an(z − z0)n

with fixed z0 ∈ C and an ∈ C for n ∈ N0, is called a (complex) power series
(in z centered at z0).

The convergence of the series depends on z.
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Theorem 5.5. Let
∞∑
n=0

an(z − z0)n be a power series and define

R =
1

lim sup
n→∞

n
√
|an|
∈ [0,∞]. (3)

Then the power series

{
converges
diverges

}
for all z ∈ C with

{
|z − z0| < R
|z − z0| > R

}
.

In (3) we use the conventions 1/0 =∞ and 1/∞ = 0. For a point z ∈ C
with |z − z0| = R both convergence or divergence may happen.

The value R is called the radius of convergence of the power series.

Proof. We will only consider the case R ∈ (0,∞). The cases R = 0 and
R =∞ are similar (and easier).

Let z ∈ C with |z−z0| > R be arbitrary. We want to show that the series
diverges at z. Pick R′ ∈ R with R < R′ < |z − z0|. Then

lim sup
n→∞

n
√
|an| =

1

R
>

1

R′
,

and so
n
√
|an| >

1

R′
for infinitely many n ∈ N.

Hence

|an| · |z − z0|n >
|z − z0|n

(R′)n
≥ 1 for infinitely many n ∈ N.

This means that the terms in
∞∑
n=0

an(z − z0)n do not converge to 0, and so

the series diverges.
Let z ∈ C with |z − z0| < R be arbitrary. Then

lim sup
n→∞

n
√
|an| · |z − z0|n = lim sup

n→∞
|z − z0| n

√
|an|

= |z − z0| lim sup
n→∞

n
√
|an| =

|z − z0|
R

< 1,

and so the power series converges by the root test.
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Remark 5.6. On can show that the radius of convergence R of a power

series
∞∑
n=0

an(z − z0)n is given by

R = lim
n→∞

∣∣∣∣ anan+1

∣∣∣∣ ∈ [0,∞]

if the last limit exists (possibly as an improper limit with value ∞).

Lemma 5.7. If
∞∑
n=0

an(a− z0)n is a complex power series, then the series

∞∑
n=1

nan(z − z0)n−1 =
∞∑
n=0

(n+ 1)an+1(z − z0)n

(obtained by “term-by-term differentiation”) has the same radius of conver-
gence.

Proof. Note that
∞∑
n=1

nan(z − z0)n−1 converges if and only if

(z − z0)
∞∑
n=1

nan(z − z0)n−1 =
∞∑
n=1

nan(z − z0)n

converges. So by Theorem 5.5 it suffices to show that

lim sup
n→∞

n
√
|an| = lim sup

n→∞

n
√
n|an|.

This follows from

lim sup
n→∞

n
√
|an| ≤ lim sup

n→∞

n
√
n|an|

≤ lim sup
n→∞

n
√
n︸ ︷︷ ︸

= 1

· lim sup
n→∞

n
√
|an|

= lim sup
n→∞

n
√
|an|.
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Lemma 5.8. (a) For all w, z ∈ C, w 6= z, n ∈ N, we have

wn − zn

w − z
− nzn−1 =

(n−1∑
k=1

kzk−1wn−k−1

)
(w − z).

(b) If
∞∑
n=0

an(z − z0)n is a power series with radius of convergence R and

0 ≤ r < R, then
∞∑
n=1

n2|an|rn converges.

Proof. (a)

(w − z)
n−1∑
k=1

kzk−1wn−k−1 =
n−1∑
k=1

kzk−1wn−k −
n−1∑
k=1

kzkwn−k−1

=
n−2∑
k=0

(k + 1)zkwn−k−1 −
n−1∑
k=1

kzkwn−k−1

= wn−1 − (n− 1)zn−1 +
n−2∑
k=1

zkwn−k−1

=
n−1∑
k=0

zkwn−k−1 − nzn−1

=
wn − zn

w − z
− nzn−1.

In the last step we used that

wn − zn

w − z
= wn−1 + wn−2z + · · ·+ wzn−2 + zn−1

=
n−1∑
k=0

zkwn−k−1.

(b) We apply the root test:

lim sup
n→∞

n
√
n2|an|rn ≤ r lim sup

n→∞

n
√
|an| · lim sup

n→∞
( n
√
n)2︸ ︷︷ ︸

= 1

=
r

R
< 1.
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Theorem 5.9. Suppose that
∞∑
n=0

an(z − z0)n is a complex power series with

radius of convergence R > 0. Let D := B(z0, R) (= C if R =∞) and

f(z) =
∞∑
n=0

an(z − z0)n for z ∈ D.

Then f is holomorphic on D, and

f ′(z) =
∞∑
n=0

(n+ 1)an+1(z − z0)n for z ∈ D. (4)

Note that the last power series converges for z ∈ D by Lemma 5.7.
The statement says that a function represented by a power series is holo-

morphic in its disk of convergence, and the derivative can be obtained by
term-by-term differentiation of the power series.

Proof. Without loss of generality z0 = 0. Fix z ∈ D and choose r > 0 such
that |z| < r < R. We denote by g(z) the value of the power series in (4). We
have to show that

lim
w→z

(
f(w)− f(z)

w − z
− g(z)

)
= 0. (5)

To see this consider w ∈ D close to z, w 6= z. Then |w| < r, and so∣∣∣∣f(w)− f(z)

w − z
− g(z)

∣∣∣∣ =

∣∣∣∣ ∞∑
n=1

an

(
wn − zn

w − z
− nzn−1

)∣∣∣∣
≤

∞∑
n=1

|an| ·
∣∣∣∣wn − znw − z

− nzn−1

∣∣∣∣
= |w − z|

∞∑
n=1

∣∣∣∣an n−1∑
k=1

kzk−1wn−k−1

∣∣∣∣ (by Lem. 5.8 (a))

≤ |w − z|
∞∑
n=1

(
|an|

n−1∑
k=1

krn−2

)
= |w − z|

∞∑
n=1

n(n− 1)

2
|an|rn−2

≤ |w − z|
r2

∞∑
n=1

n2|an|rn ≤ C|w − z| (by Lem. 5.8 (b)),
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where C > 0 is independent of w. Letting w → z, we see that (5) holds.

Corollary 5.10. A function represented by a power series

f(z) =
∞∑
n=0

an(z − z0)n

has derivatives of arbitrarily high order:

f (k)(z) =
∞∑
n=k

n(n− 1) . . . (n− k + 1)an(z − z0)n−k

=
∞∑
n=0

(n+ k) . . . (n+ 1)an+k(z − z0)n, k ∈ N0.

In particular,
f (k)(z0) = k!ak,

and so

ak =
f (k)(z0)

k!
.

The last equation says that the coefficients of a power series equal the
Taylor coefficients of the functions that it represents.

Theorem 5.11. The exponential function has the power series representa-
tion

ez =
∞∑
n=0

zn

n!
for z ∈ C.

Proof. We know that this power series converges for all z ∈ C (see Exam-
ple 5.3 (b)). Let E : C→ C be the function represented by the power series.
Then by Theorem 5.9 the function E is holomorphic in C and

E ′(z) =
∞∑
n=1

n
zn−1

n!
=
∞∑
n=0

zn

n!
= E(z)

for all z ∈ C. We know that the exponential function z 7→ ez is also holmor-

phic on C, and
d

dz
ez = ez. Hence

d

dz
(E(z)e−z) = E ′(z)e−z − E(z)e−z = E(z)e−z − E(z)e−z = 0,
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and so by Theorem 3.5 the function z 7→ E(z)e−z is constant on C. Since

E(0)e−0 = 1 · 1 = 1

it follows that
E(z)e−z ≡ 1.

Hence
E(z) = E(z)e0 = E(z)e−zez = 1 · ez = ez

for all z ∈ C.

Definition 5.12. Suppose that F : A → C, and Fn : A → C for n ∈ N
are functions defined on A ⊆ C. We say that the function sequence {Fn}
converges uniformly on A to F if for all ε > 0 there exists N ∈ N such that
for all n ∈ N with n ≥ N and for all z ∈ A,

|Fn(z)− F (z)| < ε.

This implies pointwise convergence, namely lim
n→∞

Fn(z) = F (z) for all

z ∈ A, or equivalently: for all z ∈ A and for all ε > 0 there exists N ∈ N
such that for all n ∈ N with n ≥ N ,

|Fn(z)− F (z)| < ε.

We say that a function series
∞∑
n=1

fn of functions fn : A → C converges

uniformly on A if the sequence of partial sum {Fn}, where Fn =
n∑
k=1

fk for

n ∈ N, converges uniformly on A to some limit function F .

Theorem 5.13 (Weierstrass M -test). Suppose that fn : A → C for n ∈ N
are functions defined on A ⊆ C, and that there exist numbers Mn ≥ 0 such
that

|fn(z)| ≤Mn for all z ∈ A and all n ∈ N.

If the series
∞∑
n=1

Mn converges, then the series
∞∑
n=1

fn converges uniformly on

A.

The symbol “M” in “Weierstrass M -test” stands for “majorization”.
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Proof. By the comparision test, the series
∞∑
n=1

fn(z) converges for all z ∈ A.

Define F (z) :=
∞∑
n=1

fn(z) for z ∈ A, and L :=
∞∑
n=1

Mn.

We claim that
∞∑
n=1

fn converges to F uniformly on A. To see this, let

ε > 0 be arbitrary. Note that

lim
n→∞

∞∑
k=n+1

Mk = lim
n→∞

(
L−

n∑
k=1

Mk

)
= 0

(“tails” of a convergent series tend to 0).

Hence there exists N ∈ N such that
∞∑

k=N+1

Mk ≤ ε. Now if z ∈ A and

n ∈ N with n ≥ N are arbitrary,∣∣∣∣F (z)−
n∑
k=1

fk(z)

∣∣∣∣ =

∣∣∣∣ ∞∑
k=1

fk(z)−
n∑
k=1

fk(z)

∣∣∣∣
=

∣∣∣∣ ∞∑
k=n+1

fk(z)

∣∣∣∣
≤

∞∑
k=n+1

|fk(z)|

≤
∞∑

k=n+1

Mk ≤ ε.

The claim follows.

Theorem 5.14. Let F : A → C, and Fn : A → C for n ∈ N be functions
defined on A ⊆ C.

Suppose that the functions Fn for n ∈ N are continuous on A, and that the
function sequence {Fn} converges uniformly to F on A. Then F is continuous
on A (uniform limits of continuous functions are continuous).

Moreover, if γ : [a, b]→ A is a piecewise smooth path, then

lim
n→∞

∫
γ

Fn(z) dz =

∫
γ

F (z) dz.
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Since F (z) = lim
n→∞

Fn(z) for z ∈ A ⊃ γ∗, the last statement can also be

written as

lim
n→∞

∫
γ

Fn(z) dz =

∫
γ

(
lim
n→∞

Fn(z)

)
dz.

More informally, this says that in the presence of uniform convergence one
can interchange the limit and path integration.

Proof. The first part of the statement is well-known; we will only prove the
second part.

Let ε > 0 be arbitrary. Since {Fn} converges to F uniformly on A, there
exists N ∈ N such that

|Fn(z)− F (z)| ≤ ε

`(γ) + 1
,

whenever z ∈ A, and n ∈ N, n ≥ N . Here `(γ) is the length of γ.
Hence for all n ≥ N we have∣∣∣∣∫

γ

Fn(z) dz −
∫
γ

F (z) dz

∣∣∣∣ =

∣∣∣∣∫
γ

(Fn(z)− F (z)) dz

∣∣∣∣
≤ ε

`(γ) + 1
`(γ) (by Lem. 4.9)

≤ ε.

The claim follows.

Remark 5.15. We will use the last statement also for function series: if

fn : A→ C for n ∈ N are continuous functions defined on A ⊆ C, and
∞∑
n=1

fn

converges uniformly on A, then∫
γ

( ∞∑
k=1

fk(z)

)
dz =

∫
γ

(
lim
n→∞

n∑
k=1

fk(z)

)
dz

= lim
n→∞

∫
γ

( n∑
k=1

fk(z)

)
dz

= lim
n→∞

n∑
k=1

∫
γ

fk(z) dz

=
∞∑
k=1

∫
γ

fk(z) dz.
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So a uniformly convergent series of (continuous) functions can be inte-
grated term-by-term.



6 Local Cauchy theorems

Remark 6.1. Cauchy’s Integral Theorem says that if f is a holomorphic
function on a region Ω ⊆ C and γ is a loop in Ω such that all points “sur-
rounded” by γ also belong to Ω, then

∫
γ
f = 0.

Since it is requires some effort to make the phrase “points surrounded
by γ” mathematically precise, we will prove a preliminary version of this
statement first.

6.2. Convex sets. A set K ⊆ C is called convex if for all z, w ∈ K we
have [z, w] ⊆ K. One can show that a set is convex if and only if for all
z1, . . . , zn ∈ K, n ∈ N, and all λ1, . . . , λn ∈ [0, 1] with λ1 + · · · + λn = 1 the
convex combination λ1z1 + · · · + λnzn also belongs to K. If M ⊆ C is any
set, then the convex hull co(M) is the smallest convex set containing M ; it
consists of all convex combinations of points in M .

A closed triangle ∆ is the convex hull of three points z1, z2, z3 ∈ C called
the vertices of C; so

∆ = co({z1, z2, z3}).
We say that ∆ is oriented if we specify a cyclic order of its vertices z1, z2, z3.
We then write ∆ = ∆(z1, z2, z3) to indicate the vertices and their cyclic order.
The oriented boundary of ∆ = ∆(z1, z2, z3) is given by

∂∆ := [z1, z2] ∪ [z2, z3] ∪ [z3, z1],

where the edges of ∆ are traversed according to the cyclic order of the ver-
tices. We write

∫
∂∆
f for the corresponding path integral of a function f

defined on ∂∆.

Theorem 6.3 (Goursat’s Lemma). Let Ω ⊆ C be an open set, p ∈ Ω, and
f : Ω→ C be a continuous function that is holomorphic on Ω \ {p}. If ∆ is
a closed oriented triangle contained in Ω, then∫

∂∆

f = 0.

Proof. Let a, b, c ∈ Ω be the vertices of ∆ cyclically ordered according to the
orientation of ∆. Then ∆ = ∆(a, b, c).

1. We first assume that p 6∈ ∆. We will inductively define a nested
sequence of closed oriented triangles ∆n, n ∈ N0, in Ω. Let ∆0 := ∆. We
define I :=

∫
∂∆
f , and denote by L the length of ∂∆.

55
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Let


a′

b′

c′

 be the midpoint of the interval


[b, c]
[c, a]
[a, c]

, and let ∆̃1 :=

∆(a, c′, b′), ∆̃2 := ∆(b, a′, c′), ∆̃3 := ∆(c, b′, a′), ∆̃4 := ∆(a′, b′, c′). Then

I =

∫
∂∆

f =
4∑

k=1

∫
∂∆̃k

f,

and so

|I| =

∣∣∣∣ 4∑
k=1

∫
∂∆̃k

f

∣∣∣∣≤ 4∑
k=1

∣∣∣∣∫
∂∆̃k

f

∣∣∣∣.
Hence there exists j ∈ {1, 2, 3, 4} such that∣∣∣∣∫

∂∆̃j

f

∣∣∣∣ ≥ 1

4
|I|.

Define ∆1 := ∆̃j. Note that

`(∂∆1) =
1

2
`(∂∆) =

1

2
L and diam(∆1) =

1

2
diam(∆) ≤ 1

2
L.

Now we apply the same construction to ∆1 to obtain another closed oriented
triangle ∆2, then to ∆2 to get ∆3, etc.

In this way, we get a nested sequence of closed oriented triangles ∆0 ⊇
∆1 ⊇ ∆2 ⊇ . . . in Ω such that∣∣∣∣∫

∂∆n

f

∣∣∣∣ ≥ 1

4n
|I|

for n ∈ N0. Moreover, we also have

`(∂∆n) =
1

2n
L and diam(∆n) ≤ 1

2n
L

for n ∈ N0.
If K0 ⊇ K1 ⊇ K2 ⊇ . . . is a nested sequence of compact sets with

diam(Kn) → 0 as n → ∞, then
⋂
n∈N0

Kn consists of exactly one point
(exercise!). This implies that there exists a unique point z0 ∈

⋂
n∈N0

∆n ⊆
∆ ⊆ Ω \ {p}. Since z0 ∈ Ω and z0 6= p, the function f is differentiable at z0.



6 LOCAL CAUCHY THEOREMS 57

Now let ε > 0 be arbitrary. Then there exists δ > 0 such that B(z0, δ) ⊆ Ω
and ∣∣∣∣f(z)− f(z0)

z − z0

− f ′(z0)

∣∣∣∣ ≤ ε, (6)

whenever 0 < |z − z0| < δ. We can find n ∈ N such that

diam(∆n) ≤ 1

2n
L < δ.

Then
∆n ⊆ B(z0, L/2

n) ⊆ B(z0, δ) ⊆ Ω,

and so by (6) we have

|f(z)− f(z0)− f ′(z0)(z − z0)| ≤ ε|z − z0| (7)

whenever z ∈ ∆n.
The functions z 7→ f(z0) and z 7→ f ′(z0)(z − z0) have the primitives

z 7→ zf(z0) and z 7→ 1
2
f ′(z0)(z− z0)2, respectively. Hence by 4.7 (c) we have∫

∂∆n

f(z0) dz = 0 =

∫
∂∆n

f ′(z0)(z − z0) dz.

It follows from (7) that∣∣∣∣∫
∂∆n

f(z) dz

∣∣∣∣ =

∣∣∣∣∫
∂∆n

(f(z)− f(z0)− f ′(z0)(z − z0)) dz

∣∣∣∣
≤ `(∂∆n) sup

z∈∂∆n

|f(z)− f(z0)− f ′(z0)(z − z0)|

≤ 1

2n
L sup
z∈∂∆n

ε|z − z0|

≤ ε
1

2n
L diam(∆) ≤ εL

1

2n
· L 1

2n
= εL2 1

4n
.

This implies

|I| ≤ 4n
∣∣∣∣∫
∂∆n

f(z) dz

∣∣∣∣ ≤ 4nεL2 1

4n
= εL2.

Since ε > 0 was arbitrary, we must have |I| = 0, and so I =

∫
∂∆

f = 0 as

claimed.
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2. We now assume that p coincides with one of the vertices a, b, c of ∆, say
p = a. Without loss of generality, the vertices a, b, c are distinct (otherwise,
it is easy to see that the claim trivially holds). Then we may choose points
b′ ∈ [a, b] and c′ ∈ [a, c] close to, but distinct from a = p.

Now let ∆1 = ∆(b′, b, c), ∆2 = ∆(c, c′, b′), and ∆3 = ∆(a, b′, c′). Then∫
∂∆

f =

∫
∂∆1

f +

∫
∂∆2

f +

∫
∂∆3

f.

Moreover, ∆1,∆2 ⊆ Ω \ {p}, and so∫
∂∆1

f = 0 =

∫
∂∆2

f

by the first part of the proof. Hence∫
∂∆

f =

∫
∂∆3

f,

and so ∣∣∣∣ ∫
∂∆

f

∣∣∣∣ ≤ `(∂∆3) sup
z∈∂∆3

|f(z)|.

Since f is continuous at p, this function is bounded in a neighborhood of p.
Choosing b′ and c′ close enough to p, we can make `(∂∆3) as small as we
want, while supz∈∂∆3

|f(z)| stays uniformly bounded. It follows that∣∣∣∣ ∫
∂∆

f

∣∣∣∣ ≤ ε

for all ε > 0, which implies

∫
∂∆

f = 0 as claimed.

3. Finally, we prove the claim if p ∈ ∆, but where p is not necessarily
a vertex of ∆. We cut ∆ into three triangles so that p becomes a vertex
in each of them; namely, we define ∆1 = ∆(a, b, p), ∆2 = ∆(b, c, p), and
∆3 = ∆(c, a, p). Then∫

∂∆

f =

∫
∂∆1

f +

∫
∂∆2

f +

∫
∂∆3

f,

and by the second part of the proof∫
∂∆1

f =

∫
∂∆2

f =

∫
∂∆3

f = 0.
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It follows that

∫
∂∆

f = 0.

The proof is complete.

Corollary 6.4 (Cauchy’s Integral Theorem for convex sets). Suppose Ω ⊆ C
is an open convex set, p ∈ Ω, and f : Ω → C is a continuous function that
is holomorphic on Ω \ {p}. Then f has a primitive in Ω, i.e., there exists
F ∈ H(Ω) such that F ′ = f .

In particular, ∫
γ

f = 0,

whenever γ is a piecewise smooth loop in Ω.

Proof. Fix a ∈ Ω, and define

F (w) =

∫
[a,w]

f(z) dz

for w ∈ Ω. Since Ω is convex, and so [a, w] ⊆ Ω, and since f is continuous
on Ω, the function F is well defined.

Let w,w0 ∈ Ω be arbitrary. Then the triangle ∆ = ∆(a, w,w0) lies in Ω.
So it follows from Goursat’s lemma that∫

∂∆

f =

∫
[a,w]

f +

∫
[w,w0]

f +

∫
[w0,a]

f = 0.

Hence

F (w)− F (w0) =

∫
[a,w]

f +

∫
[w0,a]

f = −
∫

[w,w0]

f =

∫
[w0,w]

f.

So for w 6= w0 we get∣∣∣∣F (w)− F (w0)

w − w0

− f(w0)

∣∣∣∣ =∣∣∣∣ 1

w − w0

∫
[w0,w]

f(z) dz − 1

w − w0

∫
[w0,w]

f(w0) dz

∣∣∣∣
=

1

|w − w0|

∣∣∣∣∫
[w0,w]

(f(z)− f(w0)) dz

∣∣∣∣
≤ sup

z∈[w0,w]

|f(z)− f(w0)| (by Lem. 4.9)

→0 as w → w0.
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The last relation follows from the continuity of f at w0.
So F is differentiable at w0, and F ′(w0) = f(w0). Since w0 was arbitrary,

we conclude that F ∈ H(Ω) and F ′ = f .
The statement about path integrals now follows from 4.7 (c).

Lemma 6.5. Let a ∈ C, r > 0, γ(t) = a + reit for t ∈ [0, 2π], and z0 ∈
B(a, r). Then ∫

γ

dz

z − z0

= 2πi.

Proof. It is not hard, but tedious to evaluate this integral by reducing it to in-
tegrals over real-valued functions and applying a trigonometric substitution.
We prefer to show the claim by using methods from complex analysis.

Note that for z ∈ C with |z − a| = r and z0 ∈ B(a, r) we have

1

z − z0

=
1

(z − a)− (z0 − a)
=

1

z − a
· 1

1−
(
z0 − a
z − a

)
=

1

z − z0

∞∑
n=0

(
z0 − a
z − a

)n
=
∞∑
n=0

(z0 − a)n

(z − a)n+1
.

This sum converges uniformly in z on the circle γ∗ = {z ∈ C : |z − a| = r}
(to see this, use the Weierstrass M -test with

Mn :=
1

r

(
|z0 − a|

r︸ ︷︷ ︸
< 1

)n

for n ∈ N0).
Hence by Remark 5.15, we can integrate the infinite series term-by-term

and obtain ∫
γ

dz

z − z0

=
∞∑
n=0

∫
γ

(z0 − a)n

(z − a)n+1
dz.

Now by Example 4.5 we have∫
γ

dz

(z − a)n+1
=

∫
γ

(z − a)−n−1 dz =

{
2πi for n = 0,
0 for n 6= 0.

Hence ∫
γ

dz

z − z0

= 2πi · (z0 − a)0 = 2πi.
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Corollary 6.6 (Cauchy’s Integral Formula. Version I). Let U ⊆ C be an
open set, a ∈ U , r > 0, f ∈ H(U), and γ(t) = a + reit for t ∈ [0, 2π]. If
B(a, r) ⊆ U , then

f(z0) =
1

2πi

∫
γ

f(z)

z − z0

dz

for all z0 ∈ B(a, r).

Proof. Suppose B(a, r) ⊆ U , and let z0 ∈ B(a, r). Note that γ∗ ⊆ U , and

z0 6∈ γ∗. So z 7→ f(z)− f(z0)

z − z0

is continuous on γ∗ and we can integrate this

function over γ∗.
Since B(a, r) ⊆ U , and U is open, we can find a small number δ > 0 such

that for R := r + δ we have

B(a, r) ⊆ Ω := B(a,R) ⊆ U

(exercise!). Note that Ω is an open and convex set. Moreover, the function
g : Ω→ C defined by

g(z) =


f(z)− f(z0)

z − z0

for z ∈ Ω \ {z0},

f ′(z0) for z = z0,

is continuous on Ω and holomorphic on Ω\{z0}. Since γ∗ ⊆ Ω, Corollary 6.4
implies that∫

γ

f(z)

z − z0

dz − 2πif(z0) =∫
γ

f(z)

z − z0

dz − f(z0)

∫
γ

dz

z − z0

(by Lem. 6.5)

=

∫
γ

f(z)− f(z0)

z − z0

dz

=

∫
γ

g(z) dz = 0.

The statement follows.



7 Power series representations of holomor-

phic functions

Theorem 7.1. Let Ω ⊆ C be open, and f ∈ H(Ω). Then f has a local
representation as a power series at every point of Ω; more precisely, if z0 ∈ Ω
is arbitrary, and r > 0 is such that B(z0, r) ⊆ Ω, then there exists a power

series
∞∑
n=0

an(z − z0)n that converges on B(z0, r) and satisfies

f(z) =
∞∑
n=0

an(z − z0)n

for all z ∈ B(z0, r).

Proof. Assume that B(z0, r) ⊆ Ω, fix z ∈ B(z0, r), and let γ(t) := z0 + reit

for t ∈ [0, 2π]. Then by Cauchy’s Integral Formula (Corollary 6.6) we have

f(z) =
1

2πi

∫
γ

f(w)

w − z
dw.

Now for w ∈ ∂B(z0, r) we have

1

w − z
=

1

(w − z0)− (z − z0)
=

1

(w − z0)

1

1−
(
z − z0

w − z0

)
=
∞∑
n=0

(z − z0)n

(w − z0)n+1
.

Hence
f(w)

w − z
=
∞∑
n=0

(z − z0)n

(w − z0)n+1
f(w) (8)

for all w ∈ ∂B(z0, r).
The series in (8) (for fixed z) converges uniformly for w ∈ ∂B(z0, r) by

the Weierstrass M -test; indeed, since ∂B(z0, r) is a compact set and |f | is
continuous on ∂B(z0, r), there exists K ≥ 0 such that

|f(w)| ≤ K for w ∈ ∂B(z0, r).
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So for n ∈ N0 we have∣∣∣∣ (z − z0)n

(w − z0)n+1
f(w)

∣∣∣∣ ≤ |z − z0|n

rn+1
K =: Mn,

and

∞∑
n=0

Mn =
K

r

∞∑
n=0

|z − z0|n

rn
=
K

r

1

1− |z − z0|
r

=
K

r − |z − z0|
<∞.

Integrating the series in (8) term-by-term, we obtain

f(z) =
1

2πi

∫
γ

f(w)

w − z
dw

=
1

2πi

∫
γ

( ∞∑
n=0

(z − z0)n

(w − z0)n+1
f(w)

)
dw

=
∞∑
n=0

(
1

2πi

∫
γ

(z − z0)n

(w − z0)n+1
f(w) dw

)
=
∞∑
n=0

an(z − z0)n, (9)

where

an =
1

2πi

∫
γ

f(w)

(w − z0)n+1
dw (10)

for n ∈ N0.
Since an is independent of z, and z ∈ B(z0, r) was arbitrary, we see that

the series in (9) converges for all z ∈ B(z0, r) and represents f . The claim
follows.

Corollary 7.2. Let Ω ⊆ C be open, and f ∈ H(Ω). Then f ′ ∈ H(Ω).

This corollary establishes the fact used in Section 3.

Proof. By Theorem 7.1 the function f has a local power series representation;
so f ′ can also be locally represented by a power series and f ′ ∈ H(Ω) as
follows from Theorem 5.9.

Corollary 7.3. Let Ω ⊆ C be open, and f ∈ H(Ω). Then f has derivatives
f (n) of arbitrary order n ∈ N, and f (n) ∈ H(Ω).
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Holomorphic functions are indefinitely differentiable!

Corollary 7.4. Let Ω ⊆ C be open, and f ∈ H(Ω). Then at each point
z0 ∈ Ω, the function f is represented by its Taylor series, and so

f(z) =
∞∑
n=0

f (n)(z0)

n!
(z − z0)n.

This is valid for all z ∈ C with |z − z0| < dist(z, ∂Ω); in particular, if R is
the radius of convergence of the power series, then R ≥ dist(z0, ∂Ω).

In other words, the Taylor series of f converges and represents the func-
tion in the largest open disk centered at z0 that is contained in Ω; if ∂Ω = ∅
and so Ω = C, this means that this Taylor series converges and represents
the function for all z ∈ C.

Proof. By Theorem 7.1 the function f can locally be represented by a power
series centered at z0. By Corollary 5.10 the coefficients of this power series
are uniquely determined, because they are the Taylor coefficients of f at z0.
Since each point z ∈ Ω with |z−z0| < dist(z0, ∂Ω) lies in a disk B(z0, r) with
B(z0, r) ⊆ Ω, the claim follows from Theorem 7.1.

Corollary 7.5. Let Ω ⊆ C be open, and f ∈ H(Ω). Suppose that z0 ∈ Ω,
r > 0, and B(z0, r) ⊆ Ω, and define γ(t) = z0 + reit for t ∈ [0, 2π]. Then

f (n)(z0) =
n!

2πi

∫
γ

f(z)

(z − z0)n+1
dz (11)

for all n ∈ N0. Moreover, if |f(z)| ≤M for all z ∈ ∂B(z0, r), then for n ∈ N0

we have

|f (n)(z0)| ≤ n!M

rn
(Cauchy estimates).

Proof. Equation (11) follows from formula (10) in the proof of Theorem 7.1,

since an =
f (n)(z0)

n!
is the n-th Taylor coefficient of f at z0.

Under the given assumptions, the Cauchy estimates follow from this:

|f (n)(z0)| =
∣∣∣∣ n!

2πi

∫
γ

f(z)

(z − z0)n+1
dz

∣∣∣∣
≤ n!

2π
`(γ)

M

rn+1
=
n!

2π
2πr

M

rn+1
=
n!M

rn
.
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Definition 7.6. A function f : C → C that is holomorphic on the whole
complex plane C is called an entire function.

Corollary 7.7. Let f be an entire function. Then at each point z0 we can
represent f by a power series

f(z) =
∞∑
n=0

an(z − z0)n

that converges for all z ∈ C.

Proof. This follows from Corollary 7.4.

Theorem 7.8 (Liouville’s Theorem). Every bounded entire function is con-
stant.

Proof. Let f ∈ H(C) and suppose that there exists M ≥ 0 such that |f(z)| ≤
M for all z ∈ C. Then f has a power series representation

f(z) =
∞∑
n=0

anz
n

that converges for all z ∈ C. We know that

an =
f (n)(0)

n!

for all n ∈ N0. The Cauchy estimates with z0 = 0 are valid for all n ∈ N0

and all r > 0. Hence

|an| =
|f (n)(0)|

n!
≤ M

rn

for all n ∈ N and all r > 0. Letting r → ∞ (for fixed n ∈ N), we see that
an = 0 for n ∈ N. So

f(z) =
∞∑
n=0

anz
n = a0

for all z ∈ C. This shows that f is a constant function.

Theorem 7.9 (Fundamental Theorem of Algebra). Every non-constant com-
plex polynomial has a root; more precisely, if n ∈ N, a0, a1, . . . , an ∈ C,
an 6= 0, and P : C→ C,

P (z) = a0 + a1z + · · ·+ anz
n (12)

for z ∈ C, then there exists z0 ∈ C such that P (z0) = 0.
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Proof. Let P be a polynomial as in (12). We argue by contradiction and
assume that P (z) 6= 0 for all z ∈ C. Then f = 1/P is an entire function.

