Prop. \(\nu \) is well-defined and a premeasure on \(\mathcal{U} \).

Proof. Suppose \(M \in \mathcal{U} \) and
\[
M = R_1 \cup \ldots \cup R_k = S_1 \cup \ldots \cup S_l
\]
for disjoint unions of \(h \)-rectangles \(R_i \) and \(S_j \).

Then by Basic Laws,
\[
A = \sum_{i=1}^{k} \mu(R_i) = B = \sum_{j=1}^{l} \nu(S_j)
\]
Similarly, \(B = A \) and so \(A = B \).

i.e., \(\nu(M) \) is well-defined.

\(\nu \) is a premeasure on \(\mathcal{U} \):
\[
\nu(\emptyset) = \left| \emptyset \times \ldots \times \emptyset \right| = \ell(\emptyset) \cdots \ell(\emptyset) = 0.
\]

Suppose \(A \in \mathcal{U} \), \(n \in \mathbb{N} \), and \(\nu \) is a premeasure disjoint and \(U A_n \in \mathcal{U} \).

\(\forall n \in \mathbb{N} \)
\[
\text{WTS } \nu(U A_n) = \sum_{n=1}^{\infty} \nu(A_n).
\]

We have disjoint unions of \(h \)-rectangles:
\[
A_n = R_{n1} \cup \ldots \cup R_{nk_n}, \quad n \in \mathbb{N}
\]
\[
U A_n = S_1 \cup \ldots \cup S_l, \quad n \in \mathbb{N}
\]

Since the \(A_n \)'s are pairwise disjoint
the \(h \)-rectangles \(R_{ni} \), \(n \in \mathbb{N}, \quad i = 1, \ldots, k_n
\]
are also pairwise disjoint.
(3) 2) Each h-rect. \(R \) is a Borel set and the h-rect. \(R \) generate the
\(\sigma \)-alg. \(B^h = B^h \) of Borel sets on
\(\mathbb{R}^n \).

In particular, each Borel set is
(Lebesgue) measurable (by Carathéodory's
Ext. Thm.).

So each h-rect. \(R \) is measurable and
\[\lambda (R) = \lambda^h (R) = \nu (R) = |R|. \]

3) Lebesgue measure is complete (each
measure induced by an outer measure is).

4) A rectangle \(R \) on \(\mathbb{R}^n \) is a compact
set of 11. U. form
\[R = [a_1, b_1] \times \ldots \times [a_n, b_n], \]
where \(a_i, b_i \in \mathbb{R} \), \(a_i \leq b_i \), \(\forall i = 1, \ldots, n \).

A rectangle is measurable (it is Borel) and
\[\lambda (R) = (b_1 - a_1) \ldots (b_n - a_n) = |R| \]
(Idea of proof: there are h-rect. \(S, T \)
with \(S \subseteq R \subseteq T \) and \(|T| - |S| \) small).

In particular,
\[\lambda \left([0,1]^n \right) = 1. \]

4. \(M \subseteq \mathbb{R}^n \), then
\[\lambda^h (M) = \inf \left\{ \sum_{i=1}^{\infty} \lambda (R_i) : R_i \subseteq M, \text{ rect. and } \right\} \]
\[M = \bigcup R_i, \quad \text{and} \]
\(M \subseteq \bigcup R_i \).
Moreover,
\[
0
\leq \bigcup_{i=1}^{k} R_{i} = U A \bigcup_{n \in \mathbb{N}} = S \cup \ldots \cup S
\]

5.5 Basic Lemma
\[
\sum_{n=1}^{N} |R_{n}| = \sum_{j=1}^{\infty} |S_{j}| = \nu (U A_{n})
\]

Det. (Lebesgue measure on \(\mathbb{R}^{n} \))
The outer measure induced by the premeasure \(\nu \) on the algebra generated by \(h \)-rectangles is called Lebesgue outer measure denoted by \(m_{n}^{*} \) (or \(\mathcal{A} = \mathcal{A}_{n}^{*} \) if not understood, or \(\mathcal{A}_{\infty} \), etc).

