Homework 1 (due: Mo, 10/7)

Problem 1:

- a) Let (X, d) be a metric space, and $A \subseteq X$ be a connected set. Show that every set $B \subseteq X$ with $A \subseteq B \subseteq \overline{A}$ is also connected.
- b) Suppose $f: \mathbb{C} \to \mathbb{C}$ is a continuous function with $\exp(f(z)) = 1$ for all $z \in \mathbb{C}$. Show that f is constant.

Problem 2:

- a) Show that the function $z \mapsto \frac{z^2+3}{z+1}$ is continuous on $\mathbb{C} \setminus \{-1\}$ by using the ϵ - δ -definition of continuity.
- b) Suppose $\{z_n\}$ and $\{w_n\}$ are convergent sequences in \mathbb{C} , say $z_n \to z$ and $w_n \to w$. Assume $w_n \neq 0$ for $n \in \mathbb{N}$ and $w \neq 0$. Show that $z_n/w_n \to z/w$ by using the ϵ -definition for convergence.

Problem 3:

- a) Suppose that $z, w \in \mathbb{C}, |z|, |w| < 1$. Show that $\left| \frac{z w}{1 \overline{z}w} \right| < 1$.
- b) The set $M = \{z \in \mathbb{C} : |z 1|/|z + 2i| < \sqrt{2}\}$ is the complement of a closed disk. Determine its center and its radius.

Problem 4:

- a) Let $P(z) = a_0 + a_1 z + \dots + a_{k-1} z^{k-1} + z^k$ be a polynomial of degree $k \in \mathbb{N}$ with complex coefficients a_0, \dots, a_{k-1} . Suppose that $P(z) = \prod_{j=1}^k (z z_j)$. Find an expression for $\sum_{j=1}^k z_j^2$ in terms of the coefficients of P.
- b) Let $n \in \mathbb{N}$ and $\zeta_k = \exp\left(\frac{2\pi ik}{n}\right)$ for $k = 1, \dots, n-1$. Find a simple expression for

$$\sum_{k=1}^{n-1} \frac{1}{(\zeta_k - 1)^2}$$

in terms of n.