Claim: f is bounded.
Obviously, |P (z)| → ∞ as |z| → ∞. Hence there exists R > 0 such that

|P (z)| > |P (0)| whenever z ∈ C, |z| ≥ R,

and so
|f(z)| < |f(0)| whenever z ∈ C, |z| ≥ R. (13)

Since f is continuous and B(0, R) is compact, there exists K ≥ 0 such that

|f(z)| ≤ K for all z ∈ B(0, R).

So
|f(z)| ≤ max{K, |f(0)|} for all z ∈ C.

The claim follows.
Liouville’s Theorem now implies that f is constant. This is a contradic-

tion, since |f(R)| < |f(0)| by (13).

Corollary 7.10. The field C is algebraically closed.

Remark 7.11. If P 6= 0 is a polynomial as in (12), where an 6= 0, then
n ∈ N0 is called the degree of P , denoted by deg(P ). For the constant
polynomial P = 0 the degree is undefined.

If P and Q are polynomials and Q 6= 0, then we can divide P by Q with
remainder by the usual division algorithm. Hence there exist polynomials R
and S such that

P = S ·Q+R,

where deg(R) < deg(Q) or R = 0.
If z0 is a root of P 6= 0, then we can applies this to Q(z) := z − z0, and

we obtain
P (z) = S(z)(z − z0) +R(z) for z ∈ C,

where deg(R) < deg(Q) = 1 or R = 0. So R must be a constant polynomial,
and 0 = P (z0) = R(z0) shows that R = 0. We conclude that

P (z) = S(z)(z − z0) for z ∈ C.
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If z0 is also a root of S, we can repeat this reasoning, etc. It follows that
there exists k ∈ N and a polynomial T with T (z0) 6= 0 such that

P (z) = (z − z0)kT (z) for z ∈ C.

The number k is uniquely determined and called the multiplicity of the root
z0 of P .

Corollary 7.12. Every polynomial P of degree n ∈ N has precisely n roots
counting multiplicities; more precisely, if z1, . . . , zl ∈ C, l ∈ N, are the
distinct roots of P and k1, . . . , kl ∈ N their respective multiplicities, then
k1 + · · ·+ kl = n.

Moreover, there exists a ∈ C, a 6= 0, such that

P (z) = a(z − z1)k1 . . . (z − zm)km for z ∈ C.

Proof (Outline). This follows from induction on n. For the induction step
let P be a polynomial of degree n. Then P has a root z0 by the Fundamental
Theorem of Algebra. Then P (z) = (z − z0)Q(z) for z ∈ C, where deg(Q) =
n− 1. Now we apply the induction hypothesis to Q.

Theorem 7.13 (Morera’s Theorem). Let Ω ⊆ C be open, and f : Ω→ C be
continuous. Suppose that for every closed oriented triangle ∆ ⊆ Ω we have∫

∂∆

f = 0.

Then f is holomorphic on Ω.

This can be considered as a “converse” of Goursat’s lemma.

Proof. It is enough to show that f is holomorphic on every open disk B ⊆ Ω.
If B is such a disk, fix a ∈ B and define

F (w) =

∫
[a,w]

f(z) dz for w ∈ B.

This makes sense, since B is convex. As in the proof of Corollary 6.4, one
shows that F ∈ H(B) and F ′(w) = f(w) for w ∈ B. So in B the function
f is the derivative of a holomorphic function. Hence f is holomorphic itself
(Corollary 7.2).



8 Zeros of holomorphic functions

Definition 8.1. Let (X, d) be a metric space, and A ⊆ X.

(a) A point x ∈ X is called an isolated point of A if x ∈ A and if there
exists ε > 0 such that B(x, ε) ∩ A = {x}.

(b) A point x ∈ X is called a limit point of A if for all ε > 0 the ball B(x, ε)
contains infinitely many distinct points of A.

Remark 8.2. (a) A point x ∈ X is a limit point of A if and only if there
exists a sequence {xn} of distinct elements in A such that x = lim

n→∞
xn.

(b) Every point x ∈ A is either an isolated point of A or a limit point of
A.

(c) A set K ⊆ X is compact if and only if every infinite set A ⊆ K has a
limit point in K.

Theorem 8.3. Let Ω ⊆ C be a region, and f ∈ H(Ω). Define

Z(f) := {a ∈ Ω : f(a) = 0} (the zero-set of f).

Then either Z(f) = Ω (iff f ≡ 0), or Z(f) is countable, consists of isolated
points, has no limit points in Ω.

In the latter case, for each a ∈ Z(f) there exists m ∈ N (the multiplicity
or order of the zero a), and g ∈ H(Ω) with g(a) 6= 0 such that

f(z) = (z − a)mg(z) for z ∈ Ω. (14)

Proof. Let a ∈ Z(f), and fix r > 0 such that B(a, r) ⊆ Ω. By Corollary 7.4
we can represent f by a power series

f(z) =
∞∑
n=0

an(z − a)n

for z ∈ B(a, r). Here a0 = f(a) = 0. Now either an = 0 for all n ∈ N, or
there exists a smallest m ∈ N such that am 6= 0.

In the first case, B(a, r) ⊆ Z(f). In the second case, we define

g(z) :=


1

(z − a)m
f(z) for z ∈ Ω \ {a},

∞∑
n=0

an+m(z − a)n for z ∈ B(a, r).

68
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The definitions for g agree in

(Ω \ {a}) ∩B(a, r) = B(a, r) \ {a},

and show that g ∈ H(Ω). Moreover, g(a) = am 6= 0 and

f(z) = (z − a)mg(z) for z ∈ Ω. (15)

By continuity of g at a, there exists ε > 0 such that g(z) 6= 0 for z ∈
B(a, ε) ⊆ Ω. Then (15) shows that f(z) 6= 0 for z ∈ B(a, ε) \ {a}, and so a
is an isolated point of Z(f).

To summarize, either a whole neighborhood of a ∈ Z(f) belongs to Z(f)
or a is an isolated point of Z(f).

Now let A be the set of limit points of Z(f) in Ω. We want to show that
A is open and relatively closed in Ω.

If a ∈ A, then there exists a sequence {zn} of distinct points in Z(f) such
that a = lim

n→∞
zn (Remark 8.2 (a)). By continuity of f we then have

f(a) = lim
n→∞

f(zn) = 0,

and so a ∈ Z(f). Then a is not an isolated point of Z(f), and so there
exists r > 0 such that B(a, r) ⊆ Z(f) by the first part of the proof. Then
B(a, r) ⊆ A which shows that A is an open set.

To establish that A is relatively closed in Ω we verify that Ω \A is open.
To see this, let b ∈ Ω \ A be arbitrary. Then b is not a limit point of Z(f),
and so by the first part of the proof there exists ε > 0 such that B(b, ε) ⊆ Ω,
and B(b, ε) contains at most one point in Z(f). Then B(b, ε) ⊆ Ω \ A.

We have shown that A is open and relatively closed in Ω. Since Ω is a
region, we conclude that A = Ω or A = ∅. In the first case, Ω = A ⊆ Z(f) ⊆
Ω, and so Z(f) = Ω.

In the second case, A = ∅ and so Z(f) has no limit points in Ω. By the
first part of the proof, we also see that Z(f) consists of isolated points, and
that at each point a ∈ Z(f) the function f has a representation as in (15).

It remains to show that if Z(f) 6= Ω, then Z(f) is countable. The set Ω
(as any open set in C) has a compact exhaustion; namely, there are compact

sets Kn ⊆ Ω for n ∈ N such that Kn ⊆ Kn+1 for n ∈ N, and
⋃
n∈N

Kn = Ω.

For example, we can take

Kn = {z ∈ Ω : |z| ≤ n and dist(z, ∂Ω) ≥ 1/n}.
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Now Z(f) ∩Kn must be a finite set for each n ∈ N, for otherwise Z(f)
would have a limit point in Kn (see Remark 8.2 (c)), and hence in Ω. So

Z(f) =
⋃
n∈N

(Kn ∩ Z(f))

is a countable union of finite sets, which implies that Z(f) is countable.

Example 8.4. (a) In Theorem 8.3 it is important that Ω is a region. For
example, let Ω = B(0, 1) ∪B(1, 1) and

f(z) :=


0 for z ∈ B(0, 1),

ez for z ∈ B(1, 1),

Then f is holomorphic on Ω. We have Z(f) = B(0, 1) 6= Ω, but every point
in B(0, 1) is a limit point of Z(f) in Ω.

(b) Let f(z) = exp(1/z) − 1 for z ∈ Ω := C \ {0}. Then f ∈ H(Ω), and
Z(f) := {1/(2πin) : n ∈ Z \ {0}}. Then Z(f) 6= Ω has a limit point, namely
0, but this point does not lie in Ω.

Theorem 8.5 (Uniqueness Theorem). Let Ω ⊆ C be a region, and f, g ∈
H(Ω). If the set

{z ∈ Ω : f(z) = g(z)}
has a limit point in Ω, then f = g.

Proof. Consider h = f − g ∈ H(Ω). Then the set

Z(h) = {z ∈ Ω : h(z) = 0}
= {z ∈ Ω : f(z) = g(z)}

has a limit point in Ω. So Z(h) = Ω by Theorem 8.3 which implies h =
f − g = 0. Hence f = g.

Theorem 8.6 (Maximum Modulus Theorem. Version I). Let Ω ⊆ C be a
region, and f ∈ H(Ω). If |f | attains a local maximum at a point in Ω, then
f is a constant function.

Proof. Suppose f attains a local maximum at a ∈ Ω. Then there exists ε > 0
such that B(a, ε) ⊆ Ω and

|f(a)| ≥ |f(z)|
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for all z ∈ B(a, ε). Replacing f by eiθf with suitable θ ∈ [0, 2π], we may
assume f(a) ≥ 0 without loss of generality. Then

f(a) = |f(a)| ≥ |f(z)| ≥ |Re(f(z))|

for z ∈ B(a, ε).
Pick r ∈ (0, ε) and let γ(t) = a + reit, t ∈ [0, 2π]. Then by Cauchy’s

Integral Formula we have

f(a) =
1

2πi

∫
γ

f(z)

z − a
dz =

1

2πi

∫ 2π

0

f(a+ reit)

reit
ireit dt

=
1

2π

∫ 2π

0

f(a+ reit) dt (Mean Value Property)

(the average of the function values on the circle γ is equal to the function
value at the center of the circle!). Hence

f(a) = Re(f(a)) =
1

2π

∫ 2π

0

Re
(
f(a+ reit)

)
dt

≤ 1

2π

∫ 2π

0

∣∣f(a+ reit)
∣∣ dt

≤ 1

2π

∫ 2π

0

|f(a)| dt = |f(a)| = f(a).

So we must have equality in all these inequalities, which shows that∫ 2π

0

(∣∣f(a+ reit)
∣∣− Re

(
f(a+ reit)

))
dt = 0,∫ 2π

0

(
|f(a)| −

∣∣f(a+ reit)
∣∣) dt = 0.

Since the integrands in these integrals are non-negative continuous functions,
we conclude that

Re
(
f(a+ reit)

)
=
∣∣f(a+ reit)

∣∣ = |f(a)| = f(a)

for all t ∈ [0, 2π]. In particular,

Im
(
f(a+ reit)

)
= 0,
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and so
f(a+ reit) = Re

(
f(a+ reit)

)
= f(a)

for all t ∈ [0, 2π]. This shows that the function f takes the constant value
f(a) on the circle ∂B(a, r). Hence f ≡ f(a) as follows from the Uniqueness
Theorem, and so f is a constant function.

We record two important facts that were derived in the proof of the last
theorem.

Corollary 8.7. Let Ω ⊆ C be a region, f ∈ H(Ω), and a ∈ Ω and r > 0 be
such that B(a, r) ⊆ Ω. Then we have:

(a) f(a) =
1

2π

∫ 2π

0

f(a+ reit) dt (Mean Value Property),

(b) |f(a)| ≤ max{|f(a+ reit)| : t ∈ [0, 2π]} with equality if and only if f is
a constant function.

Proof. In the proof of Theorem 8.6 statement (a) was proved explicitly, and
statement (b) easily follows from the considerations in this proof.

Corollary 8.8. Let Ω ⊆ C be a region, f ∈ H(Ω), and a ∈ Ω and r > 0 be
such that B(a, r) ⊆ Ω. If f(z) 6= 0 for all z ∈ B(a, r), then we have

|f(a)| ≥ min{|f(a+ reit)| : t ∈ [0, 2π]} (16)

with equality if and only if f is a constant function.

Proof. If f has a zero on ∂B(a, r), then the inequality is obvious with strict
inequality.

In the other case, where f has no zero on ∂B(a, r), we have f(z) 6= 0
for all z ∈ B(a, r) by our hypotheses. Hence there exists R > r such that

B(a,R) ⊆ Ω and f is zero-free on Ω̃ := B(a,R). For otherwise, we could find
a sequence {zn} of zeros of f with |zn − a| → r. Passing to a subsequence
if necessary, we may without loss of generality assume that {zn} converges,
say zn → w. Then

|w − a| = lim
n→∞

|zn − a| = r,

and so w ∈ ∂B(a, r) ⊆ Ω. Moreover, the continuity of f shows that

f(w) = lim
n→∞

f(zn) = 0.
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This contradicts the fact that f has no zero on ∂B(a, r).

The function g := 1/f is then holomorphic on Ω̃, and so by Corol-
lary 8.7 (b) we have

|g(a)| ≤ max{|g(a+ reit)| : t ∈ [0, 2π]}. (17)

By taking reciprocals here, we get (16). If we have equality in (16),

then we must have equality in (17). This implies that g is constant on Ω̃.

So f = 1/g is constant on Ω̃, and hence constant on Ω by the Uniqueness
Theorem.

Theorem 8.9 (Maximum Modulus Theorem. Version II). Let Ω ⊆ C be a
bounded region, and f : Ω→ C be a continuous function that is holomorphic
on Ω. Then

max{|f(z)| : z ∈ Ω} = max{|f(z)| : z ∈ ∂Ω} (18)

The theorem says that the maximum of |f | on Ω (which exists by conti-
nuity of |f | and compactness of Ω) is attained at some point on the boundary
∂Ω of Ω. Note that ∂Ω 6= ∅, because the only open sets U ⊆ C with ∂U = ∅
are U = C and U = ∅ (exercise!).

Proof. The maximum on the left-hand side of (18) is attained at some point
z0 ∈ Ω. If z0 ∈ ∂Ω, then (18) holds.

If z0 ∈ Ω, then f is constant on Ω by Theorem 8.6. Then f is also
constant on Ω by the continuity of f (exercise!). Since ∂Ω 6= ∅, again (18)
holds.



9 The Open Mapping Theorem

Theorem 9.1. Let Ω ⊆ C be open, ϕ ∈ H(Ω), and z0 ∈ Ω. If ϕ′(z0) 6= 0,
then ϕ is locally injective near z0 with a holomorphic inverse map.

More precisely, there exists an open neighborhood V ⊆ Ω of z0 such that

(i) ϕ is injective on V and ϕ′(z) 6= 0 for z ∈ V ,

(ii) W = ϕ(V ) is an open set,

(iii) the inverse map ψ := (ϕ|V )−1 is holomorphic on W .

Proof. Since ϕ ∈ H(Ω), we have ϕ′ ∈ H(Ω) by Corollary 7.2. In particular,
ϕ′ is continuous at z0. Hence there exists δ > 0 such that B(z0, δ) ⊆ Ω and

|ϕ′(z)− ϕ′(z0)| ≤ 1

2
|ϕ′(z0)| for all z ∈ B(z0, δ). (19)

Define V := B(z0, δ). Then V is an open convex neighborhood of z0.
For z1, z2 ∈ V we have [z1, z2] ⊆ V , and so

|ϕ(z1)− ϕ(z2)| =
∣∣∣∣∫

[z1,z2]

ϕ′(z) dz

∣∣∣∣
=

∣∣∣∣∫
[z1,z2]

ϕ′(z0) dz +

∫
[z1,z2]

(ϕ′(z)− ϕ′(z0)) dz

∣∣∣∣
≥
∣∣∣∣∫

[z1,z2]

ϕ′(z0) dz

∣∣∣∣− ∣∣∣∣∫
[z1,z2]

(ϕ′(z)− ϕ′(z0)) dz

∣∣∣∣ (20)

≥ |z1 − z2| · |ϕ′(z0)| − |z1 − z2| · max
z∈[z1,z2]

|ϕ′(z)− ϕ(z0)|

≥ 1

2
|ϕ′(z0)| · |z1 − z2| by (19).

This inequality shows that ϕ is injective on V .
Moreover, inequality (19) implies that

|ϕ′(z)| = |ϕ′(z0) + (ϕ′(z)− ϕ′(z0))|
≥ |ϕ′(z0)| − |ϕ′(z)− ϕ′(z0)|

≥ 1

2
|ϕ′(z0)|
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for z ∈ V . Hence ϕ′(z) 6= 0 for all z ∈ V . We have established (i).
In order to prove (ii), let w ∈ W = ϕ(V ) be arbitrary. Then there exists

a ∈ V such that w = ϕ(a). Pick r > 0 such that B(a, r) ⊆ V . Then by (20)
we have

|ϕ(a+ reit)− ϕ(a)| ≥ 1

2
|ϕ′(z0)|r for t ∈ [0, 2π]. (21)

Let ε := 1
6
|ϕ′(z0)|r > 0. We claim that B(w, ε) ⊆ W . Indeed, if u ∈ B(w, ε)

is arbitrary, then

|ϕ(a)− u| = |w − u| < ε ≤ 2ε− |ϕ(a)− u|
< min

t∈[0,2π]
|ϕ(a+ reit)− ϕ(a)| − |ϕ(a)− u| (by (21))

≤ min
t∈[0,2π]

|ϕ(a+ reit)− u|.

By Corollary 8.8 this is only possible if ϕ − u has a zero in B(a, r). Hence
there exists z ∈ B(a, r) ⊆ V such that u = ϕ(z). This implies that u ∈ ϕ(V ),
and so B(a, ε) ⊆ W . It follows that W is open.

To prove (iii) note that (20) can be rewritten as

|ψ(w1)− ψ(w2)| ≤ 2

|ϕ′(z0)|
· |w1 − w2| for w1, w2 ∈ W .

This shows that ψ : W → V is continuous on W .
In order to prove that ψ ∈ H(W ), let w ∈ W be arbitrary. Then there

exists a unique point z ∈ V with ϕ(z) = w. We claim that

ψ′(w) =
1

ϕ′(z)
. (22)

Note that ϕ′(z) 6= 0 by (i). To prove (22), we have to show that if {wn} is
an arbitrary sequence in W \ {w} with wn → w, then

lim
n→∞

ψ(wn)− ψ(w)

wn − w
=

1

ϕ′(z)
.

If zn := ψ(wn) for n ∈ N, then zn → ψ(w) = z by the continuity of ψ.
Therefore,

lim
n→∞

ψ(wn)− ψ(w)

wn − w
= lim

n→∞

zn − z
ϕ(zn)− ϕ(z)

=
1

ϕ′(z)
.

It follows that ψ ∈ H(W ). The proof is complete.
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Example 9.2. Let m ∈ N and πm : C → C be defined by πm(z) = zm for
z ∈ C (the m-th power function). Then every point w = Reiβ 6= 0, R > 0,
β ∈ R, has the m distinct preimages

zk = R1/meiβ/m+2πik/m, k ∈ {0, . . . ,m− 1}.

This is also true for the point 0 if we count its only preimage 0 with mul-
tiplicity m. So every point has exactly m preimages counting multiplicities
and πm is “m-to-1”.

As the next theorem shows, a similar statement is true locally for every
non-constant holomorphic function.

Theorem 9.3. Let Ω ⊆ C be open, f ∈ H(Ω) be non-constant near z0 ∈ Ω,
and w0 = f(z0). Let m ∈ N be the order of the zero of the function g := f−w0

at z0. Then there exists an open neighborhood V ⊆ Ω of z0, and ϕ ∈ H(V )
such that

(i) g(z) = f(z)− w0 = ϕ(z)m for z ∈ V ,

(ii) ϕ is a bijective map from V onto a disk B(0, r) with r > 0, ϕ(z0) = 0,
and ϕ′(z) 6= 0 for z ∈ V .

If we define U = B(w0, r
m), ψ(w) = w − w0, and let πm be the m-th

power function as in Example 9.2, then we get a commutative diagram

V
f

//

ϕ

��

U

ψ
��

B(0, r)
πm // B(0, rm).

Here the maps ϕ and ψ can be considered as bijective holomorphic “changes
of coordinates”. So near z0 the map f behaves in the same way as πm and is
locally m-to-1.

Proof. Without loss of generality, Ω is a convex open neighborhood of z0 such
that f(z)− w0 6= 0 for z ∈ Ω \ {z0} (this is based on Theorem 8.3). Then

f(z)− w0 = (z − z0)m · h(z) for z ∈ Ω,

where h ∈ H(Ω) and h(z) 6= 0 for all z ∈ Ω (see Theorem 8.3).
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We have h′/h ∈ H(Ω), and so h′/h has a primitive k ∈ H(Ω) by Corol-
lary 6.4 which means k′ = h′/h.

Then
(he−k)′ = h′e−k − hk′e−k = h′e−k − h′e−k = 0,

and so he−k is a constant function. Then he−k ≡ h(z0)e−k(z0) 6= 0. There
exists c ∈ C such that ec = h(z0)e−k(z0) = he−k. Define l := k + c. Then
l ∈ H(Ω) and

el = ekec = ekhe−k = h.

Define ϕ(z) := (z−z0)el(z)/m for z ∈ Ω. Then ϕ ∈ H(Ω) and g = f−w0 = ϕm.
Moreover, ϕ(z0) = 0 and ϕ′(z0) = el(z0)/m 6= 0. By Theorem 9.1 we can

choose an open neighborhood Ṽ of z0 such that ϕ|Ṽ is a bijection onto some

open neighborhood W of ϕ(z0) = 0 and such that ϕ′(z) 6= 0 for z ∈ Ṽ . Now
pick r > 0 such that B(0, r) ⊆ W and let V := ϕ−1(B(0, r)). Then V and ϕ
(restricted to V ) have the desired properties.

Remark 9.4. The number m in Theorem 9.3 is called the local degree of f
at z0, written m = degf (z0). Note that

f ′(z0) = mϕ′(z0) · ϕ(z0)m−1


6= 0 for m = 1,

= 0 for m ≥ 2.

So m = degf (z0) ≥ 2 if and only if f ′(z0) = 0.
The zeros of f ′ are called the critical points of f . Each image point of

a critical value is called a critical value of f . The critical points of f are
precisely the points where the local degree is greater than 1. If f is a non-
constant holomorphic function on a region Ω, then the set of critical points
of f consists of isolated points and has no limit point in Ω as follows from
the Uniqueness Theorem.

Corollary 9.5 (Open Mapping Theorem). Let Ω ⊆ C be a region, and
f ∈ H(Ω) be non-constant. Then f is an open map, i.e., the image f(U)
of every open set U ⊆ Ω is open. Moreover, the image f(U) of every region
U ⊆ Ω is a region.

Proof. The first part follows from Theorem 9.3. So if U ⊆ Ω is a region, then
f(U) is open. Moreover, f(U) is also connected as the continuous image of
a connected set. Hence f(U) is a region.
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Corollary 9.6. Let Ω ⊆ C be a region, and f : Ω → C be a holomorphic
function that is a bijection onto its image Ω̃ := f(Ω) (i.e., f : Ω → Ω̃ is a

bijection). Then f ′(z) 6= 0 for all z ∈ Ω, the inverse map g := f−1 : Ω̃ → Ω

is holomorphic on the open set Ω̃, and we have

g′(w) =
1

f ′(g(w))
for all w ∈ Ω̃. (23)

Proof. Since f is a bijection, the local degree of f must be equal to 1 at each
point of Ω. Hence f ′(z) 6= 0 for all z ∈ Ω by Remark 9.4. By Corollary 9.5

the set Ω̃ is open, and g = f−1 is holomorphic on Ω̃ by Theorem 9.1 (iii).

Since f(g(w)) = w for all w ∈ Ω̃, we conclude from the chain rule that

f ′(g(w)) · g′(w) = 1

for w ∈ Ω̃. So (23) follows.



10 Elementary functions

10.1. Trigonometric functions. How can we define sin z and cos z for
z ∈ C so that

(i) the definitions agree with the usual definition for z ∈ R,

(ii) sin and cos are holomorphic on C?

By the Uniqueness Theorem this is possible in at most one way, and by
Corollary 7.7 the functions sin and cos should have power series representa-
tions converging on C.

So we define

sin z =
∞∑
n=0

(−1)n
z2n+1

(2n+ 1)!
and cos z =

∞∑
n=0

(−1)n
z2n

(2n)!

for z ∈ C. These series converge for all z ∈ C by the ratio test; so by
Theorem 5.9 the functions sin and cos are holomorphic on C. Moreover,
with these definitions we get the usual functions for z ∈ R by the well-known
power series representations for sin and cos on R.

All the standard trigonometric identities are also valid for complex argu-
ments. For example, we have

sin2 z + cos2 z = 1 for z ∈ C.

Indeed, the functions on both sides of this equation are holomorphic functions
of z on C. They are the same for z ∈ R. So by the Uniqueness Theorem
they are the same for all z ∈ C.

Similarly, we have

sin(z + w) = sin z cosw + cos z sinw (24)

for z, w ∈ C.
Indeed, we know that (24) holds for z, w ∈ R. Fix w ∈ R. Then

z 7→ sin(z + w) and z 7→ sin z cosw + cos z sinw

are holomorphic functions on C that are identical on R. So they have the
same values for all z ∈ C. We conclude that (24) holds for all z ∈ C, w ∈ R.
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Now fix z ∈ C and consider the right-hand and the left-hand side of (24)
as holomorphc functions of w on C. They agree for w ∈ R, and so they agree
for all w ∈ C by the uniqueness theorem. So (24) holds for all z, w ∈ C.

We have

sin z =
eiz − e−iz

2i
and cos z =

eiz + e−iz

2
for z ∈ C. (25)

Again we note that both sides in these equations are holomorphic functions
of z on C, and that the function agree for z ∈ R. For example, for z = t ∈ R
we have

eit − e−it

2i
=

(cos t+ i sin t)− (cos t− i sin t)

2i
= sin t.

So the equations (25) are valid for all z ∈ C.
An immediate consequence of (25) is the identity

eiz = cos z + i sin z for z ∈ C (Euler’s formula).

What are the zeros of the functions sin and cos? Note that

sin z = 0 ⇔ eiz − e−iz = 0

⇔ e2iz = 1

⇔ 2iz = 2πik for some k ∈ Z
⇔ z = πk for some k ∈ Z.

Since cos z = sin(π
2
− z) for z ∈ C, we have

cos z = 0 ⇔ z =
π

2
+ kπ for some k ∈ Z.

We can compute sin z and cos z for z = x + iy, x, y ∈ R, by using the
addition formulas. First note that

cos(iy) =
e−y + ey

2
= cosh y, sin(iy) =

e−y − ey

2i
= i sinh y.

Hence

cos(x+ iy) = cos x cos(iy)− sinx sin(iy)

= cosx cosh y − i sinx sinh y,
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and similarly
sin(x+ iy) = sinx cosh y + i cosx sinh y.

The functions tan and cot are defined in the usual way. So

tan z :=
sin z

cos z

is a holomorphic function of z on C \ {kπ + π/2 : k ∈ Z} and

cot z :=
cos z

sin z

is a holomorphic function of z on C \ {kπ : k ∈ Z}.

10.2. Logarithms. Every solution of the equation z = ew is called a log-
arithm of z. A number z ∈ C has a logarithm if and only if z 6= 0. Let
z = reiα, r > 0, α ∈ R. Then

z = elog r+iα = ew

iff w = log r + iα + 2πik, k ∈ Z. So every z ∈ C \ {0} has infinitely many
logarithms.

A continuous function L : Ω → C defined on a region Ω ⊆ C is called a
branch of the logarithm if eL(z) = z for all z ∈ Ω. Note that 0 6∈ Ω if a branch
of the logarithm exists, but this condition is not sufficient for the existence
of the branch of the logarithm on a region Ω. For example, if Ω = C \ {0},
then no branch of the logarithm exists on Ω.

If L1, L2 : Ω→ C are two branches of the logarithm, then eL1(z) = eL2(z),
and so eL1(z)−L2(z) = 1 for all z ∈ Ω. It follows that

(L1 − L2)(Ω) ⊆ {2πik : k ∈ Z}.

Since (L1 − L2)(Ω) is a connected set, we conclude that there exists k ∈ Z
such that

L1(z) = L2(z) + 2πik

for all z ∈ Ω. So the branches of the logarithm in a region are obtained from
one branch (if it exists) by adding 2πik, k ∈ Z. In particular, knowing the
function value of a branch at one point determines the branch uniquely.

The exponential function maps the strip

S := {w ∈ C : −π < Im(w) < π}



10 ELEMENTARY FUNCTIONS 82

bijectively onto the slit plane C \ (−∞, 0]. By Corollary 9.6 the function
exp |S has a holomorphic inverse function denoted by log and called the
principal branch of the logarithm. It is the unique branch of the logarithm
on Ω = C \ (−∞, 0] with log 1 = 0.

By Corollary 9.6 we have

d

dz
log z =

1

elog z
=

1

z
.

The expression log z agrees with the usual definition for z > 0. Note that log
is discontinuous along the “branch cut” (−∞, 0]. Indeed, if for fixed r > 0
the points z1 = reiα1 and z1 = reiα2 with α1, α2 ∈ (−π, π) approach −r from
the upper and lower half-planes, respectively, then α1 → π and α2 → −π.
So

log(z1) = log r + iα1 → log r + iπ

and
log(z2) = log r + iα2 → log r − iπ.

This shows that the values of the principal branch of the logarithm differ by
2πi on “different sides” of the branch cut.

Note that in general we have

log(z1z2) 6= log(z1) + log(z2)

if log is the principal branch of the logarithm. For example, if z1 = z2 = i ∈
C \ (−∞, 0], then z1z2 = i2 = −1 is not even contained in the domain of
definition C \ (−∞, 0] of the principal branch.

10.3. Roots and powers. If Ω ⊆ C is a region where a branch L of the
logarithm exists, we define for a ∈ C and z ∈ Ω,

za := exp(aL(z)).

Note that if L̃ is another branch of the logarithm, then L̃ = L+ 2πik, k ∈ Z,
and so

exp(aL̃(z)) = exp(aL(z) + a2πik) = exp(aL(z)) exp(a2πik)

for z ∈ Ω. So different branches of the power function za differ by a multi-
plicative factor. If a ∈ Z, then exp(a2πik) = 1, and so there exists only one
branch. So for a = n ∈ Z, z 6= 0,

za = exp(aL(z)) =
(

exp(L(z)
)a

= zn



10 ELEMENTARY FUNCTIONS 83

agrees with the power function as defined in Section 1.
Unless otherwise stated, za will denote the principal branch defined on

C \ (−∞, 0] as
za := exp(a log(z)),

where log is the principal branch of the logarithm. This branch is normalized
so that

1a = exp(a log(0)) = exp(0) = 1,

and agrees with the usual definition of the power function for z > 0, a ∈ R.
Note that

d

dz
za =

d

dz
exp(a log(z)) = a

1

z
exp(a log(z))

= a exp(− log(z)) exp(a log(z)) = a exp((a− 1) log(z)) = aza−1

for z ∈ C \ (−∞, 0].
If z = reiα, r > 0, α ∈ (−π, π), we have

za = exp(a log(reiα)) = exp(a(log r + iα)).

For a > 0 this means that

za = exp(a(log r + iα)) = raeiαa.

In particular, a sector

S = {reiα : R > 0, ϕ1 < α < ϕ2},

where −π ≤ ϕ1 < ϕ2 ≤ π and whose opening angle ϕ2 − ϕ1 is sufficently
small, is mapped by z 7→ za onto the sector

S ′ = {ρeiβ : ρ > 0, aϕ1 < α < aϕ2}

whose opening angle differs from the opening angle of S by the factor a.
If a = 1/n, where n ∈ N, we also use the notation

n
√
z := z1/n = za.

