
Math 245A Fall 2017

Remarks for the solutions of Homework 1

I will present a detailed solution for Problem 1 (b) (including part (a)) and give
some hints for the other problems.

Problem 1. Suppose X is a set and A is a σ-algebra on X with infinitely many
elements. We want to show that then A contains uncountably many elements.
The idea of the proof is to find an injective map from P(N) (the power set of N)
into A. Since we know that P(N) is uncountable, the statement will easily follow
from this. We now provide the details. We will establish three claims.

Claim 1. There exist setsAn ∈ A for n ∈ N such thatAn+1 ⊆ An andAn+1 6= An

for all n ∈ N.

In other words, we claim that there exists a strictly descending sequence of sets
in A. In order to prove Claim 1, we define the desired sets An inductively. For
this in turn it is useful to introduce the following concept: we call a set A ⊆ X
rich if A ∈ A and if A contains infinitely many (distinct) subsets that belong to
A.

Subclaim 1. If A ⊆ X is rich, then there exists a rich set B with B ⊆ A and
B 6= A.

In other words, every rich set has a rich proper subset (as usual, a set N is
called a proper subset of a set M if N ⊆ M , but N 6= M). To prove Subclaim 1,
let A ∈ A be an arbitrary rich set. Then A has infinitely subsets that belong to A.
In particular, ∅ and A cannot be the only subsets of A that belong to A. Hence
there exists a set E ⊆ A with E ∈ A, E 6= ∅, and E 6= A. Then F := A \ E also
belongs to A, because A and E belong to A and the σ-algebra A is closed under
taking differences of sets in A. Note that both E,F ∈ A are proper subsets of A.
These sets satisfy E ∪ F = A.

If E or F is a rich subset of A, then Subclaim 1 is true (choose B = E or
B = F ).

We will show that the alternative, namely, that neither E nor F is a rich subset
of A, leads to a contradiction (the subclaim then follows). In this case, both E
and F contain only a finite number of sets in A, say, the set E contains the sets
M1, . . . ,Mn ∈ A, where n ∈ N, and F contains the sets N1, . . . , Nk ∈ A, where
k ∈ N, and there are no other sets in A contained in E or F (note that n, k ≥ 1,
because ∅ ∈ A, and ∅ ⊆ E, ∅ ⊆ F ).

Now consider an arbitrary set D ∈ A with D ⊆ A. Then D ∩ E ∈ A, because
D,E ∈ A and, as a σ-algebra, A is closed under taking finite intersections of sets
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in A. Since D ∩ E ⊆ E, there exists some i ∈ {1, . . . , n} such that D ∩ E = Mi.
The same reasoning shows that D ∩ F = Nj for some j ∈ {1, . . . , k}. Then

D = D ∩ A = D ∩ (E ∪ F ) = (D ∩ E) ∩ (D ∩ F ) = Mi ∪Nj.

In other words, every subset D of A that belongs to A can be represented in the
form

D = Mi ∪Nj

with i ∈ {1, . . . , n} and j ∈ {1, . . . , k}. So there at most n · k such sets, i.e., a
finite number of these sets. This contradicts the fact that A is rich. We obtain a
contradiction, as desired. Subclaim 1 follows.

Subclaim 2. There exist rich sets An for n ∈ N such that An+1 is a proper subset
of An for each n ∈ N.

We define the sets An inductively. Let A1 := X. This is a rich set, because
A1 = X ∈ A by definition of a σ-algebra (on X) and A1 = X has infinitely many
subsets that belong to A (since A is infinite).

Suppose for n ∈ N the rich sets A1, . . . , An have been chosen so that each set is
a proper subset of the previous one in the list. Then by Subclaim 1, we can find
a rich proper subset B of An. If we define An+1 := B, then An+1 is a rich proper
subset of An as desired.

By the induction principle, we get rich sets An for all n ∈ N with the desired
inclusion properties.

Claim 1 immediately follows from Subclaim 2, because in Claim 1 we can choose
the same sets as in Subclaim 2, because by definition every rich set belongs to A.

Claim 2. There exist sets Bn ∈ A for n ∈ N such that Bn 6= ∅ and Bn ∩Bk = ∅
for all n, k ∈ N, n 6= k.

In other words, A contains an infinite sequence of pairwise disjoint non-empty
sets. This easily follows from Claim 1. Indeed, if the sets An ∈ A are as in Claim 1,
then we define Bn := An \ An+1 for n ∈ N. Then Bn is the difference of the sets
An, An+1 ∈ A, and so Bn ∈ A, because A is a σ-algebra. Since An+1 is a proper
subset of An, we have Bn = An \ An+1 6= ∅ for all n ∈ N.

