Homework 2 (due: Fr, Oct. 13)

Problem 1: Let X be a set and \mathcal{F} be a family of subets of X. Then \mathcal{F} is called a π -system on X if it is closed under finite intersections: if $A, B \in \mathcal{F}$, then $A \cap B \in \mathcal{F}$. The family \mathcal{F} is called a λ -system on X if it has the following properties:

(i)
$$X \in \mathcal{F}$$
,

(ii) if $A, B \in \mathcal{F}$ and $B \subseteq A$, then $A \setminus B \in \mathcal{F}$,

(iii) if $A_n \in \mathcal{F}$ for $n \in \mathbb{N}$ and $A_n \nearrow$, then $\bigcup_{n \in \mathbb{N}} A_n \in \mathcal{F}$.

a) Show that if S is any family of subsets of X, then there exists a smallest λ -system on X, denoted $\lambda(S)$, that contains S.

b) Suppose S is a π -system on X and $\mathcal{F} = \lambda(S)$ is the smallest λ -system containing S. Show that $\mathcal{F} = \lambda(S)$ is a π -system. Hint: First show that for fixed $S \in S$ the family of all $A \subseteq X$ with $A \cap S \in \lambda(S)$ is a λ -system.

c) Prove Dynkin's π - λ -Theorem: if S is a π -system and \mathcal{F} a λ -system on X that contains S, then $\sigma(S) \subseteq \mathcal{F}$, i.e., \mathcal{F} contains the σ -algebra generated by S.

Problem 2: Let μ and ν be measures on a measure space (X, \mathcal{F}) and $\mathcal{S} \subseteq \mathcal{F}$ a π -system that generates \mathcal{F} (i.e., $\mathcal{F} = \sigma(\mathcal{S})$). Suppose that $\mu(S) = \nu(S)$ for all $S \in \mathcal{S}$.

a) Show that if μ and ν are finite measures with $\mu(X) = \nu(X)$, then $\mu = \nu$. Give an example that shows that this implication is not true without the requirement that \mathcal{S} is a π -system.

b) Prove the following extension of (a): Suppose there exist sets $S_n \in \mathcal{S}$ with $\mu(S_n) = \nu(S_n) < \infty$ for $n \in \mathbb{N}$ and $\bigcup_{n \in \mathbb{N}} S_n = X$. Then $\mu = \nu$.

Problem 3: Let μ be a Borel measure on \mathbb{R}^n , i.e., a measure defined on the Borel σ -algebra \mathcal{B} on \mathbb{R}^n . Suppose that $\mu(K) < \infty$ for each compact set $K \subseteq \mathbb{R}^n$.

a) Show that if $F \subseteq \mathbb{R}^n$ is a Borel set with $\mu(F) < \infty$ and we define

$$\nu(A) = \mu(F \cap A) \text{ for } A \in \mathcal{B},$$

then ν is a finite Borel measure on \mathbb{R}^n .

b) Show that μ is *regular* in the following sense:

 $\mu(A) = \inf\{\mu(U) : U \subseteq \mathbb{R}^n \text{ open and } A \subseteq U\}$

for each Borel set $A \subseteq \mathbb{R}^n$ (outer regularity) and

 $\mu(A) = \sup\{\mu(K) : K \subseteq \mathbb{R}^n \text{ compact and } K \subseteq A\}$

for each Borel set $A \subseteq \mathbb{R}^n$ (inner regularity).

Problem 4: Let (X, \mathcal{A}) be a measure space, and μ and ν be measures on (X, \mathcal{A}) . The measure ν is called *absolutely continuous with respect to* μ if every μ -null set is also a ν -null set (i.e., $A \in \mathcal{A}$ and $\mu(A) = 0$ imply $\nu(A) = 0$).

Show that if ν is a finite measure, then ν is absolutely continuous with respect to μ if and only if the following condition is true: for each $\epsilon > 0$ there exists $\delta > 0$ such that for all $A \in \mathcal{A}$ we have the implication $\mu(A) < \delta \Rightarrow \nu(A) < \epsilon$.

Show that this equivalence is not true without the assumption that ν is finite.