For the principal branch we get

n
√
reiα = r1/neiα/n
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for z = reiα, r > 0, α ∈ (−π, π).
Note that if r > 0 is fixed and z1 = reiα approaches the point −r on the

branch cut (−∞, 0] from the upper half-plane, then α → π and so n
√
z1 =

n
√
reiα → r1/neiπn. Similarly, if z2 = reiα approaches the point −r on the

branch cut from the lower half-plane, then α→ −π and so n
√
z2 =

n
√
reiα →

r1/neiπn → r1/ne−iπn.
In particular, if n = 2, then the values of

√
z for z = −r on “different

sides of the branch cut” are
√
ri and −

√
ri. So these values differ by a factor

−1.

10.4. Riemann surfaces spread over the plane. How can we get rid of
the artificial branch cut of the logarithm? We cannot define the logarithm
as a “sensible” (for example, continuous) function on C \ {0}. Indeed, each
z = reiα ∈ C \ {0} as infinitely many logarithms

log r + iα + 2πik, k ∈ Z, (26)

and these values cannot be patched up to a continuous function on C \
{0}. So the logarithm is a “multi-valued” function. To get a well-defined
function in the usual sense, one introduces a surface with infinitely many
layers (roughly speaking, one layer for each k ∈ Z in (26)) so that on this
surface the logarithm is a well-defined and continuous function.

One way to do this is as follows. Let S = {(z, w) ∈ C2 : z = exp(w)}.
Then we may think of S as a “covering surface” of C \ {0} where each point
(z, w) ∈ S lies “above” the point z. The logarithm is then defined as the
map (z, w) ∈ S 7→ w.

Another way to visualize this Riemann surface spread over C \ {0} is by
the following gluing procedure. For k ∈ Z let

Pk = {reiα : r > 0, 2πi(k − 1) ≤ α ≤ 2πi(k + 1)}
be a copy of punctured complex plane, where the points in Pk with α =
2πi(k ± 1) on different sides of the branch cut (−∞, 0] are considered as
distinct. Then the Riemann surface S of the logarithm is obtained by gluing
together (i.e., identifying) each point rei2πi(k+1), r > 0, on the upper side of
the branch cut of Pk with the same point on lower side of the branch cut of
Pk+1. On a more intuitive level, this surface has the shape of a “bi-infinite
spiral staircase” lying above C \ {0}.

The logarithm on this surface S is defined as follows. If z ∈ S, then
z ∈ reiα ∈ Pk for some k ∈ Z, where 2πi(k − 1) ≤ α ≤ 2πi(k + 1). Then we
set log(z) := log r + iα. This is a well-defined function on S.
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10.5. The Riemann surface of
√
z. The square-root function has two

branches on C \ (−∞, 0] that differ by the factor ±1. To get a well-defined
square-root function we define a Riemann surface S = {(z, w) ∈ C2 : z =
w2}. Then by the projection map (z, w) ∈ S 7→ z this surface is spread over
the complex plane C. On S the square-root function is given by the map
(z, w) ∈ S 7→ w.

Similarly as for the logarithm, one can obtain S from a gluing procedure
also as follows. We take two copies P+ and P− of the complex plane with a slit
along the negative real axis (−∞, 0] as branch cut. In each copy we consider
the points re±iπ, r > 0, on different sides of the branch cut as distinct. Then
we glue P+ and P− together “cross-wise” so that the point re+iπ ∈ P+ is
identified with re−iπ ∈ P−, and re−iπ ∈ P+ is identified with re+iπ ∈ P−. We
also identify 0 ∈ P+ with 0 ∈ P−. Each point z ∈ S can be considered as
lying above its corresponding point z ∈ P+ or z ∈ P− considered as a point
in the complex plane. In this way, S is a Riemann surface spread over C
with a natural projection map S → C that is locally injective away from the
so-called branch point 0 ∈ S.

The surface S cannot be realized as an embedded surface in R3, but if
one wants a model of S in R3 one has to allow a “self-intersection” of S along
the branch cut.

If z ∈ S is arbitrary, then the point z lies in one of the copies P+ or P−
(or both). If z ∈ P+ or z ∈ P− and z = reiα, where r ≥ 0 and −π ≤ α ≤ π,
we define

√
z =
√
reiα/2 or

√
z = −

√
reiα/2, respectively. This gives a well-

defined square-root function on S.



11 The Riemann sphere

11.1. The extended complex plane. We want to compactify C by adding
a point at infinity denoted by ∞. Then Ĉ := C∪ {∞} is called the extended

complex plane. One can visualize Ĉ as the Riemann sphere by stereographic
projection.

To do this, let S = {(u, v, w) ∈ R3 : u2 + v2 +w2 = 1} be the unit sphere
in R3. We consider the complex plane as a subset of R3 by the identification
z = x + iy ∈ C ∼= (x, y, 0) ∈ R3, where x, y ∈ R. Then the sphere S cuts
C along its equator. Let N = (0, 0, 1) be the “north pole” of S. Then
one defines a projection map π : S \ {N} → C as follows. If Z ∈ S \ {N}
is arbitrary, then we join N and Z by a line L. The line L intersects the
complex plane C ⊆ R3 in a unique point z. We define π(Z) := z. This
stereographic projection π gives a bijection of S \ {N} onto C.

It is easy to find an explicit formula for the map π and its inverse. If
Z = (x1, x2, x3) ∈ S \ {N} is arbitrary, then the line L passing through Z
and N is given by

L = {t(x1, x2, x3) + (1− t)(0, 0, 1) ∈ R3 : t ∈ R}.

The line L meets C at a point z determined by the equation

tx3 + (1− t) = 0.

Hence t = 1/(1−x3). Inserting this back into the parametrization of L gives

Z = (x1, x2, x3) ∈ S \ {N} 7→ π(Z) = z =
x1 + ix2

1− x3

∈ C.

Conversely, let z = x + iy ∈ C be arbitrary, where x, y ∈ R. The line L′

passing through N = (0, 0, 1) and (x, y, 0) ∼= z is given by

L′ = {t(x, y, 0) + (1− t)(0, 0, 1) ∈ R3 : t ∈ R}.

A point on L′ different from N lies on S iff

t2x2 + t2y2 + (1− t)2 = t2|z|2 + (1− t)2 = 1

⇒ t2(|z|2 + 1) = 2t

⇒ t =
2

|z|2 + 1
(t = 0 corresponds to N).
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Hence

z = x+ iy ∈ C 7→ π−1(z) =

(
2x

|z|2 + 1
,

2x

|z|2 + 1
,
|z|2 − 1

|z|2 + 1

)
∈ S \ {N}.

If we make |z| larger and larger, then the corresponding point Z = π−1(z)
on S gets closer and closer to N . So it is natural to extend π to a bijection
from S onto Ĉ by setting π(N) =∞. In this way, we can identify Ĉ with S

by stereographic projection and refers to Ĉ as the Riemann sphere.
Let z, w ∈ C be points in the complex plane, and Z = π−1(z) and W =

π−1(w). Then for the Euclidean distance of Z and W we get

|Z −W |2 =

∣∣∣∣ 2z

|z|2 + 1
− 2w

|w|2 + 1

∣∣∣∣2 +

(
|z|2 − 1

|z|2 + 1
− |w|

2 − 1

|w|2 + 1

)2

=
4|z(|w|2 + 1)− w(|z|2 + 1)|2 + 4(|z|2 − |w|2)2

(|z|2 + 1)2(|w|2 + 1)2

= −4
zw + wz

(|z|2 + 1)(|w|2 + 1)
+ 4
|z|2(|w|2 + 1)2 + |w|2(|z|2 + 1)2 + (|z|2 − |w|2)2

(|z|2 + 1)2(|w|2 + 1)2

= −4
zw + wz

(|z|2 + 1)(|w|2 + 1)
+ 4

(|z|2 + |w|2)(|z|2 + 1)(|w|2 + 1)

(|z|2 + 1)2(|w|2 + 1)2

= 4
|z|2 + |w|2 − zw − wz

(|z|2 + 1)(|w|2 + 1)
= 4

|z − w|2

(|z|2 + 1)(|w|2 + 1)
,

and so

|Z −W | = 2|z − w|√
1 + |z|2

√
1 + |w|2

.

Moreover,

|Z −N |2 =
4|z|2

(|z|2 + 1)2
+

4

(|z|2 + 1)2
=

4

(|z|2 + 1)
,

and so

|Z −N | = 2√
1 + |z|2

.

11.2. The chordal metric. We define a distance function on Ĉ = C∪{∞}
as follows. For z, w ∈ C ⊆ Ĉ we define

d(z, w) :=
2|z − w|√

1 + |z|2
√

1 + |w|2
,
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d(z,∞) = d(∞, z) :=
2√

1 + |z|2
,

and let d(∞,∞) = 0.
As we have seen above, d corresponds to the Euclidean metric on S by

stereographic projection. This shows that d is a metric on Ĉ, called the
chordal metric. Unless otherwise stated, Ĉ will always carry this metric.

Stereographic projection is an isometry between S equipped with the (re-

striction of the) Euclidean metric on R3 and Ĉ equipped with the chordal

metric. In particular, S and Ĉ are homeomorphic (i.e., there exists a contin-
uous bijection between these spaces with continuous inverse). So the topo-

logical and metric properties of S and Ĉ are the same. In particular, Ĉ is a
compact metric space.

Remark 11.3. It is not hard to show that C equipped with the restriction of
the chordal metric and C equipped with the usual Euclidean metric have the
same topology (i.e., the same open sets). So chordal and Euclidean metrics
are equivalent metrics.

In particular, if {zn} is a sequence in C and z ∈ C, then zn → z with
respect to the chordal metric if and only if zn → z with respect to the
Euclidean metric.

We have zn →∞ ∈ Ĉ (convergence in the metric space Ĉ) iff

d(zn,∞) =
2√

1 + |zn|2
→ 0

iff |zn| → +∞ (in the sense of real analysis).

Definition 11.4. Let X be a topological Hausdorff space (e.g., a metric
space), and n ∈ N. Then X is called a (topological) n-manifold if every point
x ∈ X has an open neighborhood that is homeomorphic to an open subset
of Rn.

A chart on an n-manifold X is a homeomorphism ϕ : U → V of an open
subset U ⊆ X onto an open subset V ⊆ Rn. An atlas on X is a family
A = {ϕi : Ui → Vi : i ∈ I} of charts on X such that X =

⋃
i∈I Ui, i.e., the

chart neighborhoods of charts in the family cover the whole manifold X.

Recall that a topological space X is called Hausdorff if for all points
x, y ∈ X, x 6= y, there exists open sets U, V ⊆ X with x ∈ U , y ∈ V , and
U ∩ V = ∅.



11 THE RIEMANN SPHERE 89

Our definition of an n-manifold is slightly non-standard as one usually
requires that an n-manifold should have a countable basis for its topology
(i.e., there exists a countable set B of open sets in X such that every open
set in U is a union of sets in B).

We are mostly interested in the case n = 2. A 2-manifold is also called a
surface. If we make the identification R2 ∼= C, then we can think of a chart
on a surface as a map into C.

Example 11.5. The unit sphere S ⊆ R3 (and hence also Ĉ) is a topological
2-manifold. To see this, it is enough to exhibit an atlas of charts on S. It con-
sists of two charts, namely the map ϕ1 : S \{n} → R2 given by stereographic
projection from the north pole n = (0, 0, 1), and the map ϕ2 : S \ {s} → R2

given by stereographic projection from the south pole s = (0, 0,−1) (defined
in the obvious way).

Similarly, one can define an atlas on Ĉ given by two charts ψ1 and ψ2. Here
ψ1 : U1 := C ⊆ Ĉ→ C, ψ1(z) = z for z ∈ C, and ψ2 : U2 := C \ {0} ∪ {∞} ⊆
Ĉ→ C,

ψ2(z) =


1/z for z ∈ C \ {0},

0 for z =∞.

Definition 11.6. Let U, V ⊆ C be open sets. A map f : U → V is called
a biholomorhism if f is a bijection, f is holomorphic on U , and f−1 is holo-
morphic on V .

Two charts ϕ1 : U1 → V1 ⊆ C and ϕ2 : U2 → V2 on a 2-manifold X are
called holomorphically compatible if U1 ∩ U2 = ∅, or if U1 ∩ U2 6= ∅ and the
map

ϕ2 ◦ ϕ−1
1 |ϕ1(U1 ∩ U2) : ϕ1(U1 ∩ U2)→ ϕ2(U1 ∩ U2)

is a biholomorphism.

Example 11.7. Let ψ1 : U1 → C and ψ2 : U2 → C be the charts on Ĉ as
in Example 11.5. Then ψ1 and ψ2 are holomorphically compatible. Indeed,
U1 = C and U2 = C \ {0} ∪ {∞}, and so U1 ∩ U2 = C \ {0}. Then W :=
ψ1(U1 ∩ U2) = ψ2(U1 ∩ U2) = C \ {0}. Moreover, f := ψ2 ◦ ψ−1

1 |W : W → W
is given by f(z) = 1/z for z ∈ W . This is a holomorphic bijection with
holomorphic inverse z 7→ f−1(z) = 1/z.

Definition 11.8. An atlas A = {ϕi : Ui → Vi ⊆ C : i ∈ I} on a 2-manifold
X is called a complex atlas if the charts in A are pairwise holomorphically
compatible.
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Two complex atlases A1 and A2 on X are called analytically equivalent if
each chart in A1 is holomorphically compatible with each chart in A2. This
defines an equivalence relation for atlases. A complex structure on X is an
equivalence class of analytically equivalent atlases on X. A Riemann surface
is a topological 2-manifold equipped with a complex structure.

Remark 11.9. One should think of the complex structure on a Riemann
surface as being represented by some fixed complex atlas. A complex chart
on a Riemann surface is a chart that is holomorphically compatible with all
the charts in one atlas (and hence in all atlases) that define the complex
structure. Often it is convenient to add complex charts to a given atlas as
needed, for example if one wants to make the chart neighborhoods smaller:
if ϕ : U → V is a chart in a complex atlas A, and U ′ ⊆ U is open, then
ϕ|U ′ : U ′ → ϕ(U ′) is a chart that is holomorphically compatible with each
chart in A.

Definition 11.10. Let X be a Riemann surface, and f : X → C. Then f is
called a holomorphic function if for every complex chart ϕ : U → V ⊆ C on
X the function f ◦ ϕ−1 : V → C is a holomorphic function on the open set
V ⊆ C.

Definition 11.11. Let X and Y be Riemann surfaces, and f : X → Y
be continuous. Then f is called a holomorphic map (between X and Y ) if
for every complex chart ϕ : U → V ⊆ C on X and every complex chart
ψ : U ′ → V ′ ⊆ C on Y with f(U) ⊆ U ′ the function ψ ◦ f ◦ ϕ−1 : V → V ′ is
holomorphic.

Note that the function ψ ◦ f ◦ ϕ−1 is defined on the open set V ⊆ C and
takes values in V ′ ⊆ C. So it makes sense to require the holomorphicity of
this function (as defined in Section 3).

Example 11.12. The atlas A consisting of the charts ψ1 and ψ2 on the
Riemann sphere Ĉ as defined Example 11.5 is a complex atlas (see Exam-

ple 11.7). In the following, we always think of Ĉ as a Riemann surface
equipped with the complex structure represented by the complex atlas A.

How do we verify that a given continuous map f : Ĉ→ Ĉ is holomorphic?
We check this locally near each point z0 ∈ Ĉ. Let w0 := f(z0). The basic
idea is this: whenever the point ∞ is involved, we send it to 0 by the chart
ψ2. This leads to several cases.
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Case 1: z0, w0 ∈ C. In this case, z 7→ f(z) is just a complex-valued
function near z0, and we check its holomorphicity as usual.

Case 2: z0 =∞, w0 ∈ C. We check z 7→ g(z) := f(1/z) for holomorphic-
ity near 0.

Here it is understood that g(0) := f(∞), and we make similar definitions
in the remaining two cases.

Case 3: z0 ∈ C, w0 = ∞. We check z 7→ 1/f(z) for holomorphicity near
z0 ∈ C.

Case 4: z0 = w0 = ∞. We check z 7→ 1/f(1/z) for holomorphicity near
0.

Example 11.13. Every rational function R can be considered as a holo-
morphic map R : Ĉ → Ĉ. To see this, let R = P/Q, where P and Q are
polynomials with no common roots and Q 6= 0. We write

P (z) = a0 + a1z + · · ·+ anz
n, an 6= 0,

Q(z) = b0 + b1z + · · ·+ bkz
k, bk 6= 0.

Then R is given by R(z) = P (z)/Q(z) for z ∈ C if Q(z) 6= 0. We extend R

continuously to a map R : Ĉ→ Ĉ. To do this, we set

R(z) := lim
w→z

R(w) =∞

for z ∈ C if Q(z) = 0 (note that then P (z) 6= 0) and

R(∞) := lim
w→∞

R(w) =


0 if n < k,

an/bk if n = k,
∞ if n > k.

Then R(z) is defined for all z ∈ Ĉ, and R : Ĉ→ Ĉ is continuous.

Moreover, R : Ĉ → Ĉ is a holomorphic map as can be seen by the case
analysis as in Example 11.12.

For example, suppose z0 ∈ C and Q(z0) = 0. Then R(z0) = ∞, and so
we have to investigate the holomorphicity of

z 7→ 1

R(z)
=
Q(z)

P (z)
(27)

near z0. Since P and Q have no common roots, we have P (z0) 6= 0 and so
P (z) 6= 0 for z near z0. The holomorphicity of the function in (27) near z0

follows.



12 Möbius transformations

Definition 12.1. A rational map R : Ĉ→ Ĉ of the form

R(z) =
az + b

cz + d
with a, b, c, d ∈ C, ad− bc 6= 0, (28)

is called a Möbius transformation. The set of all Möbius transformations is
denoted by Möb.

The condition ad − bc 6= 0 in (28) ensures that we cannot cancel the
numerator against denominator in the formula for R(z). Note that ad − bc

is the determinant of the coefficient matrix

(
a b
c d

)
associated with R.

12.2. Composition of Möbius transformations. The composition of two
Möbius transformations is again a Möbius transformation. This operation
corresponds to multiplication of the associated coefficient matrices. Indeed,
suppose that S, T ∈ Möb, where

S(w) =
a11w + a12

a21w + a22

, and w = T (z) =
b11z + b12

b21z + b22

.

Let

A =

(
a11 a12

a21 a22

)
and B =

(
b11 b12

b21 b22

)
be the corresponding coefficient matrices. Then S ◦T is also a Möbius trans-
formation, because

(S ◦ T )(z) = S(T (z)) =
a11

b11z + b12

b21z + b22

+ a12

a21
b11z + b12

b21z + b22

+ a22

=
(a11b11 + a12b21)z + a11b12 + a12b22

(a21b11 + a22b21)z + a21b12 + a22b22

,

and its associated coefficient matrix is(
a11b11 + a12b21 a11b12 + a12b22

a21b11 + a22b21 a21b12 + a22b22

)
= AB,

which is the product of A and B.

92
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12.3. Möb is a group. The set Möb of Möbius transformations with the
composition given by composition ◦ of maps is a group. Indeed:

1. If S, T ∈ Möb, then S ◦ T ∈ Möb.

2. Associativity of ◦ is clear, because composition of maps is associative.

3. The identity on Ĉ is the unit element in Möb; note that idĈ ∈ Möb,
because

idĈ(z) = z =
1 · z + 0

0 · z + 1
.

4. If S ∈ Möb with associated coefficient matrix A, then the Möbius
transformation with associated coefficient matrix A−1 (it exists, be-
cause det(A) 6= 0) is the inverse S−1 of S.

In particular, every Möbius transformation S is a biholomorphism from
Ĉ onto Ĉ (i.e., S is a bijection, and both maps S and S−1 are holomorphic).

12.4. Generators of Möb. The group Möb is generated by translations,
dilations, rotations, and the inversion. This means that every R ∈ Möb can
be written as a composition of maps of these types. These maps are Möbius
transformation of the following forms:

S(z) = z + a, a ∈ C, (translation),

S(z) = λz, λ > 0, (dilation),

S(z) = eiθz, θ ∈ R, (rotation),

S(z) = 1/z (inversion).

To see that Möb is generated by these maps, let R be a Möbius transfor-
mation of the form

R(z) =
az + b

cz + d
.

Assume c 6= 0 (the case c = 0 is similar and easier). By dividing the numera-
tor in the fraction representing R by the denominator, we can find A,B ∈ C,
B 6= 0, such that

R(z) = A+
B

cz + d
.
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Then the map z 7→ R(z) can be written as a composition of generators as
above in the following way:

z
dilation−→ |c|z rotation−→ cz

translation−→ cz + d
inversion−→ 1

cz + d
dilation+rotation−→ B

cz + d

translation−→ A+
B

cz + d
= R(z).

12.5. Fixed points of Möbius transformations. Every Möbius trans-
formation R 6= idĈ has precisely one or two fixed points. To see this, let R
be a Möbius transformation of the form

R(z) =
az + b

cz + d
.

We consider the fixed point equation

z =
az + b

cz + d
. (29)

This leads to two cases.
Case 1: c = 0. Then d 6= 0 and (29) is equivalent to

a

d
z +

b

d
= z ⇔

(a
d
− 1
)
z +

b

d
= 0.

This equation has exactly one solution z ∈ C if a/d− 1 6= 0, and no solution
z ∈ C if a/d − 1 = 0 and b/d 6= 0. Note that if a/d − 1 = 0 and b/d = 0,
then a = d and b = c = 0. This is impossible as R 6= idĈ.

So R has no or exactly one fixed point z ∈ C. Since c = 0, we must have
a 6= 0, and so R(∞) =∞. Hence R has precisely one or two fixed points in

Ĉ.
Case 2: c 6= 0. Then R(∞) = a/c 6= ∞. So ∞ is not a fixed point of R.

The fixed point equation (29) is equivalent to

cz2 + (d− a)z + b = 0.

Since c 6= 0, this equation has precisely one or two solutions z ∈ C. It follows
that R has precisely one or two fixed points in Ĉ.

12.6. Möbius transformations are uniquely determined by images
of three distinct points. Let S, T ∈ Möb, and z1, z2, z3 ∈ Ĉ be three
distinct points. If S(zk) = T (zk) for k = 1, 2, 3, then S = T .
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Indeed, if S(zk) = T (zk), then (T−1 ◦ S)(zk) = zk for k = 1, 2, 3. So the
Möbius transformation T−1 ◦ S has three distinct fixed points. By what we
have seen in Subsection 12.5, this is only possible if T−1 ◦ S = idĈ. Hence
S = T .

12.7. Cross-ratios. If z1, z2, z2, z4 ∈ Ĉ are four distinct points, we define
their cross-ratio as

(z1, z2, z3, z4) :=
z1 − z3

z1 − z4

:
z2 − z3

z2 − z4

=
(z1 − z3)(z2 − z4)

(z1 − z4)(z2 − z3)
.

This has to interpreted as an appropriate limit if one of the points is equal
to ∞ ∈ Ĉ; for example,

(∞, z2, z3, z4) := lim
z→∞

(z, z2, z3, z4) =
z2 − z4

z2 − z3

.

Note that the map

z 7→ (z, z2, z3, z4) =
(z − z3)(z2 − z4)

(z − z4)(z2 − z3)

is a Möbius transformation. The values of this Möbius transformation for
z = z2, z3, z4 have to be interpreted as appropiate limts. Hence this Möbius
transformation maps z2 to 1, z3 to 0, and z4 to ∞.

12.8. Möbius transformations preserve cross-ratios. If S ∈ Möb and
z1, z2, z3, z4 ∈ Ĉ are distinct points, then

(S(z1), S(z2), S(z3), S(z4)) = (z1, z2, z3, z4).

Proof. The maps z 7→ (z, z2, z3, z4) and z 7→ (S(z), S(z2), S(z3), S(z4)) are
Möbius transformations. The first maps z2 to 1, z3 to 0, and z3 to ∞. The
second map has the same behavior as is indicated by the following table:

z 7→ w = S(z) 7→ (w, S(z2), S(z3), S(z4)),
z2 7→ S(z2) 7→ 1,
z3 7→ S(z3) 7→ 0,
z4 7→ S(z4) 7→ ∞.

So these Möbius transformations agree on z2, z3, z4. It follows that they are
the same (see 12.6), and so give the same value for z = z1.
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12.9. Möb acts triply transitive on Ĉ. If z1, z2, z3 ∈ Ĉ are three distinct
points, and w1, w2, w3 ∈ Ĉ are three distinct points, then there exists a unique
Möbius transformation S with S(zk) = wk for k = 1, 2, 3.

Proof. Uniqueness follows from 12.6.
To establish existence, let U, V ∈ Möb be given by

U(z) = (z, z1, z2, z3) and V (z) = (z, w1, w2, w3)

for z ∈ Ĉ. These maps have mapping properties as indicated by the following
table:

U
z1 7→ 1,
z2 7→ 0,
z3 7→ ∞,

V
w1 7→ 1,
w2 7→ 0,
w3 7→ ∞.

Then S := V −1 ◦ U ∈ Möb has the desired mapping behavior:

U V −1

z1 7→ 1 7→ w1,
z2 7→ 0 7→ w2,
z3 7→ ∞ 7→ w3.

The map S in the last proof satisfies V (S(z)) = U(z), i.e.,

(S(z), w2, w3, w4) = (z, z2, z3, z4).

This equation can be used to compute S(z) explicitly.

Example 12.10. How to find the Möbius transformation S that maps 1, i,
−i, to −1, 1, ∞, respectively?

Solution: The map z 7→ w = S(z) satisfies

(z, 1, i,−i) = (w,−1, 1,∞),

or equivalently,

(z − i)(1 + i)

(z + i)(1− i)
= “ (w − 1)(−1−∞)

(w −∞)(−1− 1)
” =

1− w
2

.
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Of course, the term in the middle enclosed in “. . . ” has a purley symbolic
meaning and has to be interpreted as an appropriate limit given by the last
term. Solving for w gives (after some computation)

w = S(z) =
−(1 + 2i)z + (−1 + 2i)

z + 1
.

12.11. Circles in Ĉ. A circle (in Ĉ) is either a Euclidean circle in C in

the usual sense or a line (“circle through ∞”). Three distinct points in Ĉ
determine a unique circle on which they lie.

The circles in Ĉ are precisely the curves whose points z ∈ C can be
characterized by an equation of the form

αzz̄ + βz + β̄z̄ + γ = 0, (30)

where α, γ ∈ R, β ∈ C, and |β|2 > αγ.
To see this, note that every equation of the form (30) represents a circle.

Indeed, there are two cases.
Case 1. α = 0. Then |β|2 > αγ = 0, and so β 6= 0. Moreover, if β = a+ib

and z = x+ iy, where a, b, x, y ∈ R, then a and b cannot both be equal to 0,
and (30) is equivalent to

2ax− 2by + γ = 0.

This equation represents a line.
Case 2. α 6= 0. Then α = 1 without loss of generality, and (30) can be

written as

0 = zz̄ + βz + β̄z̄ + γ = (z + β̄)(z̄ + β) + γ − |β|2

⇔ |z − (−β̄)|2 = |β|2 − γ > 0.

This represents a circle of radius R = (|β|2 − γ)1/2 centered at −β̄.
Conversely, every equation for a circle or a line in C can be given the

form (30) (exercise!).

12.12. Möbius transformations map circles to circles. If S ∈ Möb,
and C ⊆ Ĉ is a circle, then S(C) ⊆ Ĉ is a circle.

Proof. Since we know that the group Möb is generated by translations, di-
lations, rotations, and the inversion z 7→ I(z) := 1/z (see 12.4), it is enough
to show the statement for these types of maps.
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Since the assertion is clear for translations, dilations, and rotations, it
suffices to prove it for the inversion I. Let C ⊆ Ĉ be a circle, and suppose it
it represented by an equation of the form (30). Then

z ∈ C ⇔ αzz̄ + βz + β̄z̄ + γ = 0

⇔ α +
β

z̄
+
β̄

z
+

γ

zz̄
= 0

⇔ α + β̄w + βw̄ + γww̄ = 0 with w = I(z) = 1/z,

⇔ w ∈ C̃,

where C̃ ⊆ Ĉ is the circle represented by the equation

γww̄ + β̄w + βw̄ + α = 0.

This is equivalent to I(C) = C̃.

12.13. Cross-ratios and points on a circle. Four distinct points z1, z2,
z3, z4 in Ĉ lie on a circle if and only if (z1, z2, z3, z4) ∈ R.

Proof. Let C be the unique circle with z2, z3, z4 ∈ C, and S ∈ Möb be
given by S(z) = (z, z2, z3, z4). Then S(C) is a circle containing S(z2) = 1,

S(z2) = 0, and S(z4) = ∞. Hence S(C) = R ∪ {∞} =: R̂. Note that for
u ∈ C we have

(u, 1, 0,∞) = “ (u− 0)(1−∞)

(u−∞)(1− 0)
” = u.

Using this and the invariance of cross-ratios under Möbius transformations,
we see that z1, z2, z3, z4 lie on a circle iff z1 ∈ C iff S(z1) ∈ S(C) = R̂ iff

S(z1) = (S(z1), 1, 0,∞)) = (S(z1), S(z2), S(z3), S(z4)) ∈ R

iff (z1, z2, z3, z4) ∈ R.

Lemma 12.14. Let S ∈ Möb. Then S(R̂) = R̂ if and only if S has the form

S(z) =
az + b

cz + d
, where a, b, c, d ∈ R, ad− bc 6= 0. (31)

Proof. ⇐: If S can be written in the form (31), then S maps point in R̂ to

points in R̂. This is only possible if S(R̂) = R̂.
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⇒: Conversely, suppose S can be written as in (31), let z ∈ Ĉ, and
w = S(z). Then

z = (z, 1, 0,∞) = (w, S(1), S(0), S(∞)) =
αw + β

γw + δ
,

where α, β, γ, δ ∈ C, αδ − βγ 6= 0. Since S(1), S(0), S(∞) ∈ R̂, we actually
have α, β, γ, δ ∈ R. Solving this for w = S(z) in terms of z, we get an
expression for S(z) as in (31).

Lemma 12.15. Let S ∈ Möb with S(R̂) = R̂. Then S(z̄) = S(z) for z ∈ Ĉ
(here ∞ :=∞).

Proof. This immediately follows from Lemma 12.14.

12.16. Points symmetric with respect to a circle. Let C ⊆ Ĉ be a
circle, and z, z∗ ∈ Ĉ. We say that z and z∗ are symmetric with respect to C
if the following condition is true: Pick U ∈ Möb such that U(C) = R̂. Then
the requirement is that

U(z∗) = U(z) which is equivalent to U(z) = U(z∗). (32)

Note that a Möbius transformation U with U(C) = R̂ exists, because we can
send three distinct points on C to 0, 1,∞ by a Möbius transformation. Then
U(C) = R̂.

Note also that condition (32) is independent of the Möbius transformation
we choose. To see this, suppose that V is another Möbius transformation
with V (C) = R̂. If S := V ◦U−1 ∈ Möb, then S(R̂) = R̂, and so S(w̄) = S(w)

for all w ∈ Ĉ. So if (32) is true, then we also have

V (z∗) = (V ◦ U−1)(U(z∗)) = S(U(z))

= S(U(z)) = V (z).

12.17. The symmetry principle. Let S ∈ Möb, and z and z∗ be points
in Ĉ that are symmetric with respect to a circle C ⊆ Ĉ. Then w = S(z) and

w∗ = S(z∗) are symmetric with respect to the circle C̃ = S(C).

Proof. Pick U ∈ Möb such that U(C) = R̂. Then U(z∗) = U(z). Then for

W := U ◦ S−1 ∈ Möb we have W (C̃) = U(C) = R̂. Moreover,

W (w∗) = (U ◦ S−1)(S(z∗)) = U(z∗)

= U(z) = (U ◦ S−1)(S(z)) = W (w).

Hence w and w∗ are symmetric with respect to C̃.