The measure induced by \(m_{n}^{*} \) (according to Carathéodory's Theorem) is called Lebesgue measure, denoted by \(m_{n} \), and the \(m_{n}^{*} \)-measurable sets Lebesgue measurable (or just measurable).

Rem. 1) If \(M \subseteq \mathbb{R}^{n} \), then
\[
m_{n}^{*} (M) = \inf \left\{ \sum_{n=1}^{\infty} \nu (A_{n}) : A_{n} \in \text{alg. gen. by } h \text{-rect.}, M \subseteq \bigcup_{n \in \mathbb{N}} A_{n} \right\}
\]

\[
= \inf \left\{ \sum_{i=1}^{\infty} |R_{i}| : R_{i} \text{ } h \text{-rect.}, M \subseteq \bigcup_{n \in \mathbb{N}} R_{i} \right\}
\]

\[
\text{content of } h \text{-rect.}
\]
Theorem. Let \(M \subseteq \mathbb{R}^n \). TFAE:

1) \(\lambda^*(M) = 0 \) or null set,
2) \(M \) is a set of measure zero,
3) \(\lambda(M) = 0 \)
4) for all \(\varepsilon > 0 \) there exist rectangles \(R_n \) such that \(M \subseteq \bigcup_{n=1}^{\infty} R_n \) and \(\sum_{n=1}^{\infty} \lambda(R_n) < \varepsilon \).
5) there exists a Borel set \(B \subseteq \mathbb{R}^n \) with \(M \subseteq B \) and \(\lambda(B) = 0 \).

(Homework!)

Corollary. A set \(M \subseteq \mathbb{R}^n \) is (Lebesgue) measurable if and only if there exists a Borel set \(B \subseteq \mathbb{R}^n \) and a null set \(N \subseteq \mathbb{R}^n \) such that \(M = B \cup N \).

Proof. Consider that Borel sets and null sets are measurable, and unions of measurable sets are measurable.

Suppose, in addition, that \(\lambda(M) = \lambda^*(M) \). Then for each \(k \in \mathbb{N} \), there exists a Borel set \(B_k \) and null set \(N_k \) such that

\[
\sum_{i=1}^{\infty} \lambda(R_i) < \lambda(M) + \frac{1}{k}.
\]

Then \(\lambda(M) = \lambda(B_k) \leq \sum_{i=1}^{\infty} \lambda(R_i) \), countable subadditivity.
(3.3) Let \(A \subset B_k \) for each \(k \in \mathbb{N} \).

Then \(M \subset A \subset B_k \) for each \(k \in \mathbb{N} \), so
\[
\lambda(M) \leq \lambda(A) \leq \lambda(B_k) = \lambda(M) + \frac{1}{k}.
\]

Letting \(k \to \infty \), we conclude
\[
\lambda(M) = \lambda(A).
\]

So \(\lambda(A \setminus M) = 0 \).

Now by prev. thm. there ex. a
Borel set \(C \) with \(A \setminus M \subset C \) and
\[
\lambda(C) = 0.
\]

Then \(M = (A \setminus C) \cup (M \cap C) \) Borel \(\subset C \) so well def.

For the general case, write \(M = \bigcup_{n=1}^{\infty} M_n \) where \(M_n \) measurable
and \(\lambda(M_n) < \infty \).

(details left as exercise)

\[\square\]

Thm. Lebesgue measure on \(\mathbb{R}^n \) is the
unique measure \(\lambda \) s.t.

(i) is defined on the \(\mathcal{B} \)-algebra of all
(Lebesgue)measurable sets,

(ii) is translation-invariant:
\[
\lambda(M) = \lambda(t + M) \quad \text{for all } t \in \mathbb{R}^n,
\]

(iii) \(\lambda([0,1]^n) = 1 \), \(t + M = \{ t + m : m \in M \} \)

Proof: Lebesgue measure \(\lambda \) has the
Properties (i) + (iii) clear.