To see that the sets Bn, n ∈ N, are pairwise disjoint, let n, k ∈ N with n 6= k be
arbitrary. Since the roles of n and k are symmetric, we may assume that k > n.
Then k ≥ n+ 1 and so Ak ⊆ An+1. This in turn implies

Bn ∩Bk ⊆ (An \ An+1) ∩ Ak ⊆ (An \ An+1) ∩ An+1 = ∅.
Hence Bn ∩Bk = ∅, as desired. Claim 2 follows.

Claim 3. If the sets Bn, n ∈ N, are as in Claim 2, then the map ϕ : P(N)→ A
defined as

(1) ϕ(I) :=
⋃
n∈I

Bn
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for I ⊆ N is injective.

Note that P(N) is the power set of N, i.e., the set of all subsets I of N. So
the definition in (1) makes sense, because it assigns to each element in P(N), i.e.,
each subset I of N the subset ϕ(I) of X. Actually, ϕ(I) lies in A, because every
subset I of N is countable and a countable union of the sets Bn ∈ A stays in
A, because A is a σ-algebra. Note that if I = ∅, then ϕ(∅) is an empty union.
By standard convention, this is interpreted as the empty set; so ϕ(∅) = ∅ ∈ A.
These considerations show that (1) indeed defines a map ϕ : P(N)→ A as stated
in Claim 3. After we convinced ourselves that Claim 3 is a meaningful statement,
we will now prove it.

So let I, J ⊆ N be arbitrary subsets of N with I 6= J . To show injectivity of ϕ,
we have to show that ϕ(I) 6= ϕ(J). Since I 6= J , we cannot have both I ⊆ J and
J ⊆ I (otherwise, I = J). Since the roles of I and J are symmetric, let us assume
that I 6⊆ J . Then there exists k ∈ I with k 6∈ J ; but then

∅ 6= Bk ⊆
⋃
n∈I

Bn = ϕ(I),

and

ϕ(J) ∩Bk =

(⋃
n∈J

Bn

)
∩Bk =

⋃
n∈J

(Bn ∩Bk) = ∅,

because k 6∈ J and the sets Bn, n ∈ N, are non-empty and pairwise disjoint. So
Bk 6= ∅ is a subset of ϕ(I), but not of ϕ(J). This shows that ϕ(I) 6= ϕ(J) as
desired. Claim 3 follows.

We can now prove that A is uncountable. Essentially, this immediately follows
from Claim 3. Here are the details. We argue by contradiction and assume that
A is countable. Then every subset of A is countable; in particular, the image
set ϕ(P(N)) ⊆ A of the map ϕ in Claim 3 is countable. Since ϕ : P(N) → A
is injective, this map can be considered as a bijection ϕ : P(N) → ϕ(P(N)) onto
its image (this map is injective and surjective). Hence P(N) is countable; but
we know that this is not the case (this is a well-kown fact discussed in the TA
session). We get a contradiction, showing that A is indeed unaccountable.

Problem 2. (a) Easy, if you remember that every closed set in Rn admits an
“exhaustion” by compact sets.

(b) Let ε > 0. Choose compact Kn and open Un such that

Kn ⊆ Bn := An \ An−1 ⊆ Un

and µ(Un \Kn) < ε/2n for n ∈ N.

For A =
⋃

n∈NAn choose K =
⋃N

n=1Kn with N large and U =
⋃

n∈N Un.
Estimate carefully using that limn→∞

∑∞
i=n µ(Bi) = 0.
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(c) Show that the σ-algebra A contains each open set U (follows from the fact
that U admits a “compact exhaustion”). Hence A contains each Borel set.

Problem 3. (a) Observe that

A =
⋂
n∈N

⋃
k≥n

Ak.

(b) Use (a) and play around with tails of infinite series and limits.

Problem 4. The basic idea is to show that

A = {B ⊆ R : f(B) is Borel}
is a σ-algebra on R that contains all intervals. ThenA contains the Borel σ-algebra
on R.

For this one shows that if I ⊆ R is an interval (i.e., a connected subset of R),
then R \ f(I) has no connected components that are singleton sets. This implies
the connected components of the set R \ f(I) form a family of pairwise disjoint
non-degenerate intervals. This is necessarily a countable family. It follows that
R \ f(I), and hence also f(I) is a Borel set.

To show that A is a σ-algebra, one needs to verify (among other things) that if
A ∈ A, then R \ A ∈ A. For this one shows that f(R) \ f(A) (which is a Borel
set) differs from f(R \ A) ⊇ f(R) \ f(A) by an at most countable set.
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