12 MÖBIUS TRANSFORMATIONS 100

Lemma 12.18. Let C ⊆ Ĉ be a circle, and z1, z2, z3 ∈ C be distinct points.
Then z ∈ Ĉ and z∗ ∈ Ĉ are symmetric with respect to C if and only if

(z∗, z1, z2, z3) = (z, z1, z2, z3). (33)

Proof. Note that u 7→ (u, z1, z2, z3) is a Möbius transformation that maps C

onto R̂ (cf. 12.13). So (33) corresponds to (32).

12.19. Geometric description of symmetry with respect to a circle.
Let C ⊆ Ĉ be a circle, and z and z∗ be points that are symmetric with
respect to C.

Case 1: C is a line L. Then we can find a Möbius transformation U
that is a composition of a rotation and a translation that maps L to R̂. If
w = U(z) and w∗ = U(z∗), then w∗ = w̄, and so w∗ is the image of w under
reflection in R. Since U that is a composition of a rotation and a translation,
this reflections corresponds to the reflection in the line L. It follows that z∗

is the image of z under reflection in L.
Since we can reverse the argument, it follows that two points z∗ and z

are symmetric with respect to the line L = C if and only if z∗ is the image
of z under reflection in L.

Case 2: C ⊆ C is a Euclidean circle. Then a point w ∈ C satisfies an
equation of the type

|w − a| = R ⇔ (w − a)(w − a) = R2 ⇔ w − a =
R2

w − a
, (34)

where a ∈ C is the center and R > 0 is the radius of C.
We pick three distinct points z1, z2, z3 ∈ C. Then from Lemma 12.18 and

the invariance of cross-ratios under Möbius transformations we conclude that

(z∗, z1, z2, z3) = (z, z1, z2, z3) = (z, z1, z2, z3)

= (z − a, z1 − a, z2 − a, z3 − a) (by applying u 7→ u− ā)

=

(
z − a, R2

z1 − a
,
R2

z2 − a
,
R2

z3 − a

)
(by (34))

=

(
R2

z̄ − ā
, z1 − a, z2 − a, z3 − a

)
(by applying u 7→ R2/u)

=

(
a+

R2

z − a
, z1, z2, z3

)
(by applying u 7→ u+ a).
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If we consider the cross-ratio as a function of the first argument with the other
arguments fixed, then it is a Möbius transformation and hence a bijection.
So we conclude that

z∗ = a+
R2

z̄ − ā
(where z∗ =∞ if z = a, and z∗ = a if z =∞). (35)

This equation defines a map z 7→ z∗ on Ĉ called the reflection in the circle
C.

If z = a+ reit with r > 0 and t ∈ R, then

z∗ = a+
R2

re−it
= a+

R2

r
eit.

This implies that z and z∗ lie one the ray S = {a + ρeit : ρ > 0} emanating
from a, and we have

|z − a| · |z∗ − a| = R2.

Note that the fixed points of the reflection in the circle C are precisely the
points in C.

Again one can reverse the argument, and our discussion shows that two
points z and z∗ are symmetric with respect to C if and only if z∗ is the image
of z under the reflection in C.

12.20. Oriented circles. We say that a circle C ⊆ Ĉ is oriented if we specify
an ordered triple (z1, z2, z3) of distinct points on C. Given an orientation on
C we define the right side of C as the set

{z ∈ Ĉ : Im(z, z1, z2, z3) > 0}

and the left side of C as the set

{z ∈ Ĉ : Im(z, z1, z2, z3) < 0}.

Note that Im(z, z1, z2, z3) = 0 if and only if z ∈ C. This implies that the left
and the right side of C form the two connected components of the complement
of C in Ĉ.

12.21. Möbius transformations are orientation-preserving. Let S ∈
Möb and C ⊆ Ĉ be a circle. Let C̃ = S(C) be the image of C under S.
Suppose C is oriented by the three distinct points z1, z2, z3 ∈ C. We orient
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C̃ by the image points S(z1), S(z2), S(z3) ∈ C̃. Then S takes the left side of

C to the left side of C̃, and consequently the right side of C to the right side
of C̃.

Indeed, a point z ∈ Ĉ belongs to the left side of C if and only if

Im(z, z1, z2, z3) = Im(S(z), S(z1), S(z2), S(z3)) < 0.

This is true if and only if S(z) belongs to the left side of C̃.

12.22. Conformal maps. Let U, V ⊆ Ĉ be open, and f : U → V be a
map. Then f is called a conformal map (from U onto V ) if f is a bijection,
f is holomorphic on U , and f−1 is holomorphic on V . In other words, a
conformal map from U onto V is the same as a biholomorphism from U onto
V .

If f : U → V is a conformal map, and g = f−1, then g(f(z)) = z for all
z ∈ U . In particular, if U, V ⊆ C, then

g′(f(z)) · f ′(z) = 1

and so f ′(z) 6= 0 for all z ∈ U . So the derivative of a conformal map does
not vanish anywhere (this also follows from Theorem 9.3).

12.23. Conformal maps preserve angles between curves. Let Ω ⊆ C
be open, and γ1, γ2 : [a, b] → Ω be two smooth paths with common initial
point p = γ1(a) = γ2(a). If γ′1(a), γ′2(a) 6= 0, then we define the angle between
γ1 and γ2 at p as

∠p(γ1, γ2) := arg γ′2(a)− arg γ′1(a).

This is equal to the angle between the tangent vectors of γ1 and γ2 at p.
Intuitively, ∠p(γ1, γ2) is the angle of a rotation at p that sends the direction
of γ′1(a) into the direction of γ′2(a). Note that the order of the paths γ1 and
γ2 is important here.

Now let f : Ω → C be a holomorphic function with f ′(p) 6= 0. Define
q := f(p) and σk := f ◦ γk, k = 1, 2. Then

∠q(σ1, σ2) = ∠p(γ1, γ2). (36)

To see this, assume that f ′(p) = reiα. Then

σ′k(a) = f ′(γk(a)) · γ′k(a) = f ′(p) · γ′k(a) = reiαγ′k(a),
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and so
arg σ′k(a) = α + arg γ′k(a)

for k = 1, 2. Hence

arg σ′2(a)− arg σ′1(a) = arg γ′2(a)− arg γ′1(a)

and (36) follows.

12.24. Angles between curves on Riemann surfaces. One can define
angles between paths on a Riemann surfaceX similarly as in Subsection 12.23
by using local charts. Since transition maps between charts are conformal
maps and hence angle-preserving, this leads to a well-defined notion.

In particular, if γ1 and γ2 are suitable path in Ĉ with initial point ∞,
then

∠∞(γ1, γ2) := ∠0(I ◦ γ1, I ◦ γ2),

where I : Ĉ→ Ĉ, I(z) = 1/z is the inversion.

12.25. Möbius transformations preserve angles between paths. Let
S ∈ Möb, and γ1, γ2 be smooth paths in Ĉ with initial point p ∈ Ĉ. Let
q = S(p). Then

∠p(γ1, γ2) = ∠q(S ◦ γ1, S ◦ γ2).

To see this, assume that

S(z) =
az + b

cz + d
with a, b, c, d ∈ C, ad− bc 6= 0.

We consider several cases similar to the cases in Example 11.12.
Case 1: p, q ∈ C. By the considerations in 12.23 it suffices to show that

S ′(p) 6= 0. This is true, since S is a biholomorphism, or more explicitly,

S ′(p) =
a(cp+ d)− c(ap+ b)

(cp+ d)2
=

ad− bc
(cp+ d)2

6= 0.

Note that cp+ d 6= 0, because q = S(p) ∈ C.
Case 2: p =∞, q ∈ C. Then we consider z 7→ S(1/z) =: T (z), and have

to check whether T ′(0) 6= 0. Since T ∈ Möb, and T (0) = S(∞) = q ∈ C,
this follows from the considerations in Case 1.

There are two more cases, namely where p ∈ C, q = ∞, and where
p = q =∞. They can be treated in a similar way as in Case 2.
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Example 12.26. Let

S(z) =
1− z
1 + z

.

What is the set S(D)?

Solution: S has real coefficients; so S(R̂) = R̂ (see 12.14). We have
−1, 1 ∈ ∂D, and S(−1) = ∞ and S(1) = 0; so S(∂D) is a line L. Since

∂D meets R̂ orthogonally at 1, this line L meets S(R̂) = R̂ orthogonally at
S(1) = 0 (see 12.25). It follows that L is the imaginary axis. Since S(0) = 1,
we conclude that S(D) = {w ∈ C : Imw > 0} is the open right half-plane.



13 Schwarz’s Lemma

Theorem 13.1 (Schwarz’s Lemma). Let f : D→ C be a holomorphic func-
tion satisfying f(0) = 0 and |f(z)| ≤ 1 for z ∈ D. Then

|f(z)| ≤ |z| for all z ∈ D, (37)

and
|f ′(0)| ≤ 1. (38)

If there is a point z ∈ D \ {0} for which we have equality in (37), or if
we have equality in (38), then there exists θ ∈ R such that

f(z) = eiθz for all z ∈ D.

Proof. Since f has a zero at 0, we can write this function in the form f(z) =
zh(z) for z ∈ D, where h : D→ C is holomorphic (cf. Theorem 8.3).

Claim: |h(z)| ≤ 1 for all z ∈ D.
To see this, let z0 ∈ D, and consider an arbitrary number r > 0 with

|z0| < r < 1. Then h is continuous on B(0, r) ⊆ D and holomorphic on
B(0, r). Be the Maximum Modulus Principle (cf. Theorem 8.9), we have

|h(z0)| ≤ max
z∈∂B(0,r)

|h(z)| = max
z∈∂B(0,r)

|f(z)|
|z|

≤ 1

r
.

Letting r → 1, we conclude |h(z0)| ≤ 1, and the claim follows.
The claim implies that

|f(z)| = |zh(z)| ≤ |z|

for z ∈ D, and
|f ′(0)| = |h(0)| ≤ 1.

So we have established (37) and (38).
If we have equality in (37) for some z = z0 ∈ D\{0}, then |h(z0)| = 1, and

so h must be constant by the Maximum Modulus Principle (cf. Theorem 8.6).
This is also true if |f ′(0)| = 1 = |h(0)|.

In both cases, h ≡ eiθ for some θ ∈ R, and so f(z) = eiθz for z ∈ D.

13.2. The automorphisms of a region. Let Ω ⊆ Ĉ be a region. A
conformal map from Ω onto Ω is called a (conformal) automorphism of Ω.
The set of all automorphisms of Ω is denoted by Aut(Ω). This is a group
under compositions of maps, the so-called automorphism group of Ω.
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Theorem 13.3 (Automorphisms of the unit disk). A map f : D → C is a
conformal automorphism of D if and only if f is a Möbius transformation of
the form

f(z) = eiθ
z − a
1− āz

, (39)

where θ ∈ R, a ∈ D.

By this theorem any point z0 ∈ D can be send to 0 by a suitable Möbius
transformation f ∈ Aut(D) (take a = z0 in (39)). The rotation factor eiθ can
be used to send a second point w0 ∈ D to the positive real axis, and so into
[0, 1). In other words, if z0, w0 ∈ D, then there exists f ∈ Aut(D) such that
f(z0) = 0 and f(w0) ∈ [0, 1).

Proof of Theorem 13.3. ⇐: Every f ∈ Möb of the form (39) is an automor-
phism of D; indeed,

|f(eit)| =
∣∣∣∣eiθ eit − a1− āeit

∣∣∣∣ =
|1− ae−it|
|1− ae−it|

= 1

for t ∈ R. Hence f(∂D) = ∂D. Since f(0) = −eiθa ∈ D, we have f(D) = D.
So f maps D onto D bijectively. Since f and the inverse of f are Möbius
transformations, and hence holomorphic, it follows that f is an automor-
phism of D.

⇒: Let f ∈ Aut(D) be arbitrary. Then there exists a ∈ D such that
f(a) = 0. Define

g(z) =
z + a

1 + āz
.

Then g ∈ Aut(D) by the first part of the proof. Let ϕ = f ◦ g. Then
ϕ ∈ Aut(D), and

ϕ(0) = f(g(0)) = f(a) = 0.

We also have ψ := ϕ−1 ∈ Aut(D), and ψ(0) = 0. Schwarz’s Lemma gives

|ϕ′(0)| ≤ 1 and |ψ′(0)| ≤ 1.

On the other hand, ψ(ϕ(z)) = z for z ∈ D, and so

|ψ′(0)| · |ϕ′(0)| = 1.

It follows that
|ψ′(0)| = 1 = |ϕ′(0)|,
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and so by the second part Schwarz’s Lemma there exists θ ∈ R such that

ϕ(z) = f(h(z)) = eiθz

for z ∈ D. Computation gives

g−1(z) =
z − a
1− āz

,

which implies that

f(z) = f(g(g−1(z))) = eiθg−1(z) = eiθ
z − a
1− āz

.

This shows that f can be written as in (39).

13.4. Hyperbolic geometry. Based on Theorem 13.3 one can show that

2|S ′(z)|
1− |S(z)|2

=
2

1− |z|2
(40)

for all S ∈ Aut(D) and z ∈ D (exercise!).
If γ : [a, b] → D is a piecewise smooth path, one defines its hyperbolic

length as

`h(γ) =

∫
γ

2|dz|
1− |z|2

:=

∫ b

a

2|γ′(t)|
1− |γ(t)|2

dt.

Then it follows from (40) that

`h(S ◦ γ) = `h(γ) (41)

for all S ∈ Aut(D), i.e., the hyperbolic length of a path is invariant under
automorphisms of D.

The hyperbolic metric on D is defined by

dh(z, w) := inf
γ
`h(γ) for z, w ∈ D, (42)

where the infimum is taken over all piecewise smooth paths in D with end-
points z and w. By (41) each S ∈ Aut(D) is an isometry of D equipped with
hyperbolic metric.

If z = 0 and w = u ∈ D, then one can show that the (parametrized)
segment [0, u] is the unique hyperbolic geodesic segment, i.e, the unique (up
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to reparametrization) piecewise smooth path γ for which the infimum in (42)
is attained. Hence

dh(0, u) =

∫ |u|
0

2dt

1− t2
=

∫ |u|
0

(
1

1 + t
+

1

1− t

)
dt

= (log(1 + t)− log(1− t))
∣∣|u|
0

(43)

= log

(
1 + |u|
1− |u|

)
= 2 artanh |u|.

Using this, the fact that every S ∈ Aut(D) is a hyperbolic isometry, and the
remark after Theorem 13.3, one easily obtains the explicit expression

dh(z, w) = log

(
1 +

∣∣ z−w
1−z̄w

∣∣
1−

∣∣ z−w
1−z̄w

∣∣
)

= 2 artanh

∣∣∣∣ z − w1− z̄w

∣∣∣∣ (44)

for the hyperbolic distance between two points z, w ∈ D.
The hyperbolic geodesic segment Σ joining two points z, w ∈ D is the

image of a an interval of the form [0, r], 0 ≤ r < 1, under a suitable map

S ∈ Aut(D). Since R̂ ⊇ [0, r] meets the unit circle orthogonally and S
preserves angles, Σ is contained in a unique circle C that passes through z
and w, and meets ∂D orthogonally. Then Σ is given by the subarc of C in D
with endpoints z and w.

The unit circle D equipped with the hyperbolic metric is a model of the
hyperbolic plane in non-Euclidean geometry, called the Poincaré model of
the hyperbolic plane.

Theorem 13.5 (Schwarz-Pick Lemma). Let f : D → C be a holomorphic
function with f(D) ⊆ D. Then we have∣∣∣∣∣ f(z1)− f(z2)

1− f(z1)f(z2)

∣∣∣∣∣ ≤
∣∣∣∣ z1 − z2

1− z1z2

∣∣∣∣ (45)

for all z1, z2 ∈ D, and
|f ′(z)|

1− |f(z)|2
≤ 1

1− |z|2
(46)

for all z ∈ D.
If we have equality in (45) for some points z1, z2 ∈ D, z1 6= z2, or if we

have equality in (46) for some z ∈ D, then f ∈ Aut(D).
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Remark 13.6. If we define

B(z1, z2) :=

∣∣∣∣ z1 − z2

1− z1z2

∣∣∣∣ ,
then (cf. (44)),

dh(z1, z2) = log

(
1 +B(z1, z2)

1−B(z1, z2)

)
.

Since the function r 7→ log

(
1 + r

1− r

)
is strictly increasing on [0, 1), inequality

(45) is equivalent to

dh(f(z1), f(z2)) ≤ dh(z1, z2).

So a holomorphic map f : D → D does not increase hyperbolic distances of
points.

If f ∈ Aut(D), then f is a hyperbolic isometry and we have equality in
(45) for all z1, z2 ∈ D, and also in (46) for all z ∈ D by (40).

Proof of Theorem 13.5 (Outline). The idea is to reduce the statements to
corresponding statements in Schwarz’s Lemma.

Let z1, z2 ∈ D be arbitrary, and define w1 = f(z1), w2 = f(z2),

S(z) =
z − z1

1− z1z
and T (w) =

w − w1

1− w1w
.

Then S, T ∈ Aut(D), S(z1) = 0, and T (w1) = 0.
Define g = T ◦ f ◦ S−1. Then g ∈ H(D), g(0) = 0, and g(D) ⊆ D. So

Schwarz’s Lemma gives
|g(u)| ≤ |u| (47)

for all u ∈ D, in particular for u = S(z2). This translates into (45). Similarly,
we have

|g′(0)| ≤ 1, (48)

which after some computation gives (48) (for z = z1).
In case of (non-trivial) equality in (45), or of equality in (46), we have

equality in (47) or (48). Then g(z) ≡ eiθz for some θ ∈ R, and so g ∈ Aut(D).
Then f = T−1 ◦ g ◦ S ∈ Aut(D).
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13.7. Conformal metrics. Let U ⊆ C be a region, and ρ : U → [0,∞)
be a continuous function such that ρ−1(0) consists of isolated points in U
(the “singularities” of ρ). Given such a conformal density, one defines the
ρ-length of a piecewise smooth path γ : [a, b]→ U by

`ρ(γ) =

∫
γ

ρ(z) |dz| :=
∫ b

a

ρ(γ(t))|γ′(t)| dt,

and an associated conformal metric given by

dρ(z, w) = inf
γ
`ρ(γ) for z, w ∈ U,

where the infimum is taken over all piecewise smooth paths γ in U joining z
and w.

Then dρ is a metric on U that induces the standard topology (to prove
this one needs that ρ−1(0) consists of isolated points in U). One says that
this metric is given by the (symbolic) length element

ds = ρ(z) |dz|.

For example, the hyperbolic metric on D is induced by the length element

ds = ρh(z) |dz|,

where

ρh(z) :=
2

1− |z|2
, z ∈ D,

is the hyperbolic density.

13.8. Pull-backs of conformal metrics. Let U, V ⊆ C be regions, f : U →
V be a non-constant holomorphic map, and ds = ρ(w) |dw| be a conformal
metric on V . Here we use w to denote points in V , and z for points in U .
Then the pull-back f ∗(ds) of ds by the map f (given by z 7→ w = f(z)) is
the conformal metric on U with length element

f ∗(ds) = ρ(w) |dw|

= ρ(f(z))

∣∣∣∣dwdz
∣∣∣∣ |dz|

= ρ(f(z))|f ′(z)| |dz|.
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(Of course this “computation” is purely symbolic and is intended to motivate
the definition of the length element in the last line). Note that this pull-back
operation is functorial in the sense that

(g ◦ f)∗(ds) = f ∗(g∗(ds))

for compositions of holomorphic maps (this immediately follows from the
chain rule).

If the map f is conformal, then f is an isometry between V equipped
with the conformal metric given by ds and U equipped with f ∗(ds).

If we have two conformal metrics

ds1 = ρ1(z) |dz| and ds2 = ρ2(z) |dz|

on U , we write ds1 ≤ ds2 iff ρ1 ≤ ρ2. Then the Schwarz-Pick Lemma is
equivalent to the statement

f ∗(dsh) ≤ dsh, (49)

where dsf = ρh(z) |dz| is the hyperbolic metric on D, and f : D → D is a
holomorphic map; indeed, (49) is the same as (46), from which on can derive
(47) by integration.

Example 13.9. (a) Let

w = f(z) =
1 + iz

1− iz
.

Then f is a Möbius transformation that maps the upper half-plane H = {z ∈
C : Im z > 0} onto D. If we pull-back the hyperbolic metric dsh = ρh(w) |dw|
on D by f to H, then we get

f ∗(dsh) =
|dz|
Im z

.

This conformal metric on H gives an isometric model of the hyperbolic plane,
called the upper half-plane model.

(b) One can represent the unit sphere in R3 equipped with the spherical
metric ds (given by geodesic length between points) as a conformal metric

on Ĉ, namely by

ds =
2|dz|

1 + |z|2
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(suitably interpreted at z =∞). One can show that that then

ds(z, w) = 2 arctan

∣∣∣∣ z − w1 + z̄w

∣∣∣∣
for z, w ∈ Ĉ. Note that this expression is very similar to (44).



14 Winding numbers

Remark 14.1. We want to define an integer that counts how often a loop
γ : [0, 1]→ C winds around a given point z ∈ C, say z = 0. This only makes
sense if 0 6∈ γ∗. The idea is to look at the total change of the polar angle if we
move along the loop γ. For this we want to write γ in the form γ(t) = eα(t),
t ∈ [0, 1], where α : [0, 1] → C is continuous. Then the imaginary part of
α corresponds to the polar angle of points on γ, and we define the winding
number of γ around 0 as

winding number =
1

2π
(Imα(1)− Imα(0)). (50)

The first problem that one has to address here is the existence of α. We will
study is problem in greater generality based on the following definition.

Let Z be a metric space, and f : Z → C∗ be a continuous map. A
continuous map f̃ : Z → C is called a lift of f (under the exponential map)

if f = exp ◦f̃ , i.e., if the diagram

C
exp
��

Z

f̃
>>

f
// C∗

commutes. So finding a continuous function α as above is the same as finding
a lift of the loop γ.

Remark 14.2. The map exp: C→ C∗ is an example of a covering map. By
definition a continuous map p : X → Y between topological spaces X and
Y is a covering map if each point y ∈ Y has an open neighborhood V with
the following property: there exists an index set I such that p−1(V ) can be
written as a union

p−1(V ) =
⋃
i∈I

Ui

of pairwise disjoint open sets Ui ⊆ X such that p|Ui is a homeomorphism
from Ui onto V for each i ∈ I. Such a neighborhood V is called a fundamental
neighborhood or an evenly covered neighborhood of the point y.

To see that exp: C → C∗ is indeed a covering map, let w0 ∈ C∗ be
arbitrary. Then w0 = reiα for some r > 0 and α ∈ R. If we define

V = {ρeit : ρ > 0, α− π < t < α + π} = C \ {ρei(α+π) : ρ ≥ 0},
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then V is an evenly covered neighborhood of w0. Indeed, V is an open set
containing w0, and so a neighborhood of w0. Moreover,

exp−1(V ) =
⋃
k∈Z

Uk,

where
Uk = {z ∈ C : α + (2k − 1)π < Im z < α + (2k + 1)π}

for k ∈ Z. The sets Uk, k ∈ Z, are open and pairwise disjoint, and for each
k ∈ Z the restriction exp |Uk : Uk → V is a holomorphic bijection of Uk onto
V . Then exp |Uk has a holomorphic, and in particular continuous inverse
which shows that exp |Uk is a homeomorphism of Uk onto V .

Note that V ′ = B(w, |w0|) ⊆ V is also an evenly covered neighborhood
of w0.

Proposition 14.3. Let Z be a compact and connected metric space, and
f : Z → C∗ be a continuous map.

(a) Suppose that f̃1 and f̃2 are lifts of f and that there exists a point z0 ∈ Z
such that f̃1(z0) = f̃2(z0). Then f̃1 = f̃2.

(b) Let z0 ∈ Z, define w0 = f(z0), and suppose that

diam(f(Z)) < dist(0, f(Z)).

If u0 ∈ exp−1(w0), then there exists a unique lift f̃ of f with f̃(z0) = u0.

The first statement says that under the given assumptions, lifts are uniquely
determined by the image of one point.

Note that in (b) we have dist(0, f(Z)) > 0, because f(Z) is a compact
subset of C∗. The statement in (b) essentially says that lifts exist if the image
f(Z) is sufficiently small (depending on dist(0, f(Z))).

Proof. (a) We have

exp(f̃1 − f̃2) = exp(f̃1)/ exp(f̃2) = f/f = 1.

Since Z is connected, we conclude f̃1 − f̃2 ≡ const. (see Subsection 10.2 for

a similar reasoning). By assumption f̃1(z0)− f̃2(z0) = 0, and so f̃1 = f̃2.
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(b) Since u0 ∈ exp−1(w0) and V = B(w0, |w0|) is an evenly covered
neighborhood of w0 for the covering map exp: C → C∗, there exists a local
inverse of exp on V , i.e., a branch L of the logarithm on V such that L(w0) =
u0. Note that for each z ∈ Z we have

|f(z)− w0| = |f(z)− f(z0)| ≤ diam(f(Z))

< dist(0, f(Z)) ≤ |f(z0)| = |w0|.

Hence f(Z) ⊆ B(w0, |w0|). So f̃ := L ◦ f is defined. It is immediate that f̃

is a lift of f with f̃(z0) = u0. Moreover, by (a) this lift is unique.

Lemma 14.4. Let X and Y be metric spaces, and f : X → Y be a map.
Suppose that there are finitely many closed sets F1, . . . , Fn ⊆ X such that

f |Fk is continuous for each k ∈ {1, . . . , n} and X =
n⋃
k=1

Fk. Then f is

continuous.

Proof. From the assumptions it easily follows that if A ⊆ Y is closed, then
f−1(A) is also closed. Hence f is continuous (see Proposition 2.22).

Theorem 14.5 (Existence of lifts). (a) Let γ : [0, 1] → C∗ be a continuous
path, and u0 ∈ exp−1(γ(0)). Then there exists a unique lift γ̃ : [0, 1] → C of
γ with γ̃(0) = u0. If γ is piecewise smooth, then γ̃ is also piecewise smooth.

(b) Let H : [0, 1] × [0, 1] → C∗ be continuous and u0 ∈ exp−1(H(0, 0)).

Then there exists a unique lift H̃ : [0, 1]× [0, 1]→ C of H such that H̃(0, 0) =
u0.

The first part of (a) is true in greater generality for covering maps and
called the “path lifting property” of such maps. The statement in (b) can be
considered as a special case of the “Homotopy Lifting Theorem” for covering
maps.

Proof (Outline). (a) One can find a fine partition of [0, 1] given by points
t0 = 0 < t1 < · · · < tn = 1 such that each of the paths γk := γ|[tk−1, tk]
has small enough image so that we can apply Proposition 14.3 (b). Then
we successively lift the paths γ1, . . . , γn to paths γ̃1, . . . , γ̃n. We can do this
in such a way that γ̃1(0) = u0, and so that the endpoint γ̃k(tk) of a lift γ̃k
coincides with the initial point γ̃k+1(tk) of the next lift γ̃k+1.
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By Lemma 14.4 these lifts γ̃k paste together to a continuous map γ̃ : [0, 1]→
C such that γ|[tk−1, tk] = γ̃k. Then exp ◦γ̃ = γ and γ̃(0) = γ̃1(0) = u0, and
so γ̃ is a lift of γ with the desired properties. It is unique as follows from
Proposition 14.3 (a).

If γ is piecewise smooth, then we can choose the partition so that the
paths γk are (C1-)smooth. Since each lift γ̃k can be obtained by composing
a branch of the logarithm with γk, the lift γ̃k is also smooth. Hence γ̃ is
piecewise smooth.

(b) The basic idea for the proof is the same as in (a). We subdivide
[0, 1]× [0, 1] into small squares Q so that we can apply Proposition 14.3 (b)
to each map H|Q. We can ensure that (0, 0) is mapped to u0 by a suitable
lift. Moreover, based on Proposition 14.3 (a) one can obtain lifts of the maps
H|Q so they match along common boundary points of squares Q. Again by

Lemma 14.4 these lifts will paste together to a lift H̃ of H with H̃(0, 0) = u0.

Uniqueness of H̃ follows from Proposition 14.3 (a). The details are left as an
excercise.

Definition 14.6 (Index of a loop with respect to a point). Let γ : [0, 1]→ C
be a loop with 0 6∈ γ∗. Then we define the index of γ with respect to 0 (“the
winding number of γ around 0”), denoted by indγ(0), as follows: Pick a lift
γ̃ : [0, 1]→ C of γ. Then

indγ(0) :=
1

2πi
(γ̃(1)− γ̃(0)). (51)

More generally, the index of γ with respect to a point w ∈ C \ γ∗ (“the
winding number of γ around w”), is defined as

indγ(w) := indγ−w(0).

Remark 14.7. (a) Note that a lift γ̃ as in the previous definition exists by
Theorem 14.5 (a). Moreover, indγ(0) is well-defined. Indeed, if γ̃1 and γ̃2 are
two lifts of γ, then

exp(γ̃1 − γ̃2) = exp(γ̃1)/ exp(γ̃2) = γ/γ = 1,

and so γ̃1 − γ̃2 = const. Hence γ̃1 = γ̃2 + const., which implies

γ̃1(1)− γ̃1(0) = γ̃2(1)− γ̃2(0).
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(b) The index is an integer. Indeed, since γ is a loop, we have

exp(γ̃(0)) = γ(0) = γ(1) = exp(γ̃(1)).

Hence γ̃(1) = γ̃(0) + 2πik for some k ∈ Z, and

indγ(0) =
1

2πi
(γ̃(1)− γ̃(0)) = k ∈ Z.

(c) The definition given in (51) agrees with a similar definition based on (50)
with α = γ̃. To see this note that

Re(γ̃(1)) = log |γ(1)| = log |γ(0)| = Re(γ̃(0)).

(d) In the previous discussion the assumption that the loops are defined on
[0, 1] was of course just for convenience. One defines winding numbers for
loops defined of arbitrary compact subintervals of R in essentially the same
way as for loops on [0, 1].

Theorem 14.8. Let γ : [0, 1]→ C be a piecewise smooth loop and w ∈ C\γ∗.
Then

indγ(w) =
1

2πi

∫
γ

dz

z − w
.

Proof. By Theorem 14.5 (a) the path γ − w has a piecewise smooth lift γ̃.
Then

1

2πi

∫
γ

dz

z − w
=

1

2πi

∫ 1

0

γ′(t)

exp(γ̃(t))
dt =

1

2πi

∫ 1

0

γ̃′(t) dt

=
1

2πi
(γ̃(1)− γ̃(0)) = indγ(0).

Proposition 14.9. Let α, γ1, γ2 : [0, 1] → C be loops, and assume γ1(1) =
γ2(0).

(a) Define β : [0, 1] → C by β(t) = α(1 − t) for t ∈ [0, 1] (so β is the path
opposite to α). If z ∈ C \ α∗ = C \ β∗, then

indβ(z) = − indα(z).
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(b) Define γ : [0, 2]→ C by

γ(t) =

{
γ1(t) for t ∈ [0, 1],

γ2(t− 1) for t ∈ [1, 2].

If z ∈ C and z /∈ γ∗ = γ∗1 ∪ γ∗2 , then

indγ(z) = indγ1(z) + indγ2(z).

Proof. Without loss of generality z = 0.

(a) Let α̃ : [0, 1]→ C be a lift of α. Then β̃ : [0, 1]→ C, β̃(t) := α̃(1− t),
t ∈ [0, 1], is a lift of β̃, and so

indβ(0) =
1

2πi
(β̃(1)− β̃(0)) = − 1

2πi
(α̃(1)− α̃(0)) = − indα(z).

(b) First note that γ is a loop, because

γ(0) = γ1(0) = γ1(1) = γ2(0) = γ2(1) = γ(2).

Let γ̃1 be a lift of γ1. Then

γ̃1(1) ∈ exp−1(γ1(1)) = exp−1(γ2(0)),

and so there exists a lift γ̃2 : [0, 1]→ C of γ2 such that γ̃2(0) = γ̃1(1). Define

γ̃(t) =

{
γ̃1(t) for t ∈ [0, 1],

γ̃2(t− 1) for t ∈ [1, 2].