(ii): If \(R \& R^{*} \) n-rect., then
54. \(t + R \) also \(h \)-closed and \(l = |t + R| \); this implies
\[
\lambda^+(M) = \lambda^+(t + M)
\]
for all \(M \in \mathbb{R} \), and
\[
\lambda^+(M) \in \mathbb{R}^+ \text{ measurable, (i.e., Lebesgue measurable)}; \quad \lambda^+(t + M) \text{ - mass}.
\]
So if \(M \in \mathbb{R}^n \) measurable, then \(t + M \) non-
and
\[
\lambda^+(t + M) = \lambda^+(t + M) = \lambda^+(M) = \lambda(M).
\]
For the uniqueness statement suppose \(m \) is a translation-invariant Borel measure on \(\mathbb{R}^n \) with \(C_0 = \mu \left(\left[0, 1 \right]^n \right) < 2^n \).

Claim \(\lambda (B) = C_0 \lambda (B) \) for each Borel closed \(B \subseteq \mathbb{R}^n \).

I. Step. For each \(h \)-cube \(Q = \left[a_i, a_i + b_i / k \right]^n \), we have
\[
\lambda (Q) = \frac{1}{k^n} C_0 = C_0 \lambda (Q) \]
indeed.

By translation-invariance all \(h \)-cubes
with some side-length have the same measure.
Now id \(Q = (0, 1/k]^n \). Then
\[
Q^* = (0, 1]^n = \bigcup \left(\frac{1}{k} + Q \right)
\]
ed \(0, 1/k - 1^2 \) \(\lambda \)-almost join with \(Q \) by \(h \)-cubes of side-length \(\frac{1}{k} \).

Hence \(\lambda (Q^*) = k^n \lambda (Q) \) so
\[
\mu (Q) = \frac{1}{k^n} \mu (Q^*) = \frac{1}{k^n} C_0 = C_0 \lambda (Q). \]
II. Step: Show claim for h - rectangles with rational side lengths. (based on I. Step)

III. Show claim for arbitrary rectangles (based on II. Step and limiting argument).

IV. Step: (Exercise!)

Now consider the measures μ and μ^* defined on Borel σ-rings \mathcal{B} in \mathbb{R}^n.

III. Step: The measures agree on the σ-system of all rectangles.

Hence (follows from HW2, Prob. 2a+6)) the measures agree on all Borel sets.

The claim follows.

Now let μ be a measure with prop. (i) + (ii) \Rightarrow (iii).

Then $C_0 = \mu \left([0,1]^n \right) \leq \mu \left(\mathbb{R}^n \right) = 1$.

So by Claim,

$$\mu (B) = C_0 \cdot \lambda (B) \quad \text{for all Borel sets } B \in \mathbb{R}^n.$$

Hence $1 = \mu \left(\mathbb{R}^n \right) = C_0 \cdot \lambda (\mathbb{R}^n) = C_0 \cdot 1 \Rightarrow C_0 = 1$.

and

$$\mu (B) = \lambda (B) \quad \text{for all Borel sets } B \in \mathbb{R}^n.$$

This implies (exercise!)

$$\mu (N) = \lambda (N) = 0 \quad \text{for all } \lambda \text{- null sets } N \in \mathbb{R}^n.$$

If $M \in \mathbb{R}^n$ is measurable, then $M = B \cup N$, where $B \in \mathbb{R}^n$ Borel and $N \in \mathbb{R}^n$ λ-null set.

Hence

$$\mu (M) = \mu (B) + \mu (N) = \lambda (B) \leq \lambda (M).$$
Similarly, \(\lambda(M) \leq \mu(M) \) for all measurable \(M \subset \mathbb{R}^n \).

