Math 245A Fall 2017

Remarks for the solutions of Homework 2

I will present a detailed solution for Problem 1(b) and give some hints for the
other problems.

Problem 1. (a) The intersection
A(S) = ﬂ{A : A is a A-system on X that contains S}

of all A-systems that contain S is the smallest A-system that contains S.

(b) Suppose that S is a m-system on X and A(S) is the smallest A-system that
contains . We want to show that A(S) is a m-system. To see this, we first
establish the following statement.

Claim 1. Let S € S be arbitrary and define A := {A C X : SNA € \S)}.
Then A is a A-system that contains S and so A(S) C A.

For the proof of Claim 1 first note that if S” € S is arbitrary, then SNS" € S C
A(S), because § is a m-system. Hence S’ € A. It follows that S C A as desired.

It remains to show that A is a A-system. To see this, we verify conditions
(1)—(iil) of a A-system for A.

(i) We have X € A, because SN X =5 €S CA(S).

(ii) Suppose A, B € A are arbitrary. Then ANS € A(S) and BNS € A\(S) by
definition of \A. Hence by condition (ii) for the A-system A(S) we have

(ANS)\ (BNS) e AS).
This in turn implies that (we use the usual notation N¢:= X \ N for N C X)
(A\B)NS=(ANB)NS=(ANnS)N B°

=(ANS)N(B°USY)  (note that (AN S)N S =10)
=(ANnS)N(BNS) (B¢U S°=(BNS) by de Morgan)
=(ANS)\(BNS) e AS).

This implies A\ B € A as desired.

(iii) Suppose A, € A for n € N are arbitrary sets with A,, . Then we have
A, NS € XS) for n € N. Moreover, for each n € N we have A,, C A, 11, and so

A,NS C A, 1NS. Hence A, NS . If we apply condition (iii) for the A-system
A(S), then we see that

(U An) nS=JA.nS9)eS).

neN

It follows that |J, . An € A as desired.
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We conclude that A is a A-system that contains S. In particular, A\(S) C A,
because A(S) is the smallest A-system that contains S. Claim 1 follows.

Claim 2. We have SN S" € A(S) for all S € S and 5" € A(S).

This easily follows from Claim 1. Indeed, let S € S and S” € A(S) be arbitrary.
Define A for the set S as in Claim 1. Then Claim 1 shows that A\(S) C A. In
particular, S” € A. This means that SN .S" € A(S) by definition of A.

Claim 3. Let S € A(S) be arbitrary and define 4:={AC X :SNAeAS)}
Then A is a A\-system that contains S and so A(S) C A.

Note that while in Claim 1 we assumed S € &, here we make the weaker
assumption S € A(S).

The proof of Claim 3 is very similar to the proof of Claim 1. First note that if
S’ € S is arbitrary, then SNS" € A\(S) by Claim 2 (note that there the roles of S
and S’ are reversed). Hence S” € A. It follows that S C A as desired.

That A is a A-system is proved in the same way as in the proof of Claim 1.
Indeed, to see that property (i) of a A-system is true for A4, we note that X € A,
because X NS =S5 € A(S) by the hypothesis in Claim 3. The proofs of property
(i) and (iii) are identical to the proofs in Claim 1. The arguments there were
valid for an arbitrary set S C X. Claim 3 follows.

Now we can show that A\(S) is a m-system. Indeed, let S, S € A(S) be arbitrary
and define A for the set S as in Claim 3. Then Claim 3 shows that A\(S) C A.
In particular, S" € A. This means that S NS € A(S) by definition of A. The
statement follows.

(c) By (b) the A-system A(S) is also a m-system. Moreover, every A-system that
is also a m-system is a o-algebra. Hence A(S) is a o-algebra. The statement easily
follows.

Problem 2. (a) Consider the family A of all sets A € F such that u(A) = v(A).
Show that A is a A-system that contains S. Then o(S) C A by the m-A-Theorem.
This implies p = v.

For a counterexample consider X = {1,2,3,4}, F = P(X), S = {{1,2},{1,3}},
= %(51 +04), v = %(52 + 03), where §, denotes Dirac measure at a € X. Note
that o(S) = P(X).

(b) Apply (a) to the measures obtained by “restricting to” S, (as in Prob. 3(a)).
Then p(A) = v(A) whenever A € F and A C S,,. Then “make the sets S, disjoint”
and use countable additivity.

Problem 3. (a) Easy.

(b) Break R™ up into pairwise disjoint Borel sets F},, n € N, with u(F,) < oo.
Each of the “restricted” measures u|F, (defined as in (a)) is regular as follows

from HW1, Prob. 2. Use this in combination with careful estimates.
2



Problem 4. One implication is trivial. For the other implication assume that
1(A) =0 = v(A) = 0. Then argue by contradiction: suppose there exists € > 0
(“bad” €) such that no matter how small § > 0 is, there exists a set A € A with
u(A) < 9, but v(A) > e. Use this for 6 = 1/2™ and obtain sets A,. Consider
A= ﬂnEN Ukzn Ak

For the counterexample consider counting measure v be on N, and the measure
w on N that assigns weight 1/2" to n, i.e.,

1

p(A) = on
ncA

for A C N.