Then γ̃ is a lift of γ, and so

indγ(0) =
1

2πi
(γ̃(2)− γ̃(0)) =

1

2πi
(γ̃(2)− γ̃(1) + γ̃(1)− γ̃(0))

=
1

2πi
(γ̃2(1)− γ̃2(0)) +

1

2πi
(γ̃1(1)− γ̃1(0))

= indγ1(0) + indγ2(0).
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Definition 14.10. (a) Let U ⊆ C and γ0, γ1 : [0, 1] → U be loops in U .
We say that γ0 and γ1 are (loop-)homotopic in U , written γ0 ∼ γ1 in U , if
there exists a continuous map H : [0, 1] × [0, 1] → C such that H(·, 0) = γ0,
H(·, 1) = γ1, and such that Ht := H(·, t) is a loop for each t ∈ [0, 1] (i.e.,
H(0, t) = H(1, t) for all t ∈ [0, 1]).

(b) We say that a region Ω ⊆ C is simply connected if every loop γ in
Ω is null-homotopic in Ω, i.e., γ is loop-homotopic in Ω to a constant path
(written γ ∼ 0 in Ω).

A mapH as in (a) is called a loop-homotopy or simply a homotopy between
the loops γ0 and γ1.

Remark 14.11. (a) If Ω ⊆ C is a convex region, then it is simply connected.
To see this, let γ0 : [0, 1]→ Ω be a loop in Ω. Pick a point a ∈ Ω, and define

H(s, t) := (1− t)γ0(s) + ta

for s, t ∈ [0, 1]× [0, 1]. Then H is a loop-homotopy in Ω between γ0 and the
constant path s 7→ γ1(s) := a.

(b) One can show that a region Ω ⊆ C is simply connected if and only if

Ĉ \Ω is connected. The proof is surprisingly difficult and will be given later.

Theorem 14.12. Let γ0, γ1 : [0, 1]→ C be paths and z ∈ C\ (γ∗0 ∪γ∗1). Then
γ0 and γ1 are homotopic in C \ {z} if and only if

indγ1(z) = indγ2(z).

Proof. Without loss of generality we may assume that z = 0.

⇒: Suppose that there exists a homotopy H : [0, 1]× [0, 1]→ C∗ between
γ0 and γ1 in C∗ = C \ {z}. Then H(·, 0) = γ0, H(·, 1) = γ1, and γt :=
H(·, t) is a loop for each t ∈ [0, 1]. By Theorem 14.5 (b) there exists a lift

H̃ : [0, 1]× [0, 1]→ C of H. Then γ̃t := H̃(·, t) is a lift of γt for each t ∈ [0, 1].
Hence

indγt(0) =
1

2πi
(γ̃t(1)− γ̃t(0)) =

1

2πi
(H̃(1, t)− H̃(0, t)).

Since this is a continuous function of t with values in Z, it must be constant
on [0, 1]. It follows that indγ0(0) = indγ1(0) as desired.

⇐: Suppose that indγ0(0) = indγ1(0) =: k ∈ Z. Let γ̃0 : [0, 1] → C be a
lift of γ0 and γ̃1 : [0, 1]→ C be a lift of γ1. Then

γ̃0(1)− γ̃0(0) = γ̃1(1)− γ̃1(0) = 2πik.
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Define H : [0, 1]× [0, 1]→ C∗ by

H(s, t) := exp((1− t)γ̃0(s) + tγ̃1(s)), s, t ∈ [0, 1].

Then H is a homotopy between γ0 and γ1 in C∗; indeed, H is a continuous
map with image in C∗, H(·, 0) = exp(γ̃0) = γ0, and H(·, 1) = exp(γ̃1) = γ1.
Moreover, H(0, t) = H(1, t) for all t ∈ [0, 1], because

H(1, t)

H(0, t)
= exp

(
(1− t)(γ̃0(1)− γ̃0(0)) + t(γ̃1(1)− γ̃1(0))

)
= exp((1− t)2πik + t2πik) = exp(2πik) = 1.

Hence γ0 ∼ γ1 in C∗.

Corollary 14.13. Let Ω ⊆ C be a region. If γ : [0, 1] → Ω a loop that is
null-homotopic in Ω, then

indγ(z) = 0 for all z ∈ C \ Ω.

Note that the hypothesis of this implication, and hence also the conclu-
sion, is true for all loops γ in a simply connected region Ω.

Proof. Let γ be as in the statement and z ∈ C \ Ω be arbitrary. Then γ is
homotopic to constant path α in Ω, and hence also in C \ {z} ⊇ Ω. Then
by Theorem 14.12 we have indγ(z) = indα(z) = 0, where the last equality
immediately follows from the definitions.

Theorem 14.14. Let γ : [0, 1]→ C be a loop. Then the function z 7→ indγ(z)
is constant on each connected component of C \ γ∗, and equal to 0 on the
unique unbounded component of C \ γ∗.

Proof. The set C\γ∗ is open, and so a disjoint union of regions, the connected
components of C \ γ∗. Let D ⊆ C be a sufficiently large open disk with
γ∗ ⊆ D. Then C \ D ⊆ C \ γ∗ is connected and must lie in one of these
regions which is necessarily unbounded. All the other regions are contained
in D and hence bounded. So there exists precisely one of the connected
components of C \ γ∗ that is unbounded.

Suppose the region Ω is one of the components of C\γ∗, and let z0, z1 ∈ Ω
be arbitrary. Then there exists a path α : [0, 1] → Ω with α(0) = z0 and
α1(1) = z1 (see Theorem 2.31). Note that then α∗ ∩ γ∗ = ∅. Hence

(s, t) ∈ [0, 1]× [0, 1] 7→ H(s, t) := γ(s)− α(t)
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defines a homotopy between γ − z0 and γ − z1 in C∗. So by Theorem 14.12
we have

indγ(z0) = indγ−z0(0) = indγ−z1(0) = indγ(z1).

This shows that the map z 7→ indγ(z) is constant on each component of
C \ γ∗.

As above, let D ⊆ C be an open disk with γ∗ ⊆ D. Then D is convex,
and so also simply connected. By Corollary 14.13 we have indγ(z) = 0 for
all z ∈ C \D. By what we have seen, this implies that indγ(z) = 0 whenever
z lies in the unique unbounded component of C \ γ∗.



15 Global Cauchy theorems

Proposition 15.1. Let [a, b], [c, d] ⊆ R be compact intervals, and F : [a, b]×
[c, d]→ C be a continuous function. Then we have∫ b

a

(∫ d

c

F (x, y) dy

)
dx =

∫ d

c

(∫ b

a

F (x, y) dx

)
dy. (52)

Proof. This is a special case of Fubini’s well-known theorem in Measure The-
ory. One can easily prove this special case directly as follows.

Uniform continuity of F on R := [a, b]× [c, d] implies that the functions

x 7→
∫ d

c

F (x, y) dy and y 7→
∫ b

a

F (x, y) dx

are continuous on [a, b] and [c, d], respectively. So the integrals in (52) exist.
To establish the equality in (52) one first notes that this is true for a

constant function F . The case of an arbitrary continuous function F can
easily be derived from this: one subdivides R into small rectangles, and
approximates the integrals over F in (52) by sums of integrals of constant
functions over the rectangles in the subdivision of R.

Corollary 15.2. Let α, β : [0, 1]→ C be piecewise smooth paths, and G : α∗×
β∗ → C be continuous. Then we have∫

α

(∫
β

G(z, w) dw

)
dz =

∫
β

(∫
α

G(z, w) dz

)
dw.

Proof. By breaking α and β up into smaller paths if necessary, one may in
addition assume that α and β are smooth, and so have continuous derivatives
α′ and β′. The statement then immediately follows from Proposition 15.1
applied to the function

(x, y) ∈ [0, 1]× [0, 1] 7→ F (x, y) := G(α(x), β(y))α′(x)β′(y).

Proposition 15.3. Let γ : [0, 1]→ C be a piecewise smooth path, and f : γ∗ →
C be a continuous function. If we define

F (z) =

∫
γ

f(w)

w − z
dw for z ∈ U := C \ γ∗,

then F is holomorphic on U , and lim
|z|→∞

|F (z)| = 0.

122
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Proof. Note that for fixed z ∈ C \ γ∗, the function

w 7→ f(w)

w − z
is continuous on γ∗; so F (z) is defined.

To establish that F is holomorphic, we want to apply Morera’s Theorem
(see Theorem 7.13). For this we first show that F is continuous on U .

To see this, let z0 ∈ U be arbitrary. Then there exists r > 0 such that
|z0 − w| ≥ r for all w ∈ γ∗. Let z ∈ B(z0, r/2) ⊆ U be arbitrary. Then

|z − w| ≥ |w − z0| − |z − z0| ≥ r − r/2 = r/2

for w ∈ γ∗, and so

|F (z)− F (z0)| ≤
∣∣∣∣∫
γ

f(w)

(
1

w − z
− 1

w − z0

)
dw

∣∣∣∣
≤ `(γ) max

w∈γ∗
|f(w)| |z − z0|

|w − z| · |w − z0|

≤ |z − z0|
2

r2
`(γ) max

w∈γ∗
|f(w)|︸ ︷︷ ︸

=: M

= M |z − z0|.

This inequality implies that F is continuous at z0.
To verify the other hypothesis in Morera’s Theorem, let ∆ be an arbitrary

oriented triangle with ∆ ⊆ U = C \ γ∗. If w ∈ γ∗, then w 6∈ ∆, and so w lies
in the unbounded component of C \ ∂∆. So by Theorem 14.14 we have

ind∂∆(w) = 0 for w ∈ γ∗, (53)

where we consider ∂∆ as a loop (see Subsection 6.2).
Note that the function

(z, w) ∈ ∂∆× γ∗ 7→ f(w)

w − z
is continuous. Hence by Corollary 15.2 we have∫

∂∆

F (z) dz =

∫
∂∆

(∫
γ

f(w)

w − z
dw

)
dz =

∫
γ

(∫
∂∆

f(w)

w − z
dz

)
dw

= −
∫
γ

f(w)

(∫
∂∆

dz

z − w

)
dw

= −2πi

∫
γ

f(w) ind∂∆(w) dw = 0 (by Thm. 14.8 and (53)).



15 GLOBAL CAUCHY THEOREMS 124

The holomorphicity of F on U follows.
Finally, we have

|F (z)| =
∣∣∣∣∫
γ

f(w)

w − z
dw

∣∣∣∣ ≤ max
w∈γ∗
|f(w)| · `(γ)

dist(z, γ∗)
→ 0 as |z| → ∞.

15.4. Chains and cycles. Let Ω ⊆ C be an open set. A chain Γ in Ω is a
collection γ1, . . . , γn of paths in Ω where each of the paths γk has an integer
mk ∈ Z attached as a weight. We write symbolically

Γ = m1γ1 + · · ·+mnγn. (54)

The chain Γ is called a cycle in Ω if each of its path γ1, . . . , γn is a loop.
A chain or a cycle is called piecewise smooth if each of its paths has this
property. If Γ is as in (54), then we define the support of Γ as

Γ∗ := γ∗1 ∪ · · · ∪ γ∗n ⊆ C.

If Γ is piecewise smooth chain, and f : Γ∗ → C is continuous, we define∫
Γ

f(z) dz = m1

∫
γ1

f(z) dz + · · ·+mn

∫
γn

f(z) dz.

If Γ is a cycle and z ∈ C \ Γ∗, we define the index of Γ with respect to the
point z as

indΓ(z) = m1 indγ1(z) + · · ·+mn indγn(z).

Definition 15.5. Let Ω be an open subset of C. A cycle Γ in Ω is called
null-homologous in Ω if indΓ(z) = 0 for all z ∈ C \ Ω.

Example 15.6. If γ is a null-homotopic loop in an open set Ω ⊆ C, then
the cycle Γ = γ is null-homologous in Ω. This follows from Corollary 14.13.
In particular, every loop in a simply connected region is null-homologous.

More generally, if Γ = m1γ1+· · ·+mnγn is any cycle in a simply connected
region Ω ⊆ C, then Γ is null-homologous in Ω; indeed, by Corollary 14.13 for
all z ∈ C \ Ω we have

indΓ(z) = m1 indγ1(z)︸ ︷︷ ︸
=0

+ · · ·+mn indγn(z)︸ ︷︷ ︸
=0

= 0.
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Theorem 15.7 (Cauchy’s Theorem). Let Ω ⊆ C be open, f : Ω → C be
a holomorphic function, and Γ be a piecewise smooth cycle that is null-
homologous in Ω (i.e., indΓ(z) = 0 for all z ∈ C \ Ω).

Then

indΓ(z) · f(z) =
1

2πi

∫
Γ

f(w)

w − z
dw (Cauchy’s Integral Formula) (55)

for all z ∈ Ω \ Γ∗, and∫
Γ

f(z) dz = 0 (Cauchy’s Integral Theorem). (56)

Proof. We will prove (55) first. Define g : Ω× Ω→ C for (z, w) ∈ Ω× Ω as

g(z, w) =


f(w)− f(z)

w − z
if z 6= w,

f ′(z) if z = w.

Then g is continuous on Ω× Ω (exercise!), and so we can define

h(z) =
1

2πi

∫
Γ

g(z, w) dw for z ∈ Ω.

Then (55) is equivalent to the statement

h(z) = 0 for all z ∈ Ω \ Γ∗. (57)

To see this, we first want to show that h is holomorphic on Ω. Again we apply
Morera’s Theorem. First note that h is continuous on Ω as easily follows from
the uniform continuity of g on compact subsets of Ω× Ω (exercise!). If ∆ is
an arbitrary closed oriented triangle in Ω, then by Corollary 15.2 we have∫

∂∆

h(z) dz =
1

2πi

∫
∂∆

(∫
Γ

g(z, w) dw

)
dz

=
1

2πi

∫
Γ

(∫
∂∆

g(z, w) dz︸ ︷︷ ︸
=0

)
dw = 0.

Here we used Goursat’s Lemma (see Theorem 6.3) and the fact that the
function z 7→ g(z, w) is holomorphic on Ω for each fixed w ∈ Ω (exercise!).
We conclude that h ∈ H(Ω).
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Let Ω̃ ⊆ C \ Γ∗ be the set of all z ∈ C \ Γ∗ for which indΓ(z) = 0. The

set Ω̃ is open, because z 7→ indΓ(z) is a locally constant function (as follows

from Theorem 14.14). Moreover, C \ Ω ⊆ Ω̃ by our assumption that Γ is
null-homologous in Ω. Define

h̃(z) =
1

2πi

∫
Γ

f(w)

w − z
dw for z ∈ Ω̃.

Then h ∈ H(Ω̃) by Proposition 15.3, and

h(z) = h̃(z) for all z ∈ Ω ∩ Ω̃.

So if we define

F (z) =

{
h(z) for z ∈ Ω,

h̃(z) for z ∈ Ω̃,

then h is well-defined, and F is holomorphic on Ω ∪ Ω̃ = C. So F is an
entire function. Note that a point z ∈ C with |z| sufficiently large lies in

the unbounded component of Γ∗. Then z ∈ Ω̃ by Theorem 14.14, and so by
Proposition 15.3 we have

|F (z)| = |h̃(z)| =
∣∣∣∣ 1

2πi

∫
Γ

f(w)

w − z
dz

∣∣∣∣→ 0 as |z| → ∞.

As follows from Liouville’s Theorem, we must have F ≡ 0; so we have (57)
which implies (55).

One easily derives Cauchy’s Integral Theorem from this by applying (55)
to the function g ∈ H(Ω) given by g(z) = (z − z0)f(z), where z ∈ Ω and z0

is a fixed point in Ω \ Γ∗; indeed,∫
Γ

f(w) dw =

∫
Γ

g(w)

w − z0

dw = indΓ(z0) · g(z0) = 0.

Corollary 15.8. Let Ω ⊆ C be a simply connected region, f ∈ H(Ω), and γ
be a piecewise smooth loop in Ω. Then∫

γ

f(z) dz = 0. (58)
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Moreoer, if α and β are two piecewise smooth paths in Ω with the same
endpoints, then ∫

α

f(z) dz =

∫
β

f(z) dz. (59)

Proof. The loop γ is null-homotopic in Ω, and so null-homologous in Ω.
Hence (58) follows from Cauchy’s Integral Theorem. If β̃ is the path opposite

to β, then we get a loop σ by first running through α and then through β̃.
So by the first part of the proof we have

0 =

∫
σ

f =

∫
α

f +

∫
β̃

f =

∫
α

f −
∫
β

f.

Corollary 15.9. Let Ω ⊆ C be a simply connected region.

(a) Every holomorphic function f : Ω→ C has a primitive F ∈ H(Ω).

(b) Every zero-free holomorpic function f : Ω→ C has a holomorphic log-
arithm L ∈ H(Ω) (i.e., f = eL) (and so a holomorphic square root
S = eL/2 and other n-th roots).

Proof. (a) Fix a ∈ Ω. If z ∈ Ω is arbitrary, then there exists a piecewise
smooth path α in Ω joining a and z. Define

F (z) =

∫
α

f(w) dw.

Then F is well-defined by Corollary 15.8. If z′ is close to z, then we have

F (z′) =

∫
α

f(w) dw +

∫
[z,z′]

f(w) dw,

and so
F (z′)− F (z)

z′ − z
=

1

z′ − z

∫
[z,z′]

f(w) dw.

Similarly as in the proof of Corollary 6.4 this implies that F ′(z) exists and
F ′(z) = f(z).

(b) One can construct a logarithm L of f by considering a primitive of
f ′/f ∈ H(Ω).
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Remark 15.10. There are other important facts about simply connected
regions in C; for example, we have the Riemann Mapping Theorem: if Ω ⊆ C
is a simply connected region with Ω 6= C, then there exists a conformal map
from Ω onto D. We will prove this later in this course.



16 Isolated singularities

Definition 16.1. Let U ⊆ C be open, and a ∈ U . If f ∈ H(U \ {a}), then
f is said to have an isolated singularity at a. The singularity is called

(i) removable if the function f can be extended to a such that the extended
function is holomorphic on U , i.e., if there exists g ∈ H(U) such that
f = g|U \ {a},

(ii) a pole if lim
z→a
|f(z)| =∞,

(iii) an essential singularity if it is neither removable nor a pole.

So each isolated singularity is either removable, a pole, or an essential
singularity. These cases are mutually exclusive.

Example 16.2. The following functions f are defined and holomorphic on
C \ {0}; so they have 0 as an isolated singularity.

(a) f(z) = (ez − 1)/z. Then 0 is a removable singularity for f ; indeed,

f(z) =
ez − 1

z
=
∞∑
n=1

zn−1

n!
=
∞∑
n=0

zn

(n+ 1)!
.

The last power series converges for all z ∈ C, and so it represents an entire
function that gives a holomorphic extension of f to the whole complex plane.

(b) f(z) = 1/z2. Then 0 is a pole of f , because |f(z)| =
1

|z|2
→ ∞ as

z → 0.
(c) f(z) = e1/z. Then 0 is an isolated singularity of f ; indeed, if zn := 1/n,

then zn → 0 and f(zn) = en → ∞ as n → ∞; so 0 is not removable. But 0
is not a pole of f either: if zn = −1/n, then z′n → 0 and f(z′n) = e−n → 0 as
n→∞.

Theorem 16.3. Let U ⊆ C be open, a ∈ U , and f ∈ H(U \ {a}). Then the
isolated singularity a of f is removable if and only if f is bounded near a,
i.e., there exists r > 0 and M ≥ 0 such that B(a, r) ⊆ U and |f(z))| ≤ M
for all z ∈ B(a, r) \ {a}.

129
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Proof. ⇒: This is the easy implication. If a is removable, then f has a
holomorphic, and in particular continuous, extension to a; so lim

z→a
f(z) exists

which implies that f is bounded near a.

⇐: Suppose that f is bounded near a. Define

g(z) =

{
0 for z = a,

(z − a)2f(z) for z ∈ U \ {a}.

Then

lim
z→a

g(z)− g(a)

z − a
= lim

z→a
f(z)(z − a) = 0.

So g is differentiable at a = 0, and g′(a) = 0. Obviously, g is also differen-
tiable at each point z ∈ U \ {a}. Hence g ∈ H(U), and so g has a power
series expansion

g(z) =
∞∑
n=0

cn(z − a)n

near a. Here cn = g(n)(a)/n! are the Taylor coefficients of g at a. Since
g(a) = 0 = g′(a), we have c0 = c1 = 0. This implies that

f(z) =
∞∑
n=2

cn(z − a)n−2 =
∞∑
n=0

cn+2(z − a)n

is represented by a power series near a. This shows that f can be holomor-
phically extended to a by setting f(a) := c2.

Theorem 16.4. Let U ⊆ C be open, a ∈ U , and f ∈ H(U \ {a}). If a is
a pole of f , then there exists a unique number m ∈ N (called the order or
multiplicity of the pole), and a unique function g ∈ H(U) with g(a) 6= 0 such
that

f(z) =
1

(z − a)m
g(z) for z ∈ U \ {a}. (60)

If f has a pole of order m at a, then there exist unique numbers A1, . . . , Am ∈
C, Am 6= 0, and a unique function h ∈ H(U) such that

f(z) =
Am

(z − a)m
+ · · ·+ A1

(z − a)
+ h(z) for z ∈ U \ {a}. (61)
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The expression

P (z) :=
Am

(z − a)m
+ · · ·+ A1

(z − a)

is called the principal or singular part of the pole a of f .

Proof. Since |f(z)| → ∞ as z → a, the function f has no zeros near a. So
the function z 7→ 1/f(z) is defined in a punctured neighborhood of a and
holomorphic there; since

lim
z→a

1

f(z)
= 0,

this function has a removable singularity at a by Theorem 16.3. So there
exists a function u that is holomorphic near a such that u(a) = 0, and
u = 1/f in a punctured neighborhood of a.

Let m ∈ N be the order of the zero at a (note that u 6≡ 0); then there
exists a function v that is holomorphic near a such that v(a) 6= 0 and

u(z) = (z − a)mv(z) for z near a.

Then

f(z) =
1

(z − a)mv(z)
for z near a, z 6= a.

If we define

g(z) =

{
1/v(z) for z near a,

f(z)(z − a)m for z elsewhere in U ,

then g ∈ H(U), g(a) = 1/v(a) 6= 0, and (60) is true.
The function g has a power series representation

g(z) =
∞∑
n=0

an(z − a)n = a0 + · · ·+ am−1(z − a)m−1 + (z − a)mh(z)

near a, where a0 = g(a) 6= 0, and h ∈ H(U). Dividing by (z− a)m we obtain
(61) with Ak = am−k for k = 1, . . . ,m.

The uniqueness statements are straightforward to prove. For example,
suppose that

Am
(z − a)m

+ · · ·+ A1

(z − a)
+ h(z) = f(z) =

Bm

(z − a)m
+ · · ·+ B1

(z − a)
+ h̃(z)
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for z near a, z 6= a, where B1, . . . , Bm ∈ C, and h̃ ∈ H(U). Then one

successively proves Am = Bm, . . . , A1 = B1, h = h̃; indeed, letting z → a in
the identity

Am −Bm = (Bm−1 − Am−1)(z − a) + . . .

+ (B1 − A1)(z − a)m−1 + (h(z)− h̃(z))(z − a)m,

we obtain Am −Bm = 0, etc.

Example 16.5 (Rational functions). Let R be a non-constant rational func-
tion written as

R(z) =
P (z)

Q(z)

where P and Q are polynomials, P,Q 6= 0. Every zero a of Q is an isolated
singularity of R. We can write

P (z) = (z − a)kP̃ (z) and Q(z) = (z − a)lQ̃(z),

where k ∈ N0, l ∈ N, P̃ and Q̃ are polynomials, and P̃ (a), Q̃(a) 6= 0. Then

P (z)

Q(z)
= (z − a)k−l

P̃ (z)

Q̃(z)
,

and so a is removable if k ≥ l, and a pole if k < l. By dividing out common
factors of P and Q one can assume that R has no removable singularities.
Then the only singularities of R are possible poles a ∈ C (which are always
present unless R is a polynomial). If P and Q have no common factor, then
the zeros a of Q are precisely the poles of R.

One can obtain a partial fraction decomposition of R as follows. By di-
viding P by Q with remainder, we can write R in the form

R(z) =
P (z)

Q(z)
= S(z) +

T (z)

Q(z)
,

where S and T are polynomials, and deg(T ) < deg(Q) or T = 0. Let us
assume that T 6= 0, because otherwise R is a polynomial, and that T and Q
have no common zeros (otherwise we can cancel common factors). Then the
zeros a of Q are precisely the poles of T/Q. Let pa the denote the principal
part of the pole of T/Q at a; then the function

z 7→ T (z)

Q(z)
−

∑
a zero of Q

pa(z)
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is holomorpic on C except for finitely many removable singularities corre-
sponding to the zeros of Q; so one can consider it as an entire function.
Moreover, it tends to 0 as |z| → ∞. Hence by Liouville’s Theorem this
function must be identical 0.

The conclusion is that every rational function R can be written as

R(z) = S(z) +
n∑
k=1

mk∑
l=1

Akl
(z − ak)l

(partial fraction decomposition),

where S is a polynomial, n ∈ N0, a1, . . . , an ∈ C are the poles of R with
their respective orders m1, . . . ,mn ∈ N, and the numbers Akl ∈ C, l =
1, . . . ,mk, are coefficients associated with the principal part of each pole ak,
k = 1, . . . , n.

Similar considerations show that every holomorphic map R : Ĉ → Ĉ is
a rational function (including constant functions, possibly identical equal to

∞ ∈ Ĉ). To see this, one may assume that R is non-constant, and that
R(∞) = 0 (otherwise one considers R composed with a suitable Möbius
transformation). Then the Uniqueness Theorem implies that R−1(∞) is a
finite subset of C. Each point in R−1(∞) is a pole of R. Then one substracts
principal parts, applies Liouville’s Theorem, etc.

Theorem 16.6 (Casorati-Weierstrass). Let U ⊆ C be open, a ∈ U , and
f ∈ H(U \ {a}). Suppose that a is an essential singularity of f . Then for
all δ > 0 such that B(a, δ) ⊆ U , the set f(B(a, δ) \ {a}) is dense in C, i.e.,
f(B(a, δ) \ {a}) = C.

Proof. Suppose not. Then there exists δ > 0 such that B(a, δ) ⊆ U and
A := f(B(a, δ) \ {a}) 6= C. Then the set C \ A is open and non-empty, and
so we can pick a point w ∈ C \ A. Moreover, there exists ε > 0 such that

|f(z)− w| ≥ ε for all z ∈ B(a, δ) \ {a}.

Now define

g(z) =
1

f(z)− w
for z ∈ B(a, δ) \ {a}.

Then g ∈ H(B(a, δ) \ {a}) and |g| ≤ 1/ε. By Theorem 16.3 the function g
has a removable singularity at a; so the definition of g can be extended to a
such that g ∈ H(B(a, δ)). We can write g in the form

g(z) = (z − a)mg̃(z),
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where m ∈ N0, g̃ ∈ H(B(a, δ)), and g̃(a) 6= 0. Then

f(z) = w +
1

g(z)
= w +

1

(z − a)mg̃(z)

for z near a. This shows that a is a removable singularity (if m = 0) or
a pole (if m > 0) of f , contradicting our hypothesis that a is an essential
singularity.

Remark 16.7. (a) Another version of the Casorati-Weierstrass Theorem is
the following statement: if f is a non-constant entire function, then f(C) is
dense in C. The proof is very similar. Again one argues by contradiction,
and defines an auxilary function g as in the previous proof. Then one invokes
Liouville’s Theorem to conclude that g is constant, and hence also f . This
gives the desired contradiction.

Alternatively, one can analyze the singularity at a = ∞ by considering
z 7→ h(z) = f(1/z) which has an isolated singularity at 0; this singularity
can only be a pole or an essential singularity. In the first case f must be a
polynomial, and we have f(C) = C as follows from the Fundamental Theorem
of Algebra. In the second case, where 0 is an essential singularity of h,
the statement f(C) = C follows from the above version of the Casorati-
Weierstrass Theorem.

(b) One can actually prove much stronger statements: if f is as in The-
orem 16.6, then there exists w0 ∈ C such that for all small δ > 0 we have
C \ {w0} ⊆ f(B(a, δ) \ {a}). So in every neighborhood of the essential
singularity a the function f attains every value with at most one exception.
This is known as Picard’s “Big” Theorem.

Similarly, if f is a non-constant entire function, then there exists w0 ∈ C
such that C \ {w0} ⊆ C, and so f attains every value with at most one
exception (Picard’s “Little” Theorem).

These theorems will be proved later in this course.

Definition 16.8 (Doubly infinite series). If cn ∈ C are numbers indexed
by n ∈ Z, then we associate with them a doubly infinite series, denoted by
∞∑

n=−∞

cn or
∑
n∈Z

cn. The series is said to converge if the infinite series
∞∑
n=0

cn

and
−1∑

n=−∞

cn :=
∞∑
n=1

c−n both converge. In this case,
∞∑

n=−∞

cn also denotes the
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limit
∞∑
n=0

cn +
−1∑

n=−∞

cn, i.e.,
∞∑

n=−∞

cn = lim
N→∞

N∑
n=0

cn + lim
M→∞

−1∑
n=−M

cn.

The series
∞∑

n=−∞

cn is said to be absolutely convergent if
∞∑

n=−∞

|cn| con-

verges.

Remark 16.9. If
∞∑

n=−∞

cn converges, then c±n → 0 as n→∞, and
∞∑

n=−∞

cn =

lim
N→∞

N∑
n=−N

cn. Note that the existence of the last limit does not imply the

convergence of
∞∑

n=−∞

cn. For example,
∞∑

n=−∞

n does not converge, but the

limit lim
N→∞

N∑
n=−N

n = 0 exists.

Definition 16.10 (Laurent series). A Laurent series is a doubly infinite

series of the form
∞∑

n=−∞

an(z−z0)n, where an ∈ C for n ∈ Z are the coefficients

of the series and z0 ∈ C its center, and z ∈ C is a variable point on which
the convergence of the Laurent series will depend in general.

We say that the Laurent series converges uniformly on a set M ⊆ C

if both series
−1∑

n=−∞

an(z − z0)n and
∞∑
n=0

an(z − z0)n converge uniformly for

z ∈M .

Remark 16.11. For every Laurent series
∞∑

n=−∞

an(z − z0)n there exists an

annulus
A = {z ∈ C : R1 < |z − z0| < R2},

where R1, R2 ∈ [0,∞], such that the series converges on A and represents a
holomorphic series on A, and diverges in the exterior of A (= C \ A). The
set A may be empty, and for z ∈ ∂A the series may converge or diverge.
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To see this, note that

∞∑
n=−∞

an(z − z0)n =
∞∑
n=1

a−n

(
1

z − z0

)n
︸ ︷︷ ︸

f1(z)

+
∞∑
n=0

an(z − z0)n︸ ︷︷ ︸
f2(z)

.

Let R1 := 1/R̃1 ∈ [0,∞], where R̃1 ∈ [0,∞] is the radius of convergence of

the power series
∞∑
n=1

a−nw
n. Then the series f1(z) converges if

|w| = 1

|z − z0|
< R̃1 ⇔ |z − z0| >

1

R̃1

= R1;

similarly, f1(z) diverges if |z − z0| < R1.
If R2 ∈ [0,∞] denotes the radius of convergence of f2(z), then we see that

the Laurent series converges on the annulus A as defined above, and diverges
in the exterior of A. Moreover, on A both f1(z) and f2(z) are holomorphic,
which implies that the Laurent series represents a holomorphic function on
A.

The convergence properties of power series imply that the Laurent series
converges uniformly on compact subsets of A. In particular, if γ is a piecewise
smooth path such that the compact set γ∗ is contained in A, then the path
integral of the Laurent series over the path γ can be obtained by integrating
term-by-term.