Other properties of Lebesgue measure:

1) \(\lambda \) is regular, i.e.,
 for each measurable \(M \subset \mathbb{R}^n \) we have
 \[\lambda(M) = \inf \{ \lambda(A) : A \supset M, \text{compact} \} \]
 \[\lambda(M) = \sup \{ \lambda(U) : U \subset M, \text{open} \} \]
 (inner regularity)
 (outer regularity)
 (follows from HW 2, Prob. 03).

2) Behavior under linear maps:
 Let \(L : \mathbb{R}^n \to \mathbb{R}^n \) be a linear map.
 If \(M \subset \mathbb{R}^n \) is measurable, then \(\lambda(M) \)
 is also measurable, and
 \[\lambda(L(M)) = |\det(L)| \cdot \lambda(M) \]
 (homework!).
 In particular, if \(L \) is an orthogonal transformation related to the \(n \)
 \[\lambda(L(M)) = \lambda(M) \]
 "Lebesgue measure is rotation-invariant."

Not every subset \(M \subset \mathbb{R}^n \) is (Lebesgue) measurable.

Ex. for \(n = 1 \):

We define an equivalence relation on \([0,1] : \) For \(x, y \in [0,1] : x \sim y \iff y - x \in \mathbb{Q} \).
As usual, we denote the equivalence class of \(x \) as
\[
[x] = \{ y \in [0,1]: y - x \}
\]
Then
\[
[x] = [y] \text{ or } [x] \cap [y] = \emptyset \text{ for any } x, y.
\]
Now choose a representative \(x \) from each equivalence class (axiom of choice), call the set \(E \) of the representatives.

Then

i) \(E \subseteq [0,1] \)

ii) \((5 \cdot E) \cap (r + E) = \emptyset \) for \(r, s \in \mathbb{Q} \), suppose not ! Then \(r \neq s \).

\[x - y = r - s \in \mathbb{Q} \text{, and } x \sim y, \]
but \(E \) contains precisely one element from each equivalence class. Contradiction.

iii) \(\lambda([0,1]) = \lambda(U(r + E)) = \lambda([-1/2, r + 1/2]) \), \(r \in [-1/2, 1/2] \), \(\emptyset \)

Indeed if \(y \in [0,1] \) is outside the \(r \), then \(y = x + r \in r + E, \) \(x \in E \) s.t. \(y - x = r \in \emptyset \cap [-1/2, 1/2] \).

Thus \(y \in [0,1] \).

Claim The set \(E \) is not Lebesgue measurable.

Proof by contradiction. Suppose not !

Then \(E \) and hence each of its translates \(r + E \), \(r \in \emptyset \) is measurable.

Then by (ii) and (iii):

\[
1 = \lambda([0,1]) = \lambda(U(r + E)), \quad r \in [-1/2, 1/2] \cap \emptyset
\]
\[\sum_{t \in \mathbb{R} \setminus \emptyset} \lambda (t + E) \quad \text{(Poincaré Disjunction)} \]

\[\sum_{t \in \mathbb{R} \setminus \emptyset} \lambda (E) \quad \text{(Translation Invariance)} \]

So \(\lambda (E) > 0 \) and \(\sum t = +\infty \)

On the other hand:

\[+\omega = \sum_{t \in \mathbb{R} \setminus \emptyset} \lambda (E) = \lambda (U (t + E)) \]

\[\leq \lambda ([\mathbb{R}]) = 3 \quad \text{(Contradiction)} \]

Measurable Functions

Let \((\mathbb{X}, \mathcal{A})\) and \((\mathbb{Y}, \mathcal{B})\) be measure spaces.

Then a map \(f : \mathbb{X} \to \mathbb{Y} \) is called \((\mathcal{A}, \mathcal{B}) \)-measurable or just measurable (with \(\mathcal{A}, \mathcal{B} \) understood) if

\[f^{-1} (B) = \{ x \in \mathbb{X} : f(x) \in B \} \in \mathcal{A} \quad \text{for each} \quad B \in \mathcal{B} \]

(projections of measurable sets are measurable).

