
Math 245A Fall 2017

Remarks for the solutions of Homework 3

I will present a detailed solution for Problem 3 and give some hints for the other
problems.

Problem 1. Part (a) essentially reduces to the distributive law for numbers in
[0,∞]. In part (b) one decomposes the intervals appearing in the ith coordinate of
the rectangles by using all points that appear as endpoints of any of the intervals
in the ith coordinate. Part (d) uses a covering argument based on the fact that
an open cover of a compact set has a finite subcover. It will be explained in the
TA session.

Problem 2. One proves the implication chain (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒ (v)
⇒ (i). Most of the implications are straightforward based on covering arguments
with careful book keeping of volume (=Lebesgue measure). For example, to prove
(ii)⇒ (iii) one has to find a cover of a rectangle R by cubes whose total volume is
only slightly larger than the volume of R. For this one increases R slightly to an
h-rectangle R′ that is the product of intervals with rational side lengths. Then one
considers the least common denominator N of the rational numbers representing
these side lengths. Then R′ can be covered by pairwise disjoint translates of the
h-cube (0, 1/N ]n. The total volume of these cubes is equal to the volume of R′

and hence very close to the volume of R.

Problem 3. We will use the following notation. If x = (x1, . . . , xn) and y =
(y1, . . . , yn) are two points in Rn, written as row vectors with coordinates xi ∈ R
and yi ∈ R, respectively, where i = 1, . . . , n, then we denote by

|x− y| := ((x1 − y1)2 + · · ·+ (xn − yn)2)1/2

their Euclidean distance. If a ∈ Rn and r > 0 we denote by

B(a, r) := {x ∈ Rn : |x− a| < r}
the open ball and by

B(a, r) := {x ∈ Rn : |x− a| ≤ r}
the closed ball of radius r centered at a.

In order to prove the statement in Problem 3, we will establish several claims.

Claim 1. Let A ⊆ Rn be a bounded set and g : Rn → R be a C1-smooth
function. Then g is Lipschitz on A, i.e., there exists a constant L ≥ 0 such that

|g(x)− g(y)| ≤ L|x− y|
for all x, y ∈ A.
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First note that because A is bounded, there exists a number R > 0 such that
A ⊆ Q := [−R,R]n. The cube Q is a convex set. This mean that if x, y ∈ Q and
t ∈ [0, 1], then tx + (1 − t)y ∈ Q. To see this, note that if x = (x1, . . . , xn), y =
(y1, . . . , yn) ∈ Q, then we have xi, yi ∈ [−R,R] for i = 1, . . . , n. If t ∈ [0, 1]
and i ∈ {1, . . . , n}, then the ith coordinate of the point tx + (1 − t)y is equal to
txi+(1−t)yi. Since xi, yi ∈ [−R,R] and t ∈ [0, 1], we have txi+(1−t)yi ∈ [−R,R]
for each i = 1, . . . , n. Hence tx+ (1− t)y ∈ Q.

We denote by ∂ig the partial derivative of g with respect to the ith coordinate
in Rn, where i ∈ {1, . . . , n}. Since g is C1-smooth, ∂ig is a continuous function
on Rn. Now the set Q = [−R,R]n is closed and bounded, and hence compact. So
∂ig attains its maximum and minimum on Q. In particular, ∂ig is bounded on Q.
This means that for each i ∈ {1, . . . , n} there exists a constant Mi ≥ 0 such that

(1) |∂ig(u)| ≤Mi

for all u ∈ Q.
Define L := (M2

1 +· · ·+Mn)1/2 and let x = (x1, . . . , xn), y = (y1, . . . yn) ∈ A ⊆ Q
be arbitrary. We consider the function h : [0, 1]→ R defined as

h(t) = g(tx+ (1− t)y)

for t ∈ [0, 1]. By the chain rule, this is a differentiable function with derivative

(2) h′(t) = (x1 − y1)∂1g(ut) + · · ·+ (xn − yn)∂ng(ut).

for t ∈ [0, 1], where ut := tx+ (1− t)y. This formula shows that h′ is a continuous
function on [0, 1]. So by the fundamental theorem of calculus we have

(3) h(1)− h(0) =

∫ 1

0

h′(t) dt.

Note that ut = tx + (1− t)y in Q for t ∈ [0, 1], because Q is convex. Hence by
(1) we have

(4) |∂ig(ut)| ≤Mi

for all i ∈ {1, . . . , n} and t ∈ [0, 1].
Now (2), (3), (4), and the Cauchy-Schwarz inequality imply that

|g(x)− g(y)| = |h(1)− h(0)| =
∣∣∣∣∫ 1

0

h′(t) dt

∣∣∣∣
≤ max

t∈[0,1]
|h′(t)|

≤M1|x1 − y1|+ · · ·+Mn|xn − yn|
≤ (M2

1 + · · ·+M2
n)1/2 · ((x1 − y1)2 + · · ·+ (xn − yn)2)1/2

= L|x− y|.
This is the desired inequality. Claim 1 follows.
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Claim 2. Let A ⊆ Rn be a bounded set and f : Rn → Rn be a C1-smooth map.
Then f is Lipschitz on A, i.e., there exists a constant L ≥ 0 such that

|f(x)− f(y)| ≤ L|x− y|

for all x, y ∈ A.