Theorem 16.12. Let R1, R2 ∈ [0,∞], R1 < R2, and

A := {z ∈ C : R1 < |z − z0| < R2}.

If f ∈ H(A), then there exists a Laurent series converging on A such that

f(z) =
∞∑

n=−∞

an(z − z0)n for z ∈ A. (62)

Let R1 < r < R2, and γ(t) = z0 + reit, t ∈ [0, 2π]. If f has a Laurent series
representation as in (62), then

an =
1

2πi

∫
γ

f(w)

(w − z0)n+1
dw for n ∈ Z. (63)
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This formula for the coefficients implies that the Laurent series in (62) is
uniquely determined. So every holomorphic function f on an annulus A has
a unique Laurent series representation converging on A.

In particular, if z0 is an isolated singularity of f , then there exists a unique
Laurent series representation of f in a punctured neighborhood of z0.

Proof. Uniqueness: If f has a representation as in (62), then the Laurent
series converges uniformly on the compact subset γ∗ of A. Hence for all
n ∈ Z, we can evaluate the integral in (63) by integrating term-by-term:

1

2πi

∫
γ

f(w)

(w − z0)n+1
dw =

1

2πi

∫
γ

( ∞∑
k=−∞

ak(w − z0)k−n−1

)
dw

=
1

2πi

∞∑
k=−∞

ak

∫
γ

(w − z0)k−n−1 dw︸ ︷︷ ︸
=0 for k 6=n

=
1

2πi
an

∫
γ

(w − z0)−1 dw =
1

2πi
an · 2πi = an.

Existence: If we define an as in (63), then the Laurent series in (62)
converges for z ∈ A, and represents f on A. To see this, let z ∈ A be
arbitrary. We can choose r1, r2 ∈ (0,∞) with

R1 < r1 < |z − z0| < r2 < R2,

and define γ1(t) = z0 + r1e
it and γ2(t) = z0 + r2e

it for t ∈ [0, 2π]. We define
the cycle Γ as Γ = γ2 − γ1. Then indΓ(u) = 0 for u ∈ C \ A, and so Γ is
null-homologous in A. Moreover, indΓ(z) = 1, and so by Cauchy’s Integral
Formula we have

f(z) =
1

2πi

∫
Γ

f(w)

w − z
dw

=
1

2πi

∫
γ2

f(w)

w − z
dw︸ ︷︷ ︸

=:f2(z)

− 1

2πi

∫
γ1

f(w)

w − z
dw︸ ︷︷ ︸

=:f1(z)

. (64)
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In the same way as in the proof of Theorem 7.1, for w ∈ γ∗2 one writes

f(w)

w − z
=

f(w)

(w − z0)− (z − z0)
=

f(w)

(w − w0)
· 1

1− (z − z0)

(w − w0)

=
∞∑
n=0

(z − z0)n · f(w)

(w − w0)n+1
,

and notes that the convergence of the last series in uniform for w ∈ γ∗2 ; this
follows from

|z − z0|
|w − w0|

=
|z − z0|
r2

< 1 for w ∈ γ∗2

and the Weierstrass M -test. By integrating term-by-term we conclude that

f2(z) =
1

2πi

∫
γ2

f(w)

w − z
dw =

∞∑
n=0

bn(z − z0)n, (65)

where

bn =
1

2πi

∫
γ2

f(w)

(w − z0)n+1
dw for n ∈ N.

To show that bn = an, we want to shift the integration to γ in these
integrals. Note that the cycle γ2 − γ is null-homologous in A, and that the

function w 7→ f(w)

(w − z0)n+1
is holomorphic on A for each n ∈ N. So Cauchy’s

Integral Theorem implies

0 =

∫
γ2−γ

f(w)

(w − z0)n+1
dw = 2πi(bn − an).

So from (65) we conclude that

f2(z) =
∞∑
n=0

an(z − z0)n. (66)

In a similar way one shows that

f1(z) = −
−1∑

n=−∞

an(z − z0)n. (67)
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Indeed, for w ∈ γ∗1 we have

f(w)

w − z
=

f(w)

(w − z0)− (z − z0)
= − f(w)

(z − z0)
· 1

1− (w − z0)

(z − z0)

= −
∞∑
n=0

(w − z0)n · f(w)

(z − w0)n+1

= −
−1∑

n=−∞

(z − z0)n · f(w)

(w − w0)n+1
,

and the convergence is uniform on γ∗1 . Integrating term-by-term and shifting
the path γ1 in the integrals to γ based on a similar argument as before, one
obtains (67).

By combining (67), (66), and (64), we obtain (62).

Theorem 16.13. Let U ⊆ C be open, z0 ∈ U , f ∈ H(U \ {z0}), and

f(z) =
∞∑

n=−∞

an(z − z0)n

be the unique Laurent series expansion of f converging in a punctured neigh-
borhood of z0. Then z0 is

(i) removable if and only if a−n = 0 for all n ∈ N,

(ii) a pole of order m ∈ N if and only if a−m 6= 0 and a−n = 0 for all n ∈ N,
n ≥ m+ 1,

(iii) an essential singularity if and only if a−n 6= 0 for infinitely many n ∈ N.

In other words, the nature of the isolated singularity can be determined

from considering the singular or principal part
−1∑

n=−∞

an(z−z0)n of the isolated

singularity z0. For a pole this notion of principal part agrees with our previous
definition.
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Proof. (i) z0 is removable iff f has a power series expansion near z0 iff the
negative powers of z − z0 in the Laurent series expansion of f are equal to 0
(by the uniqueness of the Laurent series) iff a−n = 0 for all n ∈ N.

(ii) z0 is a pole of order m iff

f(z) =
1

(z − z0)m

∞∑
n=0

bn(z − z0)n near z0

where the power series is convergent near z0 and b0 6= 0 iff

f(z) =
∞∑

n=−m

an(z − z0)n near z0, where a−m 6= 0.

(iii) z0 is an essential singularity iff z0 is neither removable nor a pole iff
a−n 6= 0 for infinitely many n ∈ N.

Example 16.14. Let f(z) =
1

(z − 2)(z − 3)
. Then f ∈ H(C\{2, 3}). What

is the Laurent series expansion of f on A := {1 < |z − 1| < 2} ⊆ C \ {2, 3}?
We first find the partial fraction decomposition of f which must have the

form
1

(z − 2)(z − 3)
=

A

z − 2
+

B

z − 3
.

By multiplying with the denominator of the left-hand side we obtain

1 = A(z − 3) +B(z − 2) = (A+B)z − (3A+ 2B).

By comparing coefficients we get

A+B = 0 and 3A+ 2B = −1

which implies A = −1 and B = 1. So for z ∈ A we have

f(z) =
1

z − 3
− 1

z − 2
=

1

(z − 1)− 2
− 1

(z − 1)− 1

= −1

2
· 1

1− (z − 1)

2

− 1

(z − 1)
· 1

1− 1

(z − 1)

= −1

2

∞∑
n=0

1

2n
(z − 1)n −

∞∑
n=1

1

(z − 1)n
=

∞∑
n=−∞

an(z − 1)n,
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where

an =

{
−1/2n+1 for n ≥ 0,
−1 for n < 0.

Remark 16.15. If U is an open subset of a Riemann surface, a ∈ U , and
f : U \ {a} → C is a holomorphic function, then one calls a an isolated
singularity of f . One defines a removable singularity, a pole, or an essential
singularity in the same way as in Definition 16.1. By using local charts near
a one can actually treat this situation in the same way as for functions with
isolated singularities in C, and prove analogs of Theorems 16.3, 16.4, and
16.6.

An important special case is when f is a holomorphic function defined
in a punctured neighborhood of ∞ on the Riemann sphere. Then ∞ is an
isolated singularity of f ; its type is the same as the type of the isolated
singularity 0 of the map z 7→ f(1/z). For example, if f is a non-constant
polynomial, then ∞ is a pole of f whose order is equal to the degree of the
polynomial.



17 The Residue Theorem

Definition 17.1. Let U ⊆ C be open, z0 ∈ U , f ∈ H(U \ {z0}), and

f(z) =
∞∑

n=−∞

an(z − z0)n

be the unique Laurent series expansion of f converging in a punctured neigh-
borhood of z0. Then the coefficient a−1 is called the residue of f at z0 and
denoted by Res(f, z0).

Proposition 17.2. Let U ⊆ C be open, z0 ∈ U , and f ∈ H(U \ {z0}). If f
has a pole of order at most m ∈ N at z0, then

Res(f, z0) =
1

(m− 1)!

dm−1

dzm−1

(
(z − z0)mf(z)

)∣∣∣∣
z=z0

. (68)

Proof. Near z0 we have f(z) =
1

(z − z0)m
g(z), where g is holomorphic; in

particular, z 7→ (z− z0)mf(z) = g(z) has a holomorphic extension to z = z0,
and it is understood that one uses this holomorphic extension to evaluate the
right-hand side of (68).

Now near z0 the function g has a power series representation

g(z) =
∞∑
n=0

bn(z − z0)n;

so Res(f, z0) = bm−1 =
1

(m− 1)!
g(m−1)(z0).

Theorem 17.3 (Residue Theorem). Let Ω ⊆ C be an open set, a1, . . . , an ∈
Ω be distinct points, and f ∈ H(Ω \ {a1, . . . , am}). Suppose Γ is a piecewise
smooth cycle in Ω that is null-homologous in Ω and for which a1, . . . , am 6∈ Γ∗.
Then ∫

Γ

f(z) dz = 2πi
m∑
k=1

indΓ(ak) · Res(f, ak). (69)

142
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Proof. We can find a small number r > 0 such that the disks B(ak, r),
k = 1, . . . ,m, are pairwise disjoint, do not meet Γ∗, and lie in Ω. Define
γk(t) = ak + reit for t ∈ [0, 2π], and

Γ̃ = Γ− indΓ(a1)γ1 − · · · − indΓ(am)γm.

Then Γ̃ is a piecewise smooth cycle in Ω̃ := Ω \ {a1, . . . , am}. For z ∈ C \ Ω
we have

indΓ̃(z) = indΓ(z) = 0;

moreover, if k ∈ {1, . . . ,m}, then

indΓ̃(ak) = indΓ(ak)− indΓ(ak) · indγk(ak)︸ ︷︷ ︸
=1

= 0.

Hence Γ̃ is null-homologous in Ω̃. Since f is holomorphic on Ω̃, it follows
from Cauchy’s Integral Theorem that∫

Γ̃

f(z) dz =

∫
Γ

f(z) dz −
m∑
k=1

indΓ(ak) ·
∫
γk

f(z) dz = 0. (70)

Now if k ∈ {1, . . . ,m} is fixed and
∞∑

n=−∞

cn(z − ak)
n is the Laurent series

representation of f near ak, then this Laurent series converges uniformly for
z ∈ γ∗k. Hence∫

γk

f(z) dz =
∞∑

n=−∞

cn

∫
γk

(z − ak)n dz = 2πic−1 = 2πiRes(f, ak).

From this and (70), the relation (69) follows.

Remark 17.4. In the proof of Theorem 15.7 we derived Cauchy’s Integral
Theorem from Cauchy’s Integral Formula. In the previous argument we used
Cauchy’s Integral Theorem for the proof of the Residue Theorem. One can
complete the circle by noting that the Residue Theorem implies Cauchy’s
Integral Formula. Actually, if the assumptions are as in Theorem 15.7, then

indΓ(z)
f (n)(z)

n!
=

1

2πi

∫
Γ

f(w)

(w − z)n+1
dw (71)
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for all z ∈ Ω \ Γ∗ and n ∈ N0. This immediately follows from the Residue
Theorem by noting that for n ∈ N0 the function

gn(w) :=
f(w)

(w − z)n+1

is holomorphic on H(U \ {z}) and has a pole of order at most n+ 1 at z; so

Res(gn, z) =
1

n!

dn

dwn

(
(w − z)n+1gn(w)

)∣∣∣∣
w=z

=
f (n)(z)

n!
.

The Residue Theorem is a very powerful tool for the computation of
certain integrals.

Example 17.5. I :=

∫ 2π

0

dt

10 + 8 cos t
. To compute this integral, we let

z = γ(t) := eit for t ∈ [0, 2π], and convert I into an path integral over
the loop γ. So we want to perform the usual substitution backwards. Here
(symbolically)

dz = ieit dt = iz dt and so dt =
dz

iz
.

Moreover, cos t =
1

2
(eit + e−it) =

1

2

(
z +

1

z

)
, which gives

I =

∫ 2π

0

dt

10 + 8 cos t
=

∫
γ

1

10 + 4(z + 1/z)
· dz
iz

=
1

i

∫
γ

dz

4z2 + 10z + 4
.

Now
4z2 + 10z + 4 = 4(z + 1/2)(z + 2).

The function f(z) :=
1

(z + 1/2)(z + 2)
is holomorphic on C except for two

poles of order 1 at −1/2 and −2. So by the Residue Theorem,

I =
1

4i

∫
γ

dz

(z + 1/2)(z + 2)

=
2πi

4i

(
indγ(−1/2)︸ ︷︷ ︸

=1

·Res(f,−1/2) + indγ(−2)︸ ︷︷ ︸
=0

·Res(f,−2)
)

=
π

2
· 1

z + 2

∣∣∣∣
z=−1/2

=
π

2
· 1

3/2
=
π

3
.



17 THE RESIDUE THEOREM 145

Example 17.6.

I :=

∫ ∞
0

dx

(x2 + 1)(x2 + 4)
= lim

R→∞

∫ R

0

dx

(x2 + 1)(x2 + 4)
.

Then I is a convergent improper integral, and so the last limit exists (which
also follows from the argument below).

For fixed R > 0 define αR(t) = t for t ∈ [−R,R], βR(t) = Reit for
t ∈ [0, π], and γR = αR + βR (where this chain is considered as a loop
obtained from concatenating αR and βR). Note that

(z2 + 1)(z2 + 4) = (z + i)(z − i)(z + 2i)(z − 2i).

So the rational function f(z) =
1

(z2 + 1)(z2 + 4)
has four poles of order 1 at

±i and ±2i. For R > 2 we have

indγR(i) = indγR(2i) = 1 and indγR(−i) = indγR(−2i) = 0.

The Residue Theorem implies that∫
γR

f(z) dz = 2πiRes(f, i) + 2πiRes(f, 2i)

= 2πi · 1

(z + i)(z2 + 4)

∣∣∣∣
z=i

+2πi · 1

(z2 + 1)(z + 2i)

∣∣∣∣
z=2i

=
2πi

2i · 3
+

2πi

−3 · 4i
=
π

3
− π

6
=
π

6
.

Now ∫
αR

f(z) dz =

∫ R

−R

dx

(x2 + 1)(x2 + 4)
= 2

∫ R

0

dx

(x2 + 1)(x2 + 4)
,

and ∣∣∣∣∫
βR

f(z) dz

∣∣∣∣ ≤ `(βR) ·max
z∈β∗R

1

|z2 + 1| · |z2 + 4|

≤ πR

(R2 − 1)(R2 − 4)
→ 0 as R→∞.
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It follows that

I = lim
R→∞

∫ R

0

dx

(x2 + 1)(x2 + 4)
=

1

2
lim
R→∞

∫
αR

f(z) dz

=
1

2
lim
R→∞

(∫
γR

f(z) dz −
∫
βR

f(z) dz

)
=

π

12
− 1

2
lim
R→∞

∫
βR

f(z) dz =
π

12
.

Example 17.7.

I :=

∫ ∞
0

dx√
x (x+ 1)(x+ 2)

.

This is an improper integral for both integral limits 0 and ∞. It is easy to
see that it converges. One can compute I by making the substitution x = u2

and using the method from Example 17.6.
We want to evaluate I based on a different method that applies to a larger

class of integrals, for example the integrals obtained by replacing
√
x in the

integrand by a power xα, α ∈ (0, 1). The main point here is that the square
root function cannot be extended to holomorphic function on C∗.

We let
√
z be the branch of the square root with branch cut along the

non-negative real axis, normalized so that
√
−1 = i. Then

√
reit =

√
reit/2

for r > 0, t ∈ (0, 2π).
Fix R > 2 and two small numbers ε > 0 and δ > 0. We define γ1(t) =

eiδt for t ∈ [ε, R], γ2(t) = Reit for t ∈ [δ, 2π − δ], γ3(t) = e−iδ(R − t) for
t ∈ [0, R− ε], and γ4(t) = εe−it for t ∈ [δ, 2π − δ]. We consider the piecewise
smooth loop γ := γ1 + γ2 + γ3 + γ4 obtained from concatenation of these
paths. The paths depend on the parameters ε, δ, and R, but we suppress
this in our notation.

Let

f(z) :=
1√

z(z + 1)(z + 2)
for z ∈ Ω \ {−1,−2},

where Ω := C \ [0,∞). Then f is holomorphic on Ω \ {−1,−2} and has
simple poles at −1 and −2. Moreover, indγ(z) = 0 for z ∈ [0,∞) and so γ is
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null-homologous in Ω. We have indγ(−1) = indγ(−2) = 1, and

Res(f,−1) =
1√

z (z + 2)

∣∣∣∣
z=−1

=
1√
−1 · 1

=
1

i
,

Res(f,−2) =
1√

z (z + 1)

∣∣∣∣
z=−2

=
1√

−2 · (−1)
= − 1√

2 i
.

So by the Residue Theorem,∫
γ

f(z) dz = 2πi
(

Res(f,−1) + Res(f,−2)
)

= 2π

(
1− 1√

2

)
.

If x > 0 and z approaches x from the upper or lower half-plane, then√
z →

√
x or

√
z → −

√
x, respectively. From this one can derive that

lim
δ,ε→0

∫
γ1

f(z) dz =

∫ R

0

dx√
x (x+ 1)(x+ 2)

,

and

lim
δ,ε→0

∫
γ3

f(z) dz =

∫ 0

R

dx

−
√
x (x+ 1)(x+ 2)

=

∫ R

0

dx√
x (x+ 1)(x+ 2)

.

Moreover, ∣∣∣∣∫
γ4

f(z) dz

∣∣∣∣ ≤ 2πε√
ε (1− ε)(2− ε)

→ 0 as ε→ 0,

and ∣∣∣∣∫
γ2

f(z) dz

∣∣∣∣ ≤ 2πR√
R (R− 1)(R− 2)

→ 0 as R→ 0.

It follows that

2π

(
1− 1√

2

)
=

∫
γ

f = lim
R→∞

(
lim
δ,ε→0

(∫
γ1

f +

∫
γ2

f +

∫
γ3

f +

∫
γ4

f

))
= lim

R→∞
2

∫ R

0

dx√
x (x+ 1)(x+ 2)

=

∫ ∞
0

dx√
x (x+ 1)(x+ 2)

= 2I,

and so I = π
(
1− 1√

2

)
.



17 THE RESIDUE THEOREM 148

Definition 17.8. Let U ⊆ C be open. A complex-valued function f is called
meromorphic on U if there exists a set A ⊆ U such that

(i) A consists of isolated points (or equivalently, A has no limit points in
the set U),

(ii) f ∈ H(U \ A),

(iii) each point in A is a pole of f .

So a meromorphic function on U is a function that is holomorphic except
for isolated singularities that are poles (we may always assume that removable
singularities are absent). The possibility A = ∅ is allowed in the definition;
so every holomorphic function on U is also meromorphic.

One can extend a meromorphic function to a holomorphic map f : U → Ĉ
by setting f(a) = ∞ for a pole a; it is easy to see that in this way the
meromorphic functions f on U correspond precisely to the holomorphic maps
f : U → Ĉ that are not identically equal to ∞ on any component of U .

Theorem 17.9 (Argument Principle). Let U ⊆ C be a region, and f be a
non-constant meromorphic function on U . Let γ : [0, 1] → U be a piecewise
smooth loop in U that is null-homologous in U and satisfies indγ(z) ∈ {0, 1}
for each z ∈ U \ γ∗; in addition assume that there is no zero or pole of f on
γ∗.

Let Ω := {z ∈ U \ γ∗ : indγ(z) = 1}, and Nf and Pf be the number of
zeros and poles of f in Ω, respectively, accounted according to multiplicity.

Then Nf and Pf are finite, and

indα(0) =
1

2πi

∫
γ

f ′(z)

f(z)
dz = Nf − Pf ,

where α := f ◦ γ.

Proof. First note that

indα(0) =
1

2πi

∫
α

dw

w
=

1

2πi

∫ 1

0

f ′(γ(t)) · γ′(t)
f(γ(t))

dt =
1

2πi

∫
γ

f ′(z)

f(z)
dz.

If a is a zero of f of order m ∈ N, then there exists a function g holomor-
phic near a such that g(a) 6= 0 and

f(z) = (z − a)mg(z) near a.
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Then f ′(z) = m(z − a)m−1g(z) + (z − a)mg′(z), and so

f ′(z)

f(z)
=

m

z − a
+
g′(z)

g(z)
near a.

Hence f ′/f has a simple pole at a, and

Res(f ′/f, a) = m = multiplicity of the zero a.

Similarly, if a is a pole of f , then there exists a function g holomorphic
near a such that g(a) 6= 0 and

f(z) =
1

(z − a)m
g(z) near a.

Then

f ′(z) = − m

(z − a)m+1
g(z) +

1

(z − a)m
g′(z),

and so
f ′(z)

f(z)
=
−m
z − a

+
g′(z)

g(z)
near a.

Hence f ′/f has a simple pole at a, and

Res(f ′/f, a) = −m = −multiplicity of the pole a.

The set Ω = {z ∈ U \ γ∗ : indγ(z) = 1} ⊆ U is open as follows from
Theorem 14.14. Let A be the set of zeros and poles of f in Ω, and B be the
set of the remaining zeros and poles of f in U . Both A and B consists of
isolated points. If Ũ := U \B, then Ũ is an open set and γ is null-homologous

in Ũ .
Note that the set A is finite (which implies that Nf and Pf are finite);

indeed, A is a bounded set, because it must be disjoint from the unbounded
component of C \ γ∗; so if A were infinite, then it had a limit point w.
Then necessarily w ∈ ∂U ⊆ C \ U , and so indγ(w) = 0, because γ is
null-homologous in U . Then indγ(a) = 0 for points a ∈ A close to w by
Theorem 14.14. This is impossible as indγ(a) = 1 for a ∈ A.

Since f ′/f ∈ H(Ũ \ A) we can apply the Residue Theorem and obtain

1

2πi

∫
γ

f ′(z)

f(z)
dz =

∑
a∈A

Res(f ′/f, a) = Nf − Pf .



17 THE RESIDUE THEOREM 150

Theorem 17.10 (Rouché’s Theorem). Let U ⊆ C be a region, and f and g
be non-constant holomorphic functions on U . Let γ : [0, 1]→ U be a piecewise
smooth path that is null-homologous in U and satisfies indγ(z) ∈ {0, 1} for
each z ∈ U \ γ∗; in addition assume that there is no zero of f on γ∗.

Let Ω = {z ∈ U \ γ∗ : indγ(z) = 1}, and Nf and Ng be the numbers of
zeros of f and g in Ω, respectively, counted according to multiplicity.

If
|g(z)− f(z)| < |f(z)| for all z ∈ γ∗, (72)

then Nf = Ng.

So if the functions f and g are sufficiently close on γ∗, then they have the
same number of zeros in Ω.

Proof. Note that (72) implies that g(z) 6= 0 for z ∈ γ∗. Hence we can apply
the Argument Principle to both f and g and conclude Nf = indf◦γ(0) and
Ng = indg◦γ(0). The statement will follow from the homotopy invariance of
winding numbers if we can show that the loops f ◦γ and g ◦γ are homotopic
in C∗.

We define H : [0, 1]× [0, 1]→ C∗ by

H(s, t) = f(γ(s)) + t
(
g(γ(s))− f(γ(s))

)
for s, t ∈ [0, 1].

Then H is continuous. By (72) we have

|H(s, t)| ≥ |f(γ(s))| − |g(γ(s))− f(γ(s))| > 0

for all s, t ∈ [0, 1]. So H maps into C∗. Since γ is a loop, and so γ(0) = γ(1),
we have H(0, t) = H(1, t) for all t ∈ [0, 1]. So H(·, t) is a loop for all t ∈ [0, 1].
Since H(·, 0) = f ◦ γ and H(·, 1) = g ◦ γ, the loops f ◦ γ and g ◦ g are indeed
homotopic in C∗ as desired.

Example 17.11. (a) Consider the polynomial g(z) = z9−2z6 +z4−9z2 +3.
Then one can use Rouché’s Theorem to show that g has precisely two zeros
(possibly one double zero) in the unit disk D. Indeed, in Theorem 17.10 we
let U := C, γ(t) := e2πit for t ∈ [0, 1], and f(z) := −9z2. Note that then
Ω = {z ∈ C \ γ∗ : indγ(z) = 1} = D, and that for z ∈ γ∗ = ∂D we have

|g(z)− f(z)| = |z9 − 2z6 + z4 + 3| ≤ |z|9 + 2|z|6 + |z|4 + 3 = 7

< 9 = | − 9z2| = |f(z)|.
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So Ng, the number of zeros of g in D, is equal to Nf = 2, the number of zeros
of f in D.

(b) One can derive the Fundamental Theorem of Algebra from Rouché’s
Theorem. If

g(z) = zn + an−1z
n−1 + · · ·+ a0

is a polynomial of degree n ≥ 1, we let f(z) = zn, and γ(t) = Re2πit for
t ∈ [0, 1]. For sufficiently large R ≥ 1 and M := |an−1| + · · · + |a0| we have
for z ∈ γ∗,

|g(z)− f(z)| = |an−1z
n−1 + · · ·+ a0| ≤MRn−1 < Rn = |z|n = |f(z)|.

Since f has n zeros in D(0, R), the polynomial g has also n ≥ 1 zeros.



18 Normal families

Definition 18.1. Let X and Y be metric spaces, and f : X → Y and
fn : X → Y for n ∈ N be maps.

(a) We say that fn converges to f locally uniformly on X if for all p ∈ X
there exists a neighborhood U of p (i.e., p ∈ int(U)) such that fn|U →
f |U uniformly on U .

(b) We say that fn converges to f compactly on X or uniformly on compact
subsets of X if for all compact sets K ⊆ X we have fn|K → f |K
uniformly on K.

We use the notation fn → f locally uniformly on X or fn → f compactly
on X (as n→∞).

A metric space X is said to be locally compact if each point p ∈ X has a
compact neighborhood U ⊆ X.

Proposition 18.2. Let X and Y be metric spaces, and f : X → Y and
fn : X → Y for n ∈ N be maps. Suppose that X is locally compact. Then the
following two conditions are equivalent:

(i) fn → f locally uniformly on X.

(ii) fn → f compactly on X.

Moreover, if (i) or (ii) is true and fn is continuous for each n ∈ N, then f
is also continuous.

Proof. (i) ⇐ (ii): Suppose (ii) is true. Let K be a arbitrary compact subset
of X. Then for each p ∈ K there exists a neighborhood Up ⊆ X such that
fn|Up → f |Up uniformly on Up. By compactness of K there exist finitely
many points, say p1, . . . , pm ∈ K such that K ⊆ Up1 ∪ · · · ∪ Upm . Then
fn → f uniformly on K ⊆ Up1 ∪ · · · ∪ Upm .

(i) ⇒ (ii): Suppose (i) is true, and let p ∈ X be arbitrary. Since X
is locally compact, there exists a compact neighborhood U of p. By our
hypothesis, fn → f uniformly on U . Hence every point has a neighborhood
on which the convergence fn → f is uniform. Hence fn → f locally uniformly
on X.

152
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The last statement follows from a well-known argument. We denote the
metric on X and Y by d and ρ, respectively. Suppose that fn → f locally
uniformly on X, and that fn is continuous for each n ∈ N. Let p ∈ X and
ε > 0 be arbitrary. We can find a neighborhood U ⊆ X of p such that fn → f
uniformly on U . Hence there exist N ∈ N such that

ρ(f(q), fN(q)) < ε/3 for all q ∈ U.

Since fN is continuous at p and U is a neighborhood of p, there exists δ >
0 such that for each point q ∈ X with d(p, q) < δ we have q ∈ U and
ρ(fN(q), fN(p)) < ε/3. For such points q we then have

ρ(f(q), f(p)) < ρ(f(q), fN(q)) + ρ(fN(q), fN(p)) + ρ(fN(p), f(p))

< ε/3 + ε/3 + ε/3 = ε.

This shows that f is continuous at p. Since p was arbitrary, f is continuous
on X.

We will be mostly interested in the case where X is an open subset of
C (equipped with the Euclidean metric), or an open subset of Ĉ (equipped

with the chordal metric), and Y = C or Y = Ĉ. In these cases, X is locally
compact and so the notions of locally uniform and compact convergence
are equivalent. We will use this fact repeatedly in the following without
mentioning it explicitly.

Example 18.3. (a) Let f(z) =
∞∑
k=0

ak(z−z0)k be a power series with positive

radius of convergence R > 0. Let fn(z) =
n∑
k=0

ak(z − z0)k be the nth partial

sum of the power series. We know that fn → f uniformly on compact subsets
of B := B(z0, R), and so fn → f locally uniformly on B.

(b) Let f(z) =
∞∑

k=−∞

ak(z− z0)k be a Laurent series that converges on an

annulus A = {z ∈ C : R1 < |z − z0| < R2}. We write f(z) = g(z) + h(z),

where g(z) =
∞∑
k=0

ak(z − z0)k and h(z) =
−1∑

k=−∞

ak(z − z0)k.
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If gn(z) =
n∑
k=0

ak(z− z0)k and hn(z) =
−1∑

k=−n

ak(z− z0)k for n ∈ N, then it

follows from (a) and the discussion in Remark 16.11 that gn → g and hn → h

locally uniformly on A. In particular, if fn(z) =
n∑

k=−n

ak(z − z0)k for n ∈ N0,

then fn → f locally uniformly on A.

Theorem 18.4. Let U ⊆ C be open, f : U → C, and fn ∈ H(U) for n ∈ N.
Suppose that fn → f locally uniformly on U . Then f ∈ H(U). Moreover,

for each k ∈ N we have f
(k)
n → f (k) locally uniformly on U .

So locally uniform limits of holomorphic functions are holomorphic, and
taking derivatives is compatible with taking locally uniform limits.

Proof. The function f is continuous on U as a locally uniform limit of con-
tinuous functions (Proposition 18.2). The holomorphicity of f now follows
from Morera’s Theorem; indeed, if ∆ ⊆ U is an arbitrary closed oriented
triangle in U , then fn → f uniformly on ∂∆. Hence∫

∂∆

f = lim
n→∞

∫
∂∆

fn︸ ︷︷ ︸
=0

= 0.

For the second statement is enough to establish the case k = 1; the general
case then follows from this by repeated application.

So let z0 ∈ U be arbitrary. Pick r > 0 such that B(z0, r) ⊆ U . Let
γ(t) = z0 + reit for t ∈ [0, 2π]. Then for all z ∈ B(z0, r/2),

|f ′n(z)− f ′(z)| = 1

2π

∣∣∣∣∫
γ

fn(w)− f(w)

(w − z)2
dw

∣∣∣∣
≤ r

(r/2)2
max

w∈∂B(z0,r)
|fn(w)− f(w)|

=
4

r
max

w∈∂B(z0,r)
|fn(w)− f(w)| → 0 as n→∞.

This estimate implies that f ′n → fn uniformly on B(z0, r/2), and it follows
that f ′n → f locally uniformly on U .
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Example 18.5. As in Example 18.3 let f(z) =
∞∑
k=0

ak(z − z0)k be a power

series convergent on a disk B, and fn be the nth partial sum of the power
series. Then fn → f locally uniformly on B, and so by the last theorem
f ′n → f ′ locally uniformly on B. This amounts to the statement that a power
series can be differentiated term-by-term (already proved in Theorem 5.9);
indeed, for z ∈ B, we have

f ′(z) = lim
n→∞

f ′n(z) = lim
n→∞

d

dz

( n∑
k=0

ak(z − z0)k
)

= lim
n→∞

n∑
k=0

d

dz

(
ak(z − z0)k

)
= lim

n→∞

n∑
k=1

kak(z − z0)k−1

=
∞∑
k=1

kak(z − z0)k−1 =
∞∑
k=0

(k + 1)ak+1(z − z0)k.

