Measure theory =

math. theory that puts concept of volume and integrals on a sound basis.

\(\mathbb{R}^n \)

volume of sets (area in \(\mathbb{R}^2 \), length in \(\mathbb{R}^1 \))
system of sets

not necessarily measurable

a volume

\(\mathcal{X} \)

measure

\(\sigma \)-algebra \(\mathcal{A} \)

measurable subsets of \(\mathcal{X} \).

Def. (\(\sigma \)-algebras)

\(\mathcal{X} \) set, \(\mathcal{A} \) family of subsets of \(\mathcal{X} \).

Then \(\mathcal{A} \) is called a \(\sigma \)-algebra if the following axioms are true:

i) \(\emptyset, \mathcal{X} \in \mathcal{A} \)

ii) if \(A \in \mathcal{A} \), the \(A^c = \mathcal{X} \setminus A \in \mathcal{A} \)

iii) if \(A_1, A_2, \ldots, A_n \in \mathcal{A} \), complement of \(A \) (i.e. \(\mathcal{X} \))

\(\cap A_n \in \mathcal{A} \)

\(\cup (A_n \cap \mathcal{X}) \in \mathcal{A} \) (\(\mathcal{A} \) is closed under taking countable unions)

Note: 1) If \(\mathcal{A} \) is a \(\sigma \)-algebra, then

\(\mathcal{A} \) is closed under countable intersections as well.

i) \(A \in \mathcal{A} \) for all \(n \in \mathbb{N} \),

then \(\cap A_n \in \mathcal{A} \).
2) **Proof:** \(A^c \in \mathcal{A} \) by ii), so
\[
\bigcup_{n \in \mathbb{N}} A^c_n \in \mathcal{A} \text{ by i), so }
\bigcap_{n \in \mathbb{N}} \bigcup_{n \in \mathbb{N}} A^c_n = \left(\bigcup_{n \in \mathbb{N}} A^c_n \right)^c \in \mathcal{A}, \quad \Box
\]

So, a \(\mathcal{F} \)-algebra is closed under all countable set-theoretic operations.

Ex. 1) \(\mathcal{P}(X) \) **power set of** \(X \)
\[
= \{ \text{set of all subsets of } X \}
\]
\(= \) a \(\mathcal{F} \)-algebra on \(X \).

2) **Let** \(A \)
\[
\mathcal{A} = \{ A \subseteq X : \text{A countable or } X \setminus A \text{ countable} \}
\]
Then \(\mathcal{A} \) is a \(\mathcal{F} \)-algebra on \(X \) (exercise!)

3) If \(A_i, i \in I \) is a family of \(\mathcal{F} \)-algebra on \(X \), then
\[
\mathcal{A} : = \bigcap_{i \in I} A_i = \{ A \subseteq X : A \in A_i \text{ for all } i \in I \}
\]
is also a \(\mathcal{F} \)-algebra on \(X \).
Proof: Straightforward. \text{for ex. prop. (iii)}.

If \(\Lambda \subseteq \mathcal{A} \) for \(\Lambda \subseteq \mathbb{N} \). Then \(A\in \mathcal{A} \) for all \(i \in \mathbb{N} \); so \(\bigcup_{i \in \mathbb{N}} A_i \in \mathcal{A} \) for all \(i \in \mathbb{N} \); so \(\bigcup_{i \in \mathbb{N}} A_i \in \mathcal{A} \).
4) If \(Y \subseteq P(X) \) is any family of subsets of \(X \), then there exists a smallest \(\sigma \)-algebra on \(X \) that contains \(Y \), denoted \(\sigma(Y) \), the \(\sigma \)-algebra generated by \(Y \); more precisely:

1) \(\sigma(Y) \) is a \(\sigma \)-algebra, with \(Y \subseteq \sigma(Y) \);
2) if \(\mathcal{A} \) is any \(\sigma \)-algebra, with \(Y \subseteq \mathcal{A} \), then \(\sigma(Y) \subseteq \mathcal{A} \);
3) \(\sigma(Y) \) is uniquely determined based on 1) + 2).

Proof:

Define \(\sigma(Y) = \bigcap \mathcal{A} \) \(\mathcal{A} \) is a \(\sigma \)-algebra, with \(Y \subseteq \mathcal{A} \).

Note: \(Y \subseteq P(X) \) is an intersection of non-empty subsets of \(P(X) \). This is a \(\sigma \)-algebra with \(Y \subseteq \sigma(Y) \). If \(\mathcal{A} \) is another \(\sigma \)-algebra, with \(Y \subseteq \mathcal{A} \), then \(\sigma(Y) \subseteq \mathcal{A} \) by def. of \(\sigma(Y) \