The difference to Claim 1 is that the map in question is not real-valued, but Rn-
valued. Claim 2 can easily be derived from Claim 1. Indeed, let f1, . . . , fn : Rn → R
be the component functions of f , i.e., for x ∈ Rn the vector f(x) ∈ Rn has the
form

f(x) = (f1(x), . . . , fn(x)).

Since f is C1-smooth, each function fi for i ∈ {1, . . . , n} is C1-smooth on Rn. In
particular, fi is Lipschitz on our given bounded set A ⊆ Rn by Claim 1. Hence
for each i ∈ {1, . . . , n} there exists Li ≥ 0 such that

|fi(x)− fi(y)| ≤ Li|x− y|

for all x, y ∈ Rn.
Now define L := (L2

1 + · · ·+ L2
n)1/2. Then for all x, y ∈ A we have

|f(x)− f(y)| = |(f1(x)− f1(y), . . . , fn(x)− fn(y))|

=
(
(f1(x)− f1(y))2 + · · ·+ (fn(x)− fn(y))2

)1/2
≤ (L2

1|x− y|2 + · · ·+ L2
n|x− y|2)1/2

= L|x− y|,

as desired.

Recall that a null-set N ⊆ Rn is a measurable set in Rn that has Lebesgue
measure 0. We will use the characterization of null-sets that was given in (iv) of
Problem 2.

Claim 3. Let N ⊆ Rn be a null-set, and f : N → Rn be a Lipschitz map. Then
f(N) is also a null set.

Under the assumptions as in the claim, there exists a constant L > 0 such that

|f(x)− f(y)| ≤ L|x− y|

for all x, y ∈ N . Note that we can assume that the Lipschitz constant L is positive
here, because we can always increase the Lipschitz constant if necessary.

In order to show that f(N) is a null-set, we want to verify condition (iv) in
Problem 2. So let ε > 0 be arbitrary. Since N is a null-set, there exist balls
Bk := B(ak, rk) with ak ∈ Rn and rk > 0 for k ∈ N such that

(5) N ⊆
⋃
k∈N

Bk
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and

(6)
∞∑
k=1

rnk <
ε

2nLn
.

We may assume that Bm ∩ N 6= ∅ for each m ∈ N, because if Bm ∩ N = ∅, then
we can just delete the ball Bm from the countable cover {Bk}k∈N of N without
affecting (5).

So for each k ∈ N we can pick a point bk ∈ Bk ∩ N . Then if x ∈ Bk ∩ N is
arbitrary, we have

|x− bk| ≤ |x− ak|+ |ak − bk| < 2rk.

So if ck := f(bk), then

|f(x)− ck| = |f(x)− f(bk)| ≤ L|x− bk| < 2Lrk.

Since x ∈ Bk ∩N was arbitrary, we conclude

f(N ∩Bk) ⊆ B(ck, 2Lrk).

So if we define B′k := B(ck, sk) with sk := 2Lrk for k ∈ N, then

f(N) = f

(⋃
k∈N

(N ∩Bk)

)
=
⋃
k∈N

f(N ∩Bk) ⊆
⋃
k∈N

B′k,

and
∞∑
k=1

snk = (2L)n
∞∑
k=1

rnk < ε.

Since ε > 0 was arbitrary, we conclude that f(N) is a null-set, as desired.

Claim 4. Let f : Rn → Rn be a C1-smooth map and N ⊆ Rn be a null-set.
Then f(N) is a null-set.

This is the statement of Problem 3. To prove it, we consider Nk := N ∩B(0, k)
for k ∈ N. Then Nk ⊆ N , and so Nk is a null-set, because subsets of null-sets
are null-sets. Moreover, Nk ⊆ B(0, k), and so Nk is a bounded set. Claim 2 and
Claim 3 now imply that f(Nk) is a null-set.

Note that N =
⋃

k∈NNk and so

f(N) = f

(⋃
k∈N

Nk

)
=
⋃
k∈N

f(Nk).

Since each set f(Nk), k ∈ N, is a null-set and hence measurable, the set f(N)
is measurable as the countable union of measurable sets. Moreover, countable
subadditivity of Lebesgue measure λ on Rn shows that

0 ≤ λ(f(N)) = λ

( ⋃
k∈N

f(Nk)

)
≤

∞∑
k=1

λ(f(Nk)) =
∞∑
k=1

0 = 0.
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It follows that λ(f(N)) = 0. Hence f(N) is a null-set, as desired.

Note that by an argument very similar to the one in the previous proof one can
show that a countable union of null-sets is again a null-set.

Problem 4. First consider H = {(x1, . . . , xn) ∈ Rn : xn = 0}. This is a null-set,
because if ε > 0 is arbitrary and Mk := (2k)n−12k+1 for k ∈ N, then

H ⊆
⋃
k∈N

[−k, k]n−1 × [−ε/Mk, ε/Mk]

and so

λ(H) ≤
∞∑
k=1

λ([−k, k]n−1 × [−ε/Mk, ε/Mk])

=
∞∑
k=1

(2k)n−1(2ε/Mk) =
∞∑
k=1

ε2−k = ε.

An arbitrary affine hyperplane P is the image of H0 under a suitable affine map
f : Rn → Rn. Such an affine map is C1-smooth (actually C∞-smooth). Hence P is
a null-set by Problem 3. This implies that every subset N of P is also a null-set.
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