Homework 5 (Due: Fr 11/01)

Problem 1: Let $\Omega \subseteq \mathbb{C}$ be a convex region, and f a zero-free holomorphic function on Ω .

a) Show that f has a holomorphic logarithm, i.e., there exists a function $L \in H(\Omega)$ such that

$$f(z) = \exp(L(z))$$
 for all $z \in \Omega$.

Hint: Do not use the function $w \mapsto \log(w)$ for $w \in \mathbb{C} \setminus \{0\}$ which we have not yet defined (and cannot be defined as a holomorphic function on $\mathbb{C} \setminus \{0\}$).

b) Show that f has a holomorphic square root, i.e., there exists a function $S \in H(\Omega)$ such that

$$f(z) = S(z)^2$$
 for all $z \in \Omega$.

Problem 2:

a) Let f be a continuous function in \mathbb{C} , and $\{z_n\}$ and $\{w_n\}$ be convergent sequences in \mathbb{C} with $z_n \to z$ and $w_n \to w$ as $n \to \infty$. Show that

$$\lim_{n \to \infty} \int_{[z_n, w_n]} f(z) \, dz = \int_{[z, w]} f(z) \, dz.$$

b) Let f be a continuous function in \mathbb{C} that is holomorphic on $\mathbb{C} \setminus \mathbb{R}$. Show that f is holomorphic on \mathbb{C} .

Problem 3:

a) Show that the power series

$$\sum_{n=0}^{\infty} \frac{i^{n+1}}{(n+1)!} z^n$$

converges for all $z \in \mathbb{C}$.

- b) Let g be the function represented by the power series in a). Find a simple expression for g(z) if $z \neq 0$.
- c) For r > 0 let $\alpha_r \colon [0,2] \to \mathbb{C}$ be the path defined by

$$\alpha_r(t) = \begin{cases} re^{i\pi t}, & t \in [0,1], \\ (2t-3)r, & t \in [1,2]. \end{cases}$$

Show that $\int_{\alpha_r} g(z) dz = 0.$

d) Show that

$$\lim_{r \to \infty} \int_{[-r,r]} g(z) \, dz = i\pi.$$

e) Show that

$$\int_0^\infty \frac{\sin x}{x} \, dx = \frac{\pi}{2}.$$

Problem 4: Let f be a holomorphic function in the unit disk \mathbb{D} . Suppose that $|f(1/n)| \leq e^{-n}$ for all $n \in \mathbb{N}$, $n \geq 2$. Show that f vanishes identically.