Similarly, a convergent Laurent series can be differentiated term-by-term.

Theorem 18.6 (Hurwitz’s Theorem). Let U ⊆ C be a region, f ∈ H(U),
and fn ∈ H(U) for n ∈ N. Suppose that fn → f locally uniformly on U . If
fn is injective for each n ∈ N, then f is constant or also injective.

Proof. We argue by contradiction and assume that under the given hypothe-
ses, f is neither constant nor injective. Then there exist z1, z2 ∈ U , z1 6= z2,
such that f(z1) = f(z2). Without loss of generality, we may assume that
f(z1) = f(z2) = 0.

We can choose a small r > 0 such that B1 := B(z1, r) ⊆ U , B2 :=
B(z2, r) ⊆ U , B1∩B2 = ∅, and so that f has no zeros on ∂B1∪∂B2 (a choice
satisfying the last condition is possible, because f is non-constant and so the
zeros of f are isolated points). Then m := inf{|f(z)| : z ∈ ∂B1 ∪ ∂B2} > 0.

Since fn → f uniformly on ∂B1 ∪ ∂B2, we can find N ∈ N such that

|fN(z)− f(z)| < m ≤ |f(z)| for all z ∈ ∂B1 ∪ ∂B2.

By Rouché’s Theorem fN has the same number of zeros as f in int(B1) and
in int(B2). So fn has at least one zero, say w1, in int(B1), and one, say w2

in int(B2). Then w1 6= w2, and fN(w1) = 0 = fN(w2). This contradicts the
fact that fN is injective.
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Definition 18.7 (Normal families). Let U ⊆ C be open, and F be a family
of complex-valued continuous functions on U . We say that F is a normal
family if every sequence {fn} of functions in F has a subsequence {fnk

} that
converges to some function f : U → C locally uniformly on U .

We do not require that the sublimit f belongs to F .

Definition 18.8. Let U ⊆ C be open, and F be a family of complex-valued
continuous functions on U . Then the family F is called

(a) equicontinuous at a point z0 ∈ U if for all ε > 0 there exists δ > 0 such
that for all f ∈ F and all z ∈ U we have the implication

|z − z0| < δ ⇒ |f(z)− f(z0)| < ε.

(b) uniformly bounded on A ⊆ U if there exists M ≥ 0 such that for all
f ∈ F and all z ∈ A we have

|f(z)| ≤M.

The family is called uniformly bounded at z0 ∈ U if it is uniformly
bounded on A = {z0}. It is called locally uniformly bounded if every
point z0 ∈ U has a neighborhood on which F is uniformly bounded.

The following theorem is a version of the Arzela-Ascoli Theorem. It gives
a complete characterization of normal families.

Theorem 18.9 (Arzela-Ascoli). Let U ⊆ C be open, and F be a family of
complex-valued continuous functions on U . Then F is a normal family if
and only if F is equicontinuous and uniformly bounded at each point z0 ∈ U .

Proof. ⇒: Suppose F is a normal family. To show that is equicontinuous
and uniformly bounded at each point in U we argue by contradiction.

Suppose F is not uniformly bounded at some point z0 ∈ U . Then for each
n ∈ N there exists fn ∈ F such that |fn(z0)| ≥ n. Then the sequence {fn}
cannot have a subsequence that converges locally uniformly on U , because no
subsequence even has a pointwise limit at z0. This contradicts the normality
of F .
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Suppose F is not uniformly bounded at some point z0 ∈ U . Then there
exists ε0 > 0 (“bad ε”) such that for each n ∈ N there exists fn ∈ F and
zn ∈ U with |zn − z0| < 1/n such that

|fn(zn)− fn(z0)| ≥ ε0 > 0. (73)

Since F is normal we may assume (by passing to a subsequence if necessary)
that fn converges to some continuous function f : U → C locally uniformly on
U . Then fn(z0)→ f(z0) as n→∞. Since zn → z0, the convergence fn → f
is locally uniform, and f is continuous at z0, we also have fn(zn) → f(z0)
(excercise!). Hence |fn(zn)− fn(z0)| → 0 as n→∞, contradicting (73).
⇐: Suppose F is equicontinuous and uniformly bounded at each point in

U . Let {fn} be an arbitrary sequence in F . In order to establish that F is a
normal family we have to show that {fn} has a subsequence that converges
locally uniformly on U .

We choose a countable dense subset D := {pn : n ∈ N} in U (for ex-
ample the set of all points in U whose real and imaginary parts are rational
numbers). Since F is uniformly bounded at each point in U , for each k ∈ N
the sequence {fn(pk)} is bounded. Hence we can find a subsequence {f1n}
of {fn} such that {f1n(p1)} converges. Using the boundedness of {f1n(p2)},
we can find a subsequence {f2n} of {f1n} such that {f2n(p2)} converges. Re-
peated this argument, for each k ∈ N we can find a subsequence {fkn} of
{fn} such that {fkn(pk)} converges and such that {fk+1n} is a subsequence
of {fkn}. Consider the “diagonal” subsequence {gn} given by gn := fnn for
n ∈ N. Then {gn} is a subsequence of {fn}, and, if we disregard finitely
many terms, {gn(pk)} is a subsequence of {fkn(pk)} for each k ∈ N. Hence
{gn(p)} converges for each p ∈ D.

Claim. For each compact set K ⊆ U and each ε > 0 there exists N ∈ N
such that

|gk(z)− gn(z)| ≤ ε for all z ∈ K and all k, n ∈ N with k, n ≥ N . (74)

To see this, let ε > 0 and K ⊆ U be compact. Since F and hence also the
subfamily {gn} is equicontinuous at each point in U , for each w ∈ K there
exists δw > 0 such that

|gn(z)− gn(w)| ≤ ε/3 for all n ∈ N and all z ∈ B(w, δw). (75)

Since K is compact there exist finitely many points w1, . . . , wm such that
the balls Bj := B(wj, δwj

), j = 1, . . . ,m, cover K. Since D is dense in U ,
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for each j ∈ {1, . . . ,m} we can pick a point p′j ∈ D ∩ Bj. Then {gn(p′j)}
converges, and so is a Cauchy sequence for each j = 1, . . . ,m. Hence there
exists N ∈ N such that

|gk(p′j)− gn(p′j)| ≤ ε/3 whenever j ∈ {1, . . . ,m} and k, n ≥ N . (76)

Now let z ∈ K and k, n ∈ N with k, n ≥ N be arbitrary. Then there exists
j ∈ {1, . . . ,m} with z ∈ Bj. Combining (75) and (76) we obtain

|gk(z)− gn(z)| ≤ |gk(z)− gk(p′j)|+ |gk(p′j)− gn(p′j)|+ |gn(p′j)− gn(z)|
≤ ε/3 + ε/3 + ε/3.

This establishes the claim.
The claim implies that {gn} converges locally uniformly on U to some

limit function. Namely, first it shows that for each z ∈ U the sequence
{gn(z)} is a Cauchy sequence, and hence converges, say gn(z) → g(z) ∈ C
as n → ∞. Moreover, letting k → ∞ in (74) we see that the convergence
gn → g is uniform on each compact set K ⊆ U . So the subsequence {gn} of
our original sequence {fn} converges to some limit function locally uniformly
on U . Hence F is a normal family.

It seems that this theorem completely solves all questions concerning
normal families. In practice it often not so easy to establish the relevant
equicontinuity and uniform boundedness conditions in order to establish the
normality of a family. For example, let S be the family of all holomorphic
functions f on the unit disk D that are injective and satisfy f(0) = f ′(0)−1 =
0. Then one can show that S is a normal family, but it is not immediately
clear how to verify the conditions in the Arzela-Ascoli theorem.

A condition that guarantees that a family is normal is called a normality
criterion. The following theorem provides the basic normality criterion for
holomorphic functions.

Theorem 18.10 (Montel’s “Little” Theorem). Let U ⊆ C be open, and F
be a family of holomorphic functions on U . Then F is a normal family if
and only if F is locally uniformly bounded.

Proof. ⇒: This implication follows from the Arzela-Ascoli Theorem (even if
we replace the assumption that the functions in the family are holomorphic
by the weaker assumption that they are only continuous). Indeed, if the
family is normal, then it is equicontinuous and uniformly bounded at each
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point of U . This in turn implies that the family is locally uniformly bounded
on U .
⇐: By the Arzela-Ascoli Theorem it suffices to show that F is equicon-

tinuous at each point in U . So let z0 ∈ U be arbitrary. We can pick r > 0
such that B(z0, r) ⊆ U and such that F is uniformly bounded on B(z0, r).
So there exists M ≥ 0 such that

|f(z)| ≤M whenever f ∈ F and z ∈ B(z0, r).

Define γ(t) = z0 + reit for t ∈ [0, 2π], and let z ∈ B(z0, r/2) and f ∈ F be
arbitrary. Then

|f(z)− f(z0)| = 1

2π

∣∣∣∣∫
γ

f(w)

(
1

w − z
− 1

w − z0

)
dw

∣∣∣∣
≤ 1

2π
· 2πr · max

w∈∂B(z0,r)

|f(w)| · |z − z0|
|w − z| · |w − z0|

= r · M

(r/2)r
|z − z0| =

2M

r
|z − z0|.

Since M is independent of f and z, the equicontiuity of F at z0 immediately
follows.

Remark 18.11. One can prove results similar to the one established for
holomorphic functions also for meromorphic functions (considered as holo-

morphic maps into Ĉ). In this case one uses the chordal metric in order to
measure distances in the target.

One can show that a locally uniform limit of meromorphic functions on a
region is again meromorphic (one has to allow the function that is identically
equal to ∞ here).

The notion of a normal family of continuous maps into Ĉ is defined in
the same way as in Definition 18.7. The corresponding version of the Arzela-
Ascoli Theorem then says that a family of such maps F is normal if and only
if it is equicontiunous at each point. The proof of this statement is identical
to the proof of Theorem 18.9. The uniform boundedness condition is not
relevant here since every sequence in Ĉ has a convergent subsequence.

When one considers normal families one has to be careful about the metric
used in the target. Every holomorphic function on a region U can also be
considered as a map into Ĉ ⊇ C. If a family of holomorphic functions on
a region is U is normal as considered as a family of maps into C, then it is
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also normal as considered as a family of maps into Ĉ, but the converse is not
true. On can show that a family F ⊆ H(U) is normal in the latter sense,
if and only if every sequence {fn} in F has a subsequence that converges
locally uniformly to the constant function ∞ or to a function holomorphic
on U . Often this is taken as the definition of a normal family of holomorphic
functions.

One can formulate sufficient conditions for the normality of a family
of meromorphic functions that are similar to Montel’s Theorem 18.10. A
stronger statement is Montel’s “Big” Theorem: if each function in a fam-
ily of meromorphic functions on a region omits three distinct fixed values
a, b, c ∈ Ĉ, then it is normal. For example, a family of holomorphic functions
omitting 0 and 1 (the third omitted value is ∞ here) is normal (as a family

of maps into Ĉ).



19 The Riemann Mapping Theorem

Lemma 19.1. Let Ω ⊆ C be a simply connected region, Ω 6= C. Then there
exists a conformal map g : Ω → Ω̃, where Ω̃ is a Koebe region, i.e., Ω̃ is a
simply connected region with 0 ∈ Ω̃ ⊆ D.

Proof. Pick a ∈ C \ Ω. Then z 7→ z − a is a zero-free holomorphic function
on Ω. So by Corollary 15.9 this function has a holomorphic square root S,
i.e., S ∈ H(Ω) and

S(z)2 = z − a for all z ∈ Ω.

The function S is injective on Ω: if z1, z2 ∈ Ω are arbitrary, then we have the
implications

S(z1) = S(z2) ⇒ S(z1)2 = S(z2)2

⇒ z1 − a = z2 − a ⇒ z1 = z2.

So S is a holomorphic bijection S : Ω → U := S(Ω) onto its image U , and
in particular a conformal map (Corollary 9.6). The set U is a region (see
Corollary 9.5). It has the following property: if w ∈ U , then −w 6∈ U ;
indeed, suppose w,−w ∈ U . Then there exist z1, z2 ∈ Ω such that w = S(z1)
and −w = S(z2). Hence

z1 − a = S(z1)2 = w2 = S(z2)2 = z2 − a,

and so z1 = z2. This implies

w = S(z1) = S(z2) = −w,

and gives w = 0. This is impossible, because the map z 7→ z − a = S(z)2,
and hence also S, is zero-free on Ω.

Since U is open, there exists w0 ∈ U , and r > 0 such that B(w0, r) ⊆ U .
Then B(w1, r) ∩ V = ∅, where w1 := −w0.

Consider the Möbius transformation T : U → C,

T (w) :=
r

w − w1

.

Then T : U → V := T (U) is a conformal map of U onto its image V =
T (U) ⊆ D. Pick u0 ∈ V , and let

R(u) :=
u− u0

1− u0u
, u ∈ D.

161
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Then R ∈ Aut(D), and 0 ∈ Ω̃ := R(T (U)) ⊆ D. So we have the sequence of
holomorphic bijections

Ω
S−→ U

T−→ V
R−→ Ω̃ ⊆ D.

Then g := R ◦ T ◦ S is a holomorphic bijection of Ω onto Ω̃, and hence a
conformal map from Ω onto Ω̃. The set Ω̃ is a region with 0 ∈ Ω̃. Moreover,
Ω̃ is simply connected, because this property of a region is invariant under
conformal maps. So Ω̃ is a Koebe region, and g is a conformal map from Ω
onto Ω̃.

If one replaces the condition that the regions in the previous statement are
simply connected by the condition that every zero-free holomorphic function
on the region has a holomorphic square root, then the previous proof goes
through with the conclusion that Ω̃ satisfies the latter property. Note this
property of a region is invariant under conformal maps of the region.

Lemma 19.2. Let Ω ⊆ D be a Koebe region, and

S(Ω) := {f : Ω→ f(Ω) conformal, f(Ω) ⊆ D, f(0) = 0}.

Then
α := sup{|f ′(0)| : f ∈ S(Ω)} (77)

is attained as a maximum, i.e., there exists f0 ∈ S(Ω) such that |f ′(0)| ≤
|f ′0(0)| = α for all f ∈ S(Ω).

Proof. Note that α ≥ 1, because idΩ ∈ S(Ω). Let {fn} be a sequence in S(Ω)
with |f ′n(0)| → α. Montel’s Theorem implies that by passing to a subsequence
if necessary we may assume that fn → f0 ∈ H(Ω) locally uniformly on
Ω. Then f0(0) = lim

n→∞
fn(0) = 0, and |f ′0(0)| = lim

n→∞
|f ′n(0)| = α > 0.

In particular, f0 is not a constant function. By Hurwitz’s Theorem f0 is
injective, and so f0 is a conformal map of Ω onto f0(Ω) ⊆ D. Since f0(Ω)
is open, we must have f0(Ω) ⊆ D. Then f0 ∈ S(Ω) and |f ′0(0)| = α as
desired.

Lemma 19.3. Let Ω ⊆ D be a Koebe region, and f0 ∈ S(Ω) be a map
for which the supremum in (77) is attained. Then f0(Ω) = D, i.e., f is a
conformal map from Ω onto D.
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Proof. We argue by contradiction; so suppose U0 := f0(Ω) 6= D. Since
0 ∈ U0 ⊆ D, there exists a 6= 0 such that a ∈ D \ U0. Let R be the Möbius
transformation given by

R(u) :=
u− a
1− av

.

Then R ∈ Aut(D), and so R is a conformal map from U0 onto U1 := R(U0) ⊆
D. Then U1 is a simply connected region. Since R(a) = 0, we have 0 6∈ U1.
So by Corollary 15.9 there exists a homolomorphic branch of the square root
function on U1; i.e., a holomorphic map S : U1 → C such that

S(v)2 = v for v ∈ U1.

Then for v ∈ U1 we have |S(v)|2 = |v| < 1, and so U2 := S(U1) ⊆ D.
Moreover, S is injective on U1; indeed, if for v1, v2 ∈ Ω, we have S(v1) =
S(v2), then v1 = S(v1)2 = S(v2)2 = v2. It follows that S is a conformal map
of U1 onto the simply connected region U2 := S(U1) ⊆ D.

Let b := S(R(0)) ∈ S(U1) ⊆ U2 ⊆ D, and T be the Möbius transformation
given by

T (w) :=
w − b
1− bw

.

Then T ∈ Aut(D), and so T is a conformal map from U2 onto the simply
connected region U3 := T (U2) ⊆ D. Note that 0 = T (b) ∈ T (U2) = U3, and
so U3 is a Koebe region.

We have constructed conformal maps

U0
R−→ U1

S−→ U2
T−→ U3.

Consider the composition g := R ◦ S ◦ T . Then g is a conformal map from
U0 onto U3 with

g(0) = (T ◦ S ◦R)(0) = T (b) = 0.

Moreover,

R′(u) =
1− |a|2

(1− au)2
, |S ′(v)| = 1

2
√
|v|
, T ′(w) =

1− |b|2

(1− bw)2
,

and so

|R′(0)| = 1− |a|2, |S ′(R(0))| = |S(−a)| = 1

2
√
|a|
, |T ′(b)| = 1

1− |b|2
.
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Note also that

|b|2 = |S(R(0))2| = |S(−a)2| = | − a| = |a| < 1.

Putting this all together gives

|g′(0)| =
∣∣T ′(S(R(0))

)∣∣ · |S ′(R(0))| · |R′(0)| = |T ′(b)| · |S ′(−a)| · |R′(0)|

=
1

1− |b|2
· 1

2
√
|a|
· (1− |a|2) =

1− |a|2

2
√
|a| (1− |a|)

=
1 + |a|
2
√
|a|

= 1 +
(1−

√
|a|)2

2
√
|a|

> 1.

Then f := g ◦ f0 is a conformal map of Ω onto the Koebe region g(f0(Ω)) =
g(U0) = U3, and f(0) = g(f0(0)) = g(0) = 0; so f ∈ S(Ω), but

|f ′(0)| = |g′(0)| · |f ′0(0)| > |f ′0(0)|.

This contradicts the maximality property of f0.

Remark 19.4. (a) Again the relevant property of Ω in the previous proof
was that every zero-free holomorphic function on Ω has a holomorphic square
root (which transfers to U0 = f0(Ω) and all the other regions considered).

(b) The computation in the previous proof make it seem to be a fortunate
coincidence that we get the crucial inequality |g′(0)| > 1. One can actually
see that this inequality must be true almost without any computation if one

consider how the hyperbolic length element dsh =
2|dz|

1− |z|2
is distorted by

the map. If f is a holomorphic map defined near a point z ∈ D and has
values in D, then this distortion at z is measured by the derivative of f with
respect to the hyperbolic metric given by

Dh(f)(z) :=
f ∗(dsh)

dsh
=

(1− |z|2)|f ′(z)|
1− |f(z)|2

.

This derivative has the expected properties (chain rule, behavior for inverse
maps, etc.). Note also that if f(0) = 0 then Dh(f)(0) = |f ′(0)|.

We know that Dh(ϕ)(z) ≡ 1 if ϕ ∈ Aut(D). Moreover, if f : D → D is
holomorphic, but f 6∈ Aut(D), then Dh(f)(z) < 1 for all z ∈ D. So if g is
a branch of the inverse f−1 defined near a point z ∈ D, then Dh(g)(z) =
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Dh(f)(g(z))−1 > 1. In particular, this is true for the branch S of the square
root function (an inverse branch of z 7→ z2 mapping D into D) used in the
previous proof. This can also verified by direct computation:

|S ′(z)| = 1

2
√
|z|

and |S(z)|2 = |z|,

which implies

Dh(S)(z) =
(1− |z|2)|S ′(z)|

1− |S(z)|2
=

1− |z|2

2
√
|z| (1− |z|)

=
1 + |z|
2
√
|z|

> 1,

whenever z ∈ D.
In the previous proof, the function g was given as g := R ◦ S ◦ T , where

R, T ∈ Aut(D). Moreover, g(0) = 0, and so

|g′(0)| = Dh(g)(0) = Dh(R)
(
S(T (0))

)
·Dh(S)(T (0)) ·Dh(T )(0)

= Dh(S)(T (0)) > 1.

Theorem 19.5 (Riemann Mapping Theorem). Let Ω ⊆ C be a simply con-
nected region, Ω 6= C. Then there exists a conformal map f : Ω → D of Ω
onto D.

If z0 ∈ Ω is arbitrary, then f can be chosen so that

f(z0) = 0 and f ′(z0) > 0. (78)

Moreover, with this normalization the map f is uniquely determined.

Proof. By Lemma 19.1 there exists a conformal map h1 : Ω → Ω̃ onto a
Koebe region Ω̃. By Lemma 19.3 there exists a conformal map h2 : Ω̃ → D.
Then f := h2 ◦ h1 is a conformal map from Ω onto D.

If z0 ∈ Ω is arbitrary, then w0 := f(z0) ∈ D. For fixed θ ∈ [0, 2π] to be
determined momentarily, consider the Möbius transformation

ϕ(w) = eiθ
w − w0

1− w0w
.

Then ϕ ∈ Aut(D), and ϕ(w0) = 0. So f̃ := ϕ ◦ f is a conformal map from Ω

onto D with f̃(0) = ϕ(w0) = 0. Moreover,

f̃ ′(z0) = ϕ′(w0) · f ′(z0) = eiθ
f ′(z0)

1− |w0|2
.
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By choosing θ ∈ [0, 2π] appropriately, we get f̃ ′(z0) > 0. Then f̃ is a confor-
mal map of Ω onto D with the desired normalization.

Suppose f1 and f2 are two conformal maps from Ω onto D satisfying the
normalization (78). Then ψ := f2 ◦ f−1

1 ∈ Aut(D), ψ(0) = 0, and

ψ′(0) = f ′2(f−1
1 (0)) · (f−1

1 )′(0) =
f ′2(z0)

f ′1(z0)
> 0.

So ψ(z) = eiαz, where α ∈ [0, 2π) and ψ′(0) = eiα > 0. This implies α = 0,
ψ = idD, and f1 = f2.

Based on the remarks after Lemmas 19.1 and 19.3 the argument in the
previous proof actually shows that if Ω ⊆ C, Ω 6= C, is a region such that
every zero-free holomorphic function has a holomorphic square root, then Ω
is conformally equivalent to D, i.e., there exists a conformal map of Ω onto
D.

Example 19.6. In some simple cases the Riemann map, i.e., the conformal
map of the simply connected region of Ω onto D can be found explicitly. Here
are two examples.

(a) Let Ω := {reiα : 0 < r < 1, 0 < α < π/4}. The region Ω is
convex, and hence simply connected. The Riemann map can be found as a
composition of conformal maps U0 = Ω→ U1 → U2 → U3 → U4 = D, where

z ∈ U0 7→ s := z4 ∈ U1 := {s ∈ C : |s| < 1, Im s > 0},

s ∈ U1 7→ t :=
1 + s

1− s
∈ U2 := {t ∈ C : Re t > 0, Im t > 0},

t ∈ U2 7→ u := t2 ∈ U3 := {u ∈ C : Im u > 0},

u ∈ U3 7→ w :=
1 + iu

1− iu
∈ U4 := D.

So w = f(z) =
1 + i

(
1+z4

1−z4
)2

1− i
(

1+z4

1−z4
)2 gives a conformal map of Ω onto D.

(b) Let Ω := {z ∈ C : −π < Im z < π} \ (−∞, 0]. The region Ω is
starlike with respect to p = 1. This means that [p, z] ⊆ Ω for all z ∈ Ω and
implies that Ω is simply connected. Again the Riemann map can be found
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as a composition of conformal maps U0 = Ω→ U1 → U2 → U3 = D. Here

z ∈ U0 7→ u := ez ∈ U1 := C \ (−∞, 1],

u ∈ U1 7→ v :=
√
u− 1 ∈ U2 := {v ∈ C : Re v > 0} (principal branch),

v ∈ U2 7→ w :=
1− v
1 + v

∈ U3 := D.

So w = f(z) =
1−
√
ez − 1

1 +
√
ez − 1

gives a conformal map of Ω onto D.

Remark 19.7. Since the upper half-plane H := {z ∈ C : Im z > 0} is
conformally equivalent to D, for every simply connected region Ω ⊆ C, Ω 6=
Ω, there exists a conformal map f : H → Ω. A general class of simply
connected regions Ω for which such a map f can be obtained quite explicitly
are those bounded by polygons (consisting of straight line segments).

Suppose that ∂Ω is a finite union of line segments ∂Ω =
n⋃
k=1

[pk, pk+1] with

pairwise disjoint interiors, where pn+1 = p1, and let αkπ be the interior angle
at the corner pk with αk ∈ (0, 2). Then one can show that there exist points
a1 < a2 < · · · < an on the real axis and constants A ∈ C and B ∈ C \ {0}
such that f is given by the Schwarz-Christoffel map

f(z) = A+B

∫
[0,z]

n∏
k=1

(ζ − ak)αk−1 dζ.

Here one has to choose suitable branches of the power functions, for example
those that attain positive values for large positive values of ζ. Moreover, this
conformal map of H onto Ω has a continuous extension to H = {z ∈ C :
Im z ≥ 0} ∪ {∞} such that f(ak) = pk for k = 1, . . . , n.

For example, let k ∈ (0, 1), and define

f(z) =

∫
[0,z]

dζ√
(1− ζ2)(1− k2ζ2)

for z ∈ H. Here the branch of the root is such that for ζ = 0 we have
√

1 = 1.
One can show that then f is homeomorphism of H onto the rectangle

R := {w ∈ C : −K ≤ Re w ≤ K, 0 ≤ Im w ≤ K ′}
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and a conformal map of H onto int(R). The quantities K and K ′ are given
by complete elliptic integrals of the first kind:

K =

∫ π/2

0

dt√
1− k2 sin2 t

, and K ′ =

∫ π/2

0

dt√
1− k′2 sin2 t

,

where k′ :=
√

1− k2 ∈ (0, 1). The map f sends the points ±1 and ±1/k
to the corners of R; more precisely, we have f(±1) = ±K and f(±1/k) =
±K + iK ′.

Theorem 19.8 (Schwarz Reflection Principle). Let U+ ⊆ H+ := {z ∈ C :
Im z > 0} be open, U− := {z̄ : z ∈ U+}, and α ⊆ R be open (as a subset of
R). Define Ω = U+ ∪ α ∪ U−, and assume that α ⊆ int(Ω) (which implies
that Ω is open).

Let f : U+ ∪ α→ C be continuous and holomorphic on U+. If f(α) ⊆ R,
then the extension F : Ω→ C of f given by

F (z) =

{
f(z) for z ∈ U+ ∪ α,

f(z̄) for z ∈ U−,

is holomorphic on Ω.
If in addition f is injective on U+ ∪ α and f(U+) ⊆ H+, then F is

injective on Ω, and so F is a conformal map of Ω onto its image F (Ω).

Proof. Obviously, F is continuous on Ω. Moreover, F |U− is holomorphic on
U−. Indeed, if a ∈ U− is arbitrary, then ā ∈ U+, and so f has a power series
representation

f(z) =
∞∑
n=0

an(z − ā)n for z near ā.

Then

F (z) = f(z̄) =
∞∑
n=0

ān(z − a)n for z near a,

and so the holomorphicity of F near a follows.
The holomorphicity of F on the whole set Ω easily follows from its con-

tinuity on Ω, its holomorphicity of F on U+ ∪ U−, and Morera’s Theorem.
Finally, if f is injective on U+ ∪ α and f(U+) ⊆ H+, then F is injective

on U− and F (U−) ⊆ H− := {z ∈ C : Im z < 0}. This implies that F is
injective on Ω.
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Remark 19.9. Using auxiliary Möbius transformations one can easily for-
mulate and prove a more general version of the Schwarz Reflection Principle
for meromorphic functions, where the real line in source and target is replaced
by two circles C and C ′. One then assumes that α ⊆ C and f(α) ⊆ C ′. If
R and S are the reflections in the circles C and C ′, respectively, then the
extension F will be defined as F (z) = S

(
f(R(z))

)
for z ∈ U− := R(U+).

Example 19.10. Let k ∈ (0, 1), and as in Remark 19.7 define

f(z) =

∫
[0,z]

dζ√
(1− ζ2)(1− k2ζ)

for z ∈ H = H ∪ R̂ = {z ∈ C : Im z ≥ 0} ∪ {∞}. Then f maps H
homeomorphically onto

R = {w ∈ C : −K ≤ Re w ≤ K, 0 ≤ Imw ≤ K ′},

and H conformally onto int(R), where K and K ′ are as in Remark 19.7.
Moreover, f(±1) = ±K, and f(±1/k) = ±K + iK ′. The inverse map
u ∈ R 7→ z ∈ H is denoted by sn(u; k) or simply by snu if the parameter
k is understood. This function is called the sinus amplitudinis (Jacobi’s
original Latin phrase), the sine amplitude, or the modular sine (for parameter
k ∈ (0, 1)).

Under the this map reflection in the sides of R, and the sides of rectangles
obtained by successive reflections, corresponds to reflection in R̂ on the target
side. Using this and applying the Schwarz Reflection Principle repeatedly,
one can show that sn can be extended to a meromorphic function on C. From
this reflection process it also follows that

sn(u+ 4Km+ 2iK ′n) = sn(u) for u ∈ C, m,n ∈ Z.

So this function has the two periods 4K and 2iK that are linearly indepen-
dent over R. Hence it is doubly periodic. Functions that are meromorphic on
C and doubly periodic are called elliptic functions. So sn is an example of
an elliptic function.



20 The Cauchy transform

In this section we use some basic results of measure theory such as Lebesgue’s
theorem on dominated convergence or Fubini’s Theorem. We denote by A
Lebesgue measure on R2 ∼= C, and by dA integration with respect to this
measure.

We first fix some notation for function spaces. All functions are complex-
valued. Let U ⊆ C be open. Then L1(U) and L1

loc(U) denote the spaces
of integrable and locally integrable functions on U , respectively. The space
of continuous functions on U is denoted by C(U); we also use this notation
if U is an arbitrary metric space. For k ∈ N we let Ck(U) be the space of
functions on U that have continuous partial derivatives up to order k. As
usual C∞(U) stands for the space of functions on U that have continuous
partial derivatives of all orders. A subscript “c” indicates compact support;
so for example, C∞c (U) is the space of all functions f ∈ C∞(U) whose support

supp(f) := {z ∈ U : f(z) 6= 0}

is a compact subset of U .

Definition 20.1 (Cauchy transform). Let u ∈ Cc(C). Then the Cauchy
transform Tu : C→ C of u is defined as

(Tu)(w) = − 1

π

∫
C

u(z)

z − w
dA(z) for w ∈ C.

Note that the Cauchy kernel

K(z) :=
1

πz

is locally integrable. This implies that the Cauchy transform exists for each
w ∈ C. Actually, Tu = K ∗ u, where the convolution K ∗ u is given by

(K ∗ u)(w) :=

∫
C
K(w − z)u(z) dA(z) for w ∈ C.

In the following we use z to denote a typical point in C, and use the

notation
∂f

∂z
and

∂f

∂z̄
, or simply fz and fz̄, for the z- and z̄-derivatives of a

function f as defined in Remark 3.13.
The Cauchy transform is in some sense the inverse operator of the differ-

ential operator
∂

∂z̄
as the following two lemmas show.

170
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Lemma 20.2. If f ∈ C1
c (C), then f = T (fz̄).

Proof. Note that fz̄ ∈ Cc(C); so T (fz̄) is defined.
In order to compute (Tfz̄)(w), we may assume that w = 0. We introduce

polar coordinates in the z-plane: z = reiα and z̄ = re−iα, where r ≥ 0 and
α ∈ [0, 2π]. Then r = (z · z̄)1/2 and α = 1

2i
log(z/z̄) (locally for some branch

of the logarithm). Then by the chain rule,

∂

∂z̄
=

∂

∂r
· ∂r
∂z̄

+
∂

∂α
· ∂α
∂z̄
.