Facts

1. If \(\mathcal{B} = \sigma (Y) \) (i.e., \(\mathcal{B} \) is generated by \(Y \)), then
$f: (X, \mathcal{A}) \rightarrow (Y, \mathcal{B})$ is measurable if and only if $f^{-1}(B) \in \mathcal{A}$ for each $B \in \mathcal{B}$.

Proof: \(\Rightarrow \) Claim.

Let \(\mathcal{F} = \{B \subseteq X : f^{-1}(B) \in \mathcal{A}\} \).

Then \(Y \in \mathcal{F} \) by assumption.

Claim: \(\mathcal{F} \) is a \(\sigma \)-algebra on \(Y \).

i) \(\emptyset \in \mathcal{F} \):

\[f^{-1}(\emptyset) = \emptyset \in \mathcal{A}, \quad f^{-1}(Y) = X \in \mathcal{A}. \]

ii) Let \(B \in \mathcal{F} \). Then

\[f^{-1}(B^c) = f^{-1}(X \setminus B) = X \setminus f^{-1}(B) \in \mathcal{A}. \]

So, \(B^c \in \mathcal{F} \).

iii) Suppose \(B_n \in \mathcal{F} \) for \(n \in \mathbb{N} \). Then

\[f^{-1}\left(\bigcup_{n=1}^{\infty} B_n \right) = \bigcup_{n=1}^{\infty} f^{-1}(B_n) \in \mathcal{A}. \]

So, \(\bigcup_{n=1}^{\infty} B_n \in \mathcal{F} \).

By (i) - (iii), \(\mathcal{F} \) is a \(\sigma \)-algebra.

2) If \(f: (X, \mathcal{A}) \rightarrow (Y, \mathcal{B}), \ g: (Y, \mathcal{B}) \rightarrow (Z, \mathcal{C}) \) are measurable, then

\[g \circ f: (X, \mathcal{A}) \rightarrow (Z, \mathcal{C}) \] is measurable (compositions of measurable maps are measurable).
40. Proof: If $C \in \mathcal{C}$, then $g^{-1}(C) \in \mathcal{B}$.
So $(g \circ f)^{-1}(C) = f^{-1}(g^{-1}(C)) \in \mathcal{A}$. \hfill \Box

3) Let X, Y be top. spaces equipped with their Borel σ-algebras, and $f : X \to Y$ continuous. Then f is measurable (Continuous functions ("Borel measurable") are Borel measurable).

Proof: Let O_X and O_Y be the family of open sets in X and Y. Then
\[f^{-1}(O_Y) = \bigcup O_X. \]

Then $f^{-1}(O) \cup \{ \emptyset \}$ is in \mathcal{B}_X for $O \in \mathcal{B}_Y$. Hence f is measurable by Fact 1. \hfill \Box

The extended real line
\[\overline{\mathbb{R}} = \mathbb{R} \cup \{ +\infty, -\infty \}. \]

Order: $\infty \geq a \geq b$ for all $a \in \mathbb{R}$, $a \leq -\infty$.

Algebraic operations:
\[a + (\pm \infty) = +\infty \quad \text{for all} \quad a \in \mathbb{R} \setminus \{0\} \]
$\pm \infty = 0$, e.g.
$+\infty + (-\infty)$ undefined, e.g.

If $M \in \overline{\mathbb{R}}$, then $\inf M$, $\sup M \in \overline{\mathbb{R}}$
always defined.
41. Topology:

Let \(U \subseteq \mathbb{R} \) be open. If every point \(p \in U \) has a neighborhood \(N \) that belongs to \(U \), i.e.,

\[
p \in \mathbb{R}, \quad N = (p - \delta, p + \delta) \subseteq U \quad \text{for some } \delta > 0
\]

\(p = +\infty \), \(N = (a, +\infty] \subseteq U \quad \text{for some } a \in \mathbb{R} \)

\(p = -\infty \), \(N = [-\infty, a) \subseteq U \quad \text{for some } a \in \mathbb{R} \).

