Homework 7 (due: Mo, Nov. 20)

Problem 1: Let (X, \mathcal{A}, μ) be a measure space.

a) If $f: X \to \mathbb{C}$ is measurable, recall that

$$||f||_{\infty} := \inf\{\lambda \in [0,\infty] : \mu(\{x \in X : |f(x)| > \lambda\}) = 0\}.$$

Show that this infimum is attained as a minimum and that $|f(x)| \leq ||f||_{\infty}$ for μ -almost every $x \in X$.

b) Show that $\|\cdot\|_{\infty}$ is a norm on $L^{\infty}(\mu)$.

c) Show that L^{∞} is complete: if $\{f_n\}$ is a Cauchy sequence in $L^{\infty}(\mu)$, then there exists a function $f \in L^{\infty}(\mu)$ such that $||f_n - f||_{\infty} \to 0$ as $n \to \infty$.

Problem 2: (cf. Folland, p. 63, Prob. 34) Let (X, \mathcal{A}, μ) be a measure space, and let $g, f, and f_n$ for $n \in \mathbb{N}$ be measurable functions on X with $g \in L^1(\mu)$ and $|f_n| \leq g$ for all $n \in \mathbb{N}$.

Show that if $f_n \to f$ in measure, then $f_n \to f$ in L^1 .

Problem 3: (cf. Folland, p. 63, Prob. 36) Let (X, \mathcal{A}, μ) be a measure pace, $A_n \in \mathcal{A}$ with $\mu(A_n) < \infty$ for $n \in \mathbb{N}$, and $f \in L^1(\mu)$.

Show that if $\chi_{A_n} \to f$ in L^1 , then there exists a set $A \in \mathcal{A}$ with $\mu(A) < \infty$ such that $f = \chi_A \mu$ -a.e. on X.

Problem 4: (cf. Folland, p. 59, Prob. 21) Let (X, \mathcal{A}, μ) be a measure pace, $f \in L^1(\mu)$, and $f_n \in L^1(\mu)$ for $n \in \mathbb{N}$. Suppose that $f_n(x) \to f(x)$ as $n \to \infty$ for μ -a.e. $x \in X$. Show that then

$$f_n \to f$$
 in L^1 if and only if $\int |f_n| d\mu \to \int |f| d\mu$ as $n \to \infty$.