Here
∂r

∂z̄
=
∂((z · z̄)1/2)

∂z̄
=

1

2
· z

1/2

z̄1/2
=

1

2
· (zz̄)1/2

z̄
=

1

2
eiα

(if we choose local branches of the square root appropriately), and

∂α

∂z̄
=

1

2i

∂(log(z/z̄))

∂z̄
=

1

2i
· −1

z̄
=

i

2r
eiα.

So
∂

∂z̄
=

1

2
eiα · ∂

∂r
+

i

2r
eiα · ∂

∂α
.

Then by integrating in polar coordinates we obtain

T (fz̄)(0) = − 1

π
lim
ε→0

∫
C\B(0,ε)

fz̄(z)

z
dA(z) (by Lebesgue dominated conv.)

= − 1

π
lim
ε→0

∫ ∞
ε

∫ 2π

0

(
1

2
eiα

∂f(reiα)

∂r
+

i

2r
eiα

∂f(reiα)

∂α

)
e−iα drdα

= A+B,

where

A = − 1

2π
lim
ε→0

∫ 2π

0

(∫ ∞
ε

∂f(reiα)

∂r
dr︸ ︷︷ ︸

= −f(εeiα)

)
dα = lim

ε→0

1

2π

∫ 2π

0

f(εeiα) dα = f(0)

by continuity of f at 0, and

B = − i

2π
lim
ε→0

∫ ∞
ε

(∫ 2π

0

1

r

∂f(reiα)

∂α
dα︸ ︷︷ ︸

= 0

)
dr = 0.
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Here we introduced the limit as ε → 0 in order to avoid possible problems
with the factor 1/r in the 1-dimensional integrals.

We get T (fz̄)(0) = A+B = f(0) as desired.

Lemma 20.3. If u ∈ C1
c (C), then Tu ∈ C1(C), and (Tu)z̄ = u.

Proof. The regularity statement is based on some standard fact, and we only
give an outline. Namely, if K is a locally integrable kernel on Rn and u is C1-
smooth on Rn with compact support, then K ∗ u is C1-smooth; indeed, if ∂k
denotes the partial derivative with respect to the k-th coordinate on Rn, then
we have ∂k(K ∗u) = K ∗ (∂ku) for k = 1, . . . , n. This can easily be proved by
considering the relevant difference quotients, and passing to the limit under
the integral based on Lebesgue’s theorem on dominated convergence.

If K denotes the Cauchy kernel, then in our situation we have Tu =
K ∗ u ∈ C1(C). Moreover, since the operator ∂z̄ is a linear combination of
the usual partial differential operators on R2 ∼= C, we conclude

(Tu)z̄ = (K ∗ u)z̄ = K ∗ uz̄ = T (uz̄) = u,

where we used Lemma 20.2 in the last step.

Lemma 20.4. (a) Let γ : [0, 1] → C be a C1-smooth path, and u ∈ Cc(C).
Define F : C× [0, 1]→ C by

F (z, t) =


u(z) · γ′(t)
z − γ(t)

for z 6= γ(t),

0 for z = γ(t).

Then F is integrable on C × [0, 1] with respect to the product of Lebesgue
measures on C and on [0, 1].

(b) Let Γ be a piecewise smooth cycle in C. Then the function z ∈ C 7→
indΓ(z) is almost everywhere defined and integrable.

Proof. (a) The exceptional set E := {(z, t) ∈ C× [0, 1] : z = γ(t)} is closed,
and hence a Borel set. Moreover, F is continuous on the complement of E.
From this it follows that F is a Borel function, and hence measurable.

We can pick constants R > 0 and M ≥ 0 such that the sets supp(u) and
γ∗ both lie in B(0, R), and |u(z)| ≤M for z ∈ B(0, R).
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Then we have∫ 1

0

(∫
C
|F (z, t)| dA(z)

)
dt ≤

∫ 1

0

(∫
C

|u(z)| · |γ′(t)|
|z − γ(t)|

dA(z)

)
dt

≤M

∫ 1

0

(∫
B(0,R)

|γ′(t)|
|z − γ(t)|

dA(z)

)
dt

≤M

∫ 1

0

(∫
B(0,2R)

|γ′(t)|
|u|

dA(u)

)
dt

= M

(∫
B(0,2R)

1

|u|
dA(u)

)(∫ 1

0

|γ′(t)| dt
)
<∞.

This implies that F is integrable on C× [0, 1].

(b) If γ is a smooth path, then a simple covering argument shows that
A(γ∗) = 0. This implies that A(Γ∗) = 0. The function z 7→ indΓ(z) is defined
on C\Γ∗, and hence almost everywhere. Since this function is locally constant
on C \ Γ∗ as follows from Theorem 14.14, it is measurable.

To show that it is also integrable, we may assume that Γ consists of one
loop α, and represent the winding number as an integral as in Theorem 14.8.
Pick R > 0 large enough so that α∗ ⊆ B(0, R). Then C \ B(0, R) lies in
the unbounded component of C \ α∗, and so indα(z) = 0 for z ∈ C \B(0, R)
(Theorem 14.14). By breaking up the loop α into finitely many C1-smooth
paths, we are reduced to proving that if γ : [0, 1] → B(0, R) is a C1-smooth
path and if we define

h(z) =

∫
γ

dζ

ζ − z
=

∫ 1

0

γ′(t)

γ(t)− z
dt

for z ∈ B(0, R), then h ∈ L1(B(0, R)). Note that this function is defined on
B(0, R) \ γ∗, and hence almost everywhere on B(0, R). It is easy to see that
it is continuous on B(0, R) \ γ∗, and so measurable.

The integrability of h follows from part (a); indeed, we can pick a function
u ∈ Cc(C) such that u(z) = 1 for z ∈ B(0, R). If F is defined as in (a), then

by Fubini’s Theorem the function z 7→
∫ 1

0
|F (z, t)| dt is almost everywhere
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defined and integrable on C. Hence∫
B(0,R)

|h(z)| dA(z) =

∫
B(0,R)\γ∗

|h(z)| dA(z)

=

∫
B(0,R)\γ∗

∣∣∣∣∫ 1

0

γ′(t)

γ(t)− z
dt

∣∣∣∣ dA(z)

=

∫
B(0,R)\γ∗

(∫ 1

0

|u(z)| · |γ′(t)|
|γ(t)− z|

dt

)
dA(z)

≤
∫
C

(∫ 1

0

|F (z, t)| dt
)
dA(z) <∞.

Proposition 20.5 (Gauss-Green Formula; preliminary version). Let u ∈
C1
c (C), and Γ be a piecewise smooth cycle in C. Then

1

2i

∫
Γ

u(z) dz =

∫
C

indΓ(z) · uz̄(z) dA(z).

Note that uz̄ is a continuous function with compact support. This and
Lemma 20.4 (b) imply that the integrand on the right hand side is an almost
everywhere defined and integrable function.

Proof. By Lemma 20.2 we know that

u(w) = − 1

π

∫
C

uz̄(z)

z − w
dA(z)

for all w ∈ C. Integrating over Γ and interchanging the order of integration
(which is justified by Fubini’s Theorem and Lemma 20.4 (a) applied to paths
obtained from splitting up the loops in Γ into C1-smooth pieces), we obtain

1

2i

∫
Γ

u(w) dw = − 1

2πi

∫
Γ

(∫
C

uz̄(z)

z − w
dA(z)

)
dw

= − 1

2πi

∫
C

(∫
Γ

uz̄(z)

z − w
dw

)
dA(z)

=

∫
C

indΓ(z) · uz̄(z) dA(z).
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20.6. Partitions of unity. Let V ⊆ C be open, and U = {Ui ∈ I} be a
cover of V by open sets Ui ⊆ V indexed by a set I. We need the following
two statements about partitions of unity.

Version I (“with compact supports”). There exists a countable family
{ϕk : k ∈ N} of functions such that

(i) ϕk ∈ C∞(V ), 0 ≤ ϕk ≤ 1, and supp(ϕk) ⊆ V is compact for all k ∈ N,

(ii) the supports supp(ϕk), k ∈ N, form a locally finite family, i.e., every
point p ∈ V has a neighborhood N such that supp(ϕk) ∩ N 6= ∅ for
only finitely many k ∈ N,

(iii) the supports supp(ϕk), k ∈ N, form a family that is subordinate to U ,
i.e., for every k ∈ N there exists i(k) ∈ I with supp(ϕk) ⊆ Ui(k),

(iv)
∑
k∈N

ϕk(z) = 1 for all z ∈ V .

Note that in the last sum only finitely many terms are non-zero near each
point by property (ii). So locally we can treat this as a finite sum and take
partial derivatives term-by-term, for example.

The phrase “partition of unity” is of course explained by the identity
(iv). It often allows one to break up a given function into “bumps” with
well-localized support.

Version II (“with same index set”). There exists a family {ϕi : i ∈ I}
of functions having the above properties (i)–(iv) with the following modifi-
cations: the functions ϕi do not necessarily have compact support, and (iii)
is replaced by supp(ϕi) ∩ V ⊆ Ui for all i ∈ I.

So in Version I the functions of the partition of unity have compact sup-
port, while in Version II we can index the family by the same index set as
the cover U . This is not always possible if one insists on compact support of
the functions.

Lemma 20.7. Let U ⊆ C be open, and K ⊆ U be compact. Then there
exists ϕ ∈ C∞c (U) such that 0 ≤ ϕ ≤ 1, ϕ(z) = 1, and ∇ϕ(z) = 0 for all
z ∈ K.

Proof. We can choose an open set V ⊆ C such that V is compact and
K ⊆ V ⊆ V ⊆ U . Then U = {U \ K,V } is an open cover of U . Hence
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there exists a partition of unity on V subordinate to U ; more precisely, there
exist two functions ϕ, ψ ∈ C∞(U) with 0 ≤ ϕ, ψ ≤ 1, supp(ϕ) ∩ U ⊆ V ,
supp(ψ) ∩ U ⊆ U \K, and ϕ+ ψ = 1 on U . Then ϕ vanishes on U \ V , and
so supp(ϕ) ⊆ V . This implies ϕ ∈ C∞c (U).

Moreover, supp(ψ) ∩ K = ∅, and so ψ(z) = 0 for all points z in an
open neighborhood of K. So for z ∈ K we have ϕ(z) = 1 − ψ(z) = 1, and
∇ϕ(z) = −∇ψ(z) = 0.

Theorem 20.8. Let Ω ⊆ C be open, f ∈ C1(Ω), and Γ be a piecewise smooth
cycle in Ω that is null-homologous in Ω. Then

1

2i

∫
Γ

f(z) dz =

∫
Ω

indΓ(z) · fz̄(z) dA(z) (Gauss-Green Formula),

and for all z0 ∈ Ω \ Γ∗,

indΓ(z0) · f(z0) =
1

2πi

∫
Γ

f(z)

z − z0

dz − 1

π

∫
Ω

indΓ(z) · fz̄(z)

z − z0

dA(z)

(Cauchy-Green Formula or Pompeiu’s Formula).

Proof. We have indΓ(z) = 0 for all z ∈ C near ∂Ω ⊆ C \ Ω (since Γ is null-
homologous in Ω), and also indΓ(z) = 0 for all z ∈ C with |z| large. Hence
we can pick a compact set K ⊆ Ω such that Γ∗ ⊆ K and indΓ(z) = 0 for all
z ∈ C \K. Actually, one can take K of the form

K = {z ∈ Ω : dist(z, ∂Ω) ≥ δ and |z| ≤ R},

where δ > 0 is small enough and R > 0 is large enough.
By Lemma 20.7 there exists ϕ ∈ C∞c (Ω) with 0 ≤ ϕ ≤ 1 such that

ϕ(z)− 1 = ϕz̄(z) = 0 for z ∈ K. We now apply Proposition 20.5 to u := ϕf
(considered as a function on C by setting it ≡ 0 on C \Ω). Then u ∈ C1

c (C),
u(z) = f(z) for z ∈ Γ∗ ⊆ K, and

uz̄ = ϕz̄f + ϕfz̄ = fz̄ on K.

Hence

1

2i

∫
Γ

f(z) dz =
1

2i

∫
Γ

u(z) dz =

∫
C

indΓ(z) · uz̄(z) dA(z)

=

∫
K

indΓ(z) · uz̄(z) dA(z) =

∫
K

indΓ(z) · fz̄(z) dA(z)

=

∫
Ω

indΓ(z) · fz̄(z) dA(z).
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For the proof of the Cauchy-Green Formula we let Γ̃ := Γ − indΓ(z0)γ,
where γ(t) := z0 + reit for t ∈ [0, 2π] and r > 0 is small. Here γ depends on
r, but we suppress this in our notation.

Define

g(z) =
1

π

f(z)

z − z0

for z ∈ Ω̃ := Ω \ {z0}. Then g ∈ C1(Ω̃) and Γ̃ is null-homologous in Ω̃. Note
that

gz̄(z) =
1

π
· ∂
∂z̄

(
f(z)

z − z0

)
=

1

π
· fz̄(z)

z − z0

for z ∈ Ω̃.

By the first part we have,

1

2i

∫
Γ̃

g(z) dz =
1

2πi

∫
Γ

f(z)

z − z0

dz − indΓ(z0) · 1

2πi

∫
γ

f(z)

z − z0

dz (79)

=

∫
Ω̃

indΓ̃(z) · gz̄(z) dA(z)

=
1

π

∫
Ω

indΓ(z)· fz̄(z)

z − z0

dA(z)− indΓ(z0) · 1

π

∫
Ω

indγ(z) · fz̄(z)

z − z0

dA(z)

=
1

π

∫
Ω

indΓ(z)· fz̄(z)

z − z0

dA(z)− indΓ(z0) · 1

π

∫
B(z0,r)

fz̄(z)

z − z0

dA(z),

where in the last step we used that

indγ(z) =

{
0 for z ∈ C \B(z0, r),
1 for z ∈ B(z0, r).

Note that

lim
r→0

1

2πi

∫
γ

f(z)

z − z0

dz = lim
r→0

1

2π

∫ 2π

0

f(z0 + reit) dt = f(z0)

by continuity of f at z0 ∈ Ω, and

lim
r→0

∫
B(z0,r)

fz̄(z)

z − z0

dA(z) = 0

as easily follows from Lebesgue’s theorem on dominated convergence.
If we let r → 0 in (79) and use these limit identities, then the Cauchy-

Green formula follows.



20 THE CAUCHY TRANSFORM 178

Corollary 20.9 (Area formula). Let γ be a piecewise smooth loop in C and
assume that indγ(z) ∈ {0, 1} for all z ∈ C \ γ∗. Define

Ω = {z ∈ C \ γ∗ : indγ(z) = 1}.

Then

A(Ω) =
1

2i

∫
γ

z̄ dz.

Proof. Note that Ω is an open set, and hence measurable. We apply the
Gauss-Green Formula on C, where Γ = γ and f(z) = z̄ for z ∈ C. Then

1

2i

∫
γ

z̄ dz =

∫
C

indγ(z) dA(z) =

∫
Ω

dA(z) = A(Ω).

A consequence of the previous corollary is that under the given assump-

tions the integral

∫
γ

z̄ dz is purely imaginary. This can also been seen di-

rectly as follows. Suppose γ : [a, b]→ C is a parametrization of the piecewise
smooth loop γ. Then

Re

(∫
γ

z̄ dz

)
= Re

(∫ b

a

γ(t)γ′(t) dt

)
=

1

2

∫ b

a

(
γ(t)γ′(t) + γ(t)γ′(t)

)
dt

=
1

2

∫ b

a

d

dt

(
γ(t)γ(t)

)
dt =

[
|γ(t)|2

]b
a

= 0.



21 Runge’s Approximation Theorem

21.1. Background from Approximation Theory. Let F be a class of
functions on a set, say on a compact set K ⊆ Rn or an open set U ⊆ Rn,
and let S ⊆ F be a subclass of particularly “nice” or “simple” functions.
The basic problem of approximation theory is under what conditions we can
approximate functions in F by functions in S.

An instance for a result in this direction is the Weierstrass Approximation
Theorem. In this case F is the set C(K) of all (complex-valued) continuous
functions on a compact set K ⊆ Rn, and S is the set of all polynomials (with
complex coefficients) in the standard coordinate functions x1, . . . , xn on Rn.
Then according to this theorem for all f ∈ F = C(K) and all ε > 0 there
exists a polynomial P ∈ S such that |f(u)− P (u)| < ε for all u ∈ K.

For n = 1 and K = [a, b] ⊆ R the proof can be outlined as follows. If
f ∈ C([a, b]), then we may assume that f is a continuous function on a larger
interval [α, β] ⊆ R with [a, b] ⊆ (α, β). For l ∈ N we define

Pl(u) =

∫ β

α

f(x)(1− (u− x)2)l dx∫ 1

−1

(1− x2)l dx

, u ∈ [a, b].

Then Pl is a polynomial in u and it not difficult to see that Pl → f uniformly
on K as l→∞.

In higher dimensions one can implement a proof along very similar lines
if one uses the fact that every continuous function on a closed set A in Rn

can be extended to a continuous function on Rn (one either uses Tietze’s
Extension Theorem to justify this fact or gives a direct simple argument
based on A ⊆ Rn).

From the Weierstrass Approximation Theorem one can derive the follow-
ing consequence. Let U ⊆ Rn be open, and Kl, l ∈ N, be a compact exhaus-
tion of U (for this terminology see the proof of Theorem 8.3 and Lemma 21.5
below). Then there exists a polynomial Pl in the standard coordinate func-
tions x1, . . . , xn on Rn such that |f(u) − Pl(u)| < 1/l for l ∈ N and u ∈ Kl.
In particular, we can find a sequence of polynomials Pl such that Pl → f
locally uniformly on U as l→∞.

In R2 ∼= C we can replace the standard coordinate functions x and y on
R2 by z = x+ iy and z̄ = x− iy. So every continuous function f on an open

179
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set U ⊆ C is the locally uniform limit of a sequence of polynomials in z and
z̄. An obvious question here is whether one can strengthen this statement
and show that every holomorphic function f on U is the locally uniform limit
of polynomials in z alone.

As the following example shows this is not true in general. Let U =
C \ {0}, and f(z) = 1/z. Then f ∈ H(U), but there is no sequence {Pn} of
polynomials in z such that Pn → f locally uniformly on U . Indeed, suppose
there was such a sequence, and let γ(t) = eit for t ∈ [0, 2π]. Then

2πi =

∫
γ

dz

z
=

∫
γ

f(z) dz = lim
n→∞

∫
γ

Pn(z) dz︸ ︷︷ ︸
=0

= 0,

which is a contradiction.
As we will prove in this section (see Theorem 21.6), one has to impose

some restrictions on U to get a statement in this direction, or one has to
allow rational functions instead of polynomials.

Lemma 21.2 (Basic approximation lemma). Let U ⊆ C be open, K ⊆ U be
compact, and f ∈ H(U). Then for all ε > 0 there exists a rational function
R of the form

R(w) =
N∑
k=1

ak
w − zk

,

where N ∈ N, a1, . . . , aN ∈ C, and z1, . . . , zN ∈ C \K, such that

|f(w)−R(w)| < ε for w ∈ K.

Proof. The basic idea for the proof is very simple. We want to represent f on
K as a convolution integral of the Cauchy kernel and a function supported
away from K, and then approximate the integral by a Riemann sum.

To implement this idea, we pick a compact set K ′ such that

K ⊆ int(K ′) ⊆ K ′ ⊆ U.

Then we can find ϕ ∈ C∞c (U) such that ϕ(z) − 1 = ϕz̄(z) = 0 for z ∈ K ′

(Lemma 20.7). Then u := ϕf ∈ C1
c (C) (where it is understood that this

function is extended to C by u ≡ 0 outside U). We have u(w) = f(w) for
w ∈ K, and uz̄ = ϕz̄f by holomorphicity of f , and so

S := supp(uz̄) ⊆ U \ int(K ′) ⊆ U \K.
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Hence D := dist(S,K) > 0.
By Lemma 20.2

f(w) = u(w) = − 1

π

∫
C

uz̄(z)

z − w
dA(z) =

1

π

∫
S

uz̄(z)

w − z
dA(z)

for w ∈ K. Now let δ ∈ (0, D/10) be small. We can subdivide C into
squares of side-length δ that are non-overlapping, i.e., have disjoint interior.
Let Q1, . . . , QN be the collection of these squares that meet S, let zk be the
center of Qk, and

ak :=
1

π

∫
Qk

uz̄(z) dA(z)

for k = 1 . . . , N . Then S ⊆ Q1 ∪ · · · ∪ QN , and dist(K,Qk) ≥ D/2 for
k = 1, . . . , N . So for z ∈ Qk and w ∈ K we have∣∣∣∣ 1

w − z
− 1

w − zk

∣∣∣∣= |z − zk|
|w − z| · |w − zk|

≤ δ

(D/2) · (D/2)
=

4δ

D2
.

Hence for w ∈ K∣∣∣∣f(w)−
N∑
k=1

ak
w − zk

∣∣∣∣ =

∣∣∣∣ 1π
N∑
k=1

∫
Qk

(
uz̄(z)

w − z
− uz̄(z)

w − zk

)
dA(z)

∣∣∣∣
≤ 4δ

πD2

N∑
k=1

∫
Qk

|uz̄(z)| dA(z)

=
4δ

πD2

∫
S

|uz̄(z)| dA(z)︸ ︷︷ ︸
=:C

=
4C

πD2
δ < ε,

if δ is chosen small enough (note that C and D are independent of δ). The
claim follows.

The previous lemma allows us to approximate f on K by a rational
function whose poles are outside K. We want to show a stronger statement,
where the poles are in a prescribed position depending on K, but independent
of f . For this we need the following lemma.

Lemma 21.3 (Pole-Pushing Lemma). Let K ⊆ C be compact, V be a com-
ponent of C \K, and a ∈ V . Define

Fu(w) =
1

w − u
for w ∈ K and u ∈ V .
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Then for each u ∈ V the function Fu is uniformly approximable on K by
polynomials in Fa, i.e., for each ε > 0 there exists n ∈ N, and a0, . . . , an ∈ C
such that ∣∣∣∣ 1

w − u
−

n∑
k=0

ak
(w − a)k

∣∣∣∣ < ε for all w ∈ K.

If V is the unbounded component of C \ K, then for each u ∈ V the
function Fu is uniformly approximable on K by polynomials, i.e., for each
ε > 0 there exists n ∈ N, and a0, . . . , an ∈ C such that∣∣∣∣ 1

w − u
−

n∑
k=0

akw
k

∣∣∣∣ < ε for all w ∈ K.

Proof. The proof consists of several steps. In the following w will always be
a variable point in K.

Step 1. For a ∈ V let Pa(K) ⊆ C(K) be the set of all functions on
K that can be written as polynomials in Fa, and Aa(K) ⊆ C(K) be the
set of all functions that are uniformly approximable on K by functions in
Pa(K) (note that the functions in Aa(K) are continuous as uniform limits of
continuous functions). The space C(K) carries a natural metric d induced
by the supremum norm on C(K), i.e.,

d(g, h) := sup
w∈K
|g(w)− h(w)|, g, h ∈ C(K).

Then f ∈ Aa(K) iff there exists a sequence {fn} in Pa(K) such that fn → f
uniformly on K iff d(fn, f)→ 0 as n→∞ iff f ∈ Pa(K). So Aa(K) = Pa(K)
(where the bar refers to closure in the metric space (C(K), d)).

It is clear that Pa(K) is an algebra, i.e., a complex vector space of func-
tions with the additional property that if f, g ∈ Pa(K), then fg ∈ Pa(K).
Since Aa(K) = Pa(K), the space Aa(K) is also an algebra.

Another immediate observation is that a function f : K → C is uniformly
approximable by functions in Aa(K) iff f ∈ Aa(K) = Aa(K) = Pa(K) iff f
is uniformly approximable by functions in Pa(K).

Step 2. Now suppose that u ∈ V , r > 0, B(u, r) ⊆ V , Fu ∈ Aa(K), and
v ∈ B(u, r). We claim that Fv ∈ Aa(K). By the previous discussion it is
enough to show that Fv is uniformly approximable on K by polynomials in
Fu (because then Fv is uniformly approximable by functions in the algebra
Aa(K), and hence lies in Aa(K) itself).
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Now for w ∈ K we have

Fv(w) =
1

w − v
=

1

(w − u)− (v − u)

=
1

(w − u)
· 1

1− v − u
w − u

=
∞∑
n=0

(v − u)n

(w − u)n+1
. (80)

Note that |w − u| ≥ r for w ∈ K, and so∣∣∣∣ v − uw − u

∣∣∣∣ ≤ |v − u|r
< 1.

Hence the convergence of the series in (80) is uniform for w ∈ K by the
Weierstrass M -test. We conclude that Fv is uniformly approximable on K
by partial sums of this series and hence by polynomials in Fu as desired.

Step 3. We claim that Fu ∈ Aa(K) for all u ∈ V . To see this, let u ∈ V
be arbitrary. Since V is open and connected, there exists a polygonal path
P in V joining a and u (Theorem 2.31). Then r := dist(P,C \ V ) > 0. On
P we can find points u0 = a, u1, . . . , un = u such that |uk − uk−1| < r, and
so uk ∈ B(uk−1, r) ⊆ V for all k = 1, . . . , n.

Note that Fu0 = Fa ∈ Pa(K) ⊆ Aa(K), and so Fu1 ∈ Aa(K) by what we
have seen in Step 2. Repeating this argument, we conclude that

Fu0 , Fu1 , . . . , Fun = Fu ∈ Aa(K).

This establishes the first part of the lemma.
Step 4. Now suppose that V is the unbounded component of K. We

denote by P∞(K) ⊆ C(K) the set of all functions that can written as poly-
nomials (in w) on K, and by A∞(K) ⊆ C(K) the set of all functions that
are uniformly approximable on K by functions in P∞(K). Again P∞(K) and
A∞(K) are algebras, and A∞(K) = A∞(K) = P∞(K).

We can pick a ∈ V such that

|a| > R := sup{|w| : w ∈ K}.

Then for w ∈ K we have

Fa(w) =
1

w − a
= −1

a
· 1

1− w/a
= −

∞∑
n=0

wn

an+1
. (81)
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Note that |w/a| ≤ R/|a| < 1, and so the convergence of the series in (81)
is uniform on K by the Weierstrass M -test. Hence Fa is uniformly approx-
imable on K by partial sums of this series, and so by elements in P∞(K).
This shows that Fa ∈ A∞(K). Since A∞(K) is an algebra, we conclude that
Pa(K) ⊆ A∞(K), and so Aa(K) = Pa(K) ⊆ A∞(K) = A∞(K).

Now if u ∈ V is arbitrary, then Fu ∈ Aa(K) ⊆ A∞(K) by what we
have seen in Step 2. This shows that Fu is uniformly approximable on K by
polynomials as claimed.

Lemma 21.4 (Improved approximation lemma). Let U ⊆ C be open, K ⊆ U
be compact, and f ∈ H(U). Suppose A ⊆ C \ K is a set that meets each
bounded component of C \K.

Then for all ε > 0 there exists a rational function R that has no poles
outside the set A ∪ {∞} such that

|f(w)−R(w)| < ε for w ∈ K.

If C \ K has no bounded component, then for all ε > 0 there exists a
polynomial P such that

|f(w)− P (w)| < ε for w ∈ K.

The second part of this lemma can be considered as a special case of
the first part if one chooses A = ∅. Here we consider rational functions as
holomorphic maps on Ĉ. The non-constant polynomials are precisely those
rational functions that have a pole at ∞ and no other poles.

Proof. This immediately follows from Lemma 21.2 if one “pushes” the poles
zk of the approximating rational function R to a location in A. This can be
done with arbitrarily small error by Lemma 21.3. If C \K has no bounded
component, then one can push each pole to∞, i.e., get a polynomial approx-
imation, by the second part of Lemma 21.3.

Lemma 21.5 (Compact exhaustions with good properties). Let U ⊆ C be
open. Then there exist compact sets Kn ⊆ U for n ∈ N such that

(i) Kn ⊆ int(Kn+1) for n ∈ N,

(ii) U =
⋃
n∈N

Kn,
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(ii) every bounded component of C \ Kn for n ∈ N contains a bounded
component of C \ U .

The first two properties (i) and (ii) just say that the sequence Kn, n ∈ N,
is a compact exhaustion of Kn. The additional property (iii) intuitively says
that each “hole” (=bounded complementary component) of a set Kn contains
at least one “hole” of U . So the sets Kn may have fewer holes than U , but
not additional unnecessary holes.

Proof. For n ∈ N we define

Vn =
⋃

a∈C\U

B(a, 1/n) ∪ {z ∈ C : |z| > n}, (82)

and Kn = C \ Vn. Then the sets Kn, n ∈ N, are compact and have the
properties (i) and (ii) (excercise!).

Suppose that n ∈ N and C is a bounded component of C\Kn = Vn. Since
the sets in the union (82) are connected, it follows that C contains each of
these sets that it meets. Since C is also bounded, it follows that

C =
⋃
a∈A

B(a, 1/n)

for some non-empty set A ⊆ C\U . Pick a ∈ A, and let C ′ be the component
of C \U that contains a. Then C ′ ⊆ C \U ⊆ C \Kn is connected and meets
C. Hence C ′ ⊆ C, and so C ′ is bounded. This shows that C contains a
bounded component of C \ U .

Theorem 21.6 (Runge’s Approximation Theorem). Let U ⊆ C be open,
f ∈ H(U), and A ⊆ C \ U be a set that meets each bounded component of
C \ U .

Then there exists a sequence {Rn} of rational functions that have no poles
outside the set A ∪ {∞} such that Rn → f locally uniformly on U .

If C \U has no bounded component, then there exists a sequence {Pn} of
polynomials such that Pn → f locally uniformly on U .

Again we can consider the second part as a special case of the first part
if we choose A = ∅, but is useful to state this case explicitly.
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Proof. Let Kn, n ∈ N, be a compact exhaustion of U as in Lemma 21.5.
Then every bounded component of one of the sets C\Kn contains a bounded
component of C \ U , and hence a point in A. By Lemma 21.4 there exists a
rational function Rn with no poles outside A ∪ {∞} such that

|f(w)−Rn(w)| < 1/n for w ∈ Kn.

Since every compact set K ⊆ U lies in each set Kn for n large enough, it
follows that Rn → f compactly and hence locally uniformly on U .

If C \ U has no bounded component, then none of the sets C \Kn has a
bounded component either. The second part of Lemma 21.4 then shows that
we can find sequence {Pn} of polynomials such that

|f(w)− Pn(w)| < 1/n for w ∈ Kn.

Again this implies Pn → f locally uniformly on U as desired.

Corollary 21.7. Let U ⊆ C be a region such that Ĉ \ U is connected, and
f ∈ H(U). Then there exists a sequence of polynomials {Pn} such that
Pn → f locally uniformly on U .

Proof. Let Kn, n ∈ N, be a compact exhaustion of U as in Lemma 21.5.
Then for all n ∈ N the set C \Kn has no bounded component.

Indeed, suppose V is a bounded component of one of the sets C \ Kn.
Then there exists a bounded component C of C \ U such that C ⊆ V , and

so (Ĉ \ U) ∩ V 6= ∅.
Let V ′ ⊆ Ĉ be the union of all other components of C \ Kn and {∞}.

Then V and V ′ are open subsets of Ĉ (Note that C \ Kn has precisely one
unbounded component. Together with ∞ it provides an open neighborhood
of ∞ that lies in V ′).

We have V ∩ V ′ = ∅, and

V ∪ V ′ ⊇ (C \Kn) ∪ {∞} = Ĉ \Kn ⊇ Ĉ \ U.

Since (Ĉ \ U) ∩ V 6= ∅ and ∞ ∈ (Ĉ \ U) ∩ V ′ 6= ∅, we get a contradiction to

our assumption that Ĉ \ U is connected.
Since no set C \Kn has a bounded component, the improved approxima-

tion lemma (Lemma 21.4) provides polynomials Pn such that

|f(w)− Pn(w)| < 1/n for w ∈ Kn.

Then Pn → f locally uniformly on U .
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