This defines a topology on \(\mathbb{R} \).

Note: \(\mathbb{R} \) is homeomorphic to \([-1, 1] \cup [-1, 1]

\[y : \mathbb{R} \rightarrow [-1, 1] \cup [-1, 1] \]

\[x \rightarrow \begin{cases} \frac{2}{\pi} \arctan x & x \in \mathbb{R} \\ 0 & x = \pm \infty \end{cases} \]

is a homeomorphism.

Borel sets: \(B \subseteq \mathbb{R} \) is Borel in \(\mathbb{R} \)

if and only if \(B \cap \mathbb{R} \) is Borel in \(\mathbb{R} \) (exercise!)

A function on a space \(X \) is \(\mathbb{R} \)-valued if and only if the target

\(\mathbb{R} \)

is accordingly the \(\mathbb{R} \)-valued function on \(X \).

We always equip the target \(X \) with

the Borel \(T_1 \)-topology on \(X \).
If X carries a σ-algebra \mathcal{A}, then a function $f : X \to \mathbb{E}$ is measurable if $f^{-1}(M) \in \mathcal{A}$ for each $M \in \mathcal{B}_\mathbb{E}$.

Note: Often $X = \mathbb{R}$. Then there are two natural σ-algebras on \mathbb{R}:
- The Borel σ-algebra $\mathcal{B} = \mathcal{B}(\mathbb{R})$, and
- the σ-algebra generated by all Lebesgue measurable sets.

A function $f : \mathbb{R} \to \mathbb{E}$ is called Lebesgue measurable if just measurable if
\[f^{-1}(E) \in \mathcal{A}, \quad E \in \mathcal{B}_\mathbb{E} \]
is measurable, and
Borel measurable if
\[f^{-1}(B) \in \mathcal{B}_\mathbb{E}, \quad B \in \mathcal{B}(\mathbb{R}) \]
is measurable.

Borel measurable \Rightarrow (Lebesgue) measurable.

Note: A function $f : \mathbb{R} \to \mathbb{R}$ is measurable according to this ideal if $f^{-1}(E) \in \mathcal{A}$, $E \in \mathcal{B}_\mathbb{R}$ is measurable.

So, sources and targets carry different σ-algebras.

If $f, g : \mathbb{R} \to \mathbb{R}$ are measurable, then $g \circ f$ need not be measurable!
But a measurable function $f: \mathbb{R} \to \mathbb{R}$ followed by a Borel measurable function $g: \mathbb{R} \to \mathbb{R}$ is measurable.

A measurable function $f: (\mathbb{R}, \mathcal{B}) \to (\mathbb{R}, \mathcal{B})$.

Lemma. (X, \mathcal{A}) measure space.

1. $f: X \to \mathbb{R}$ is measurable if and only if $f^{-1}([a, b]) \in \mathcal{A}$ for each $a \leq b$.

2. If $u, v: X \to \mathbb{R}$ are measurable and $F: \mathbb{R}^2 \to Z$ is continuous, then $h: (X, \mathcal{A}) \to (Z, \mathcal{B}_Z)$, $h(x) = F(u(x), v(x))$, $x \in X$, is measurable.

Proof. (i) \to clear because $[a, b] = \mathbb{R}$ open.

\leftarrow True because the intervals (a, b) $a \leq b$ generate $\mathcal{B}_{\mathbb{R}}$ (exercise). (ii) Define $f: X \to \mathbb{R}^2$, $x \mapsto f(x) = (u(x), v(x))$.

Claim $f: (X, \mathcal{A}) \to (\mathbb{R}^2, \mathcal{B})$ is measurable.

Enough to check $f^{-1}(R) \in \mathcal{A}$ for all rectangles $R = [a, b] \times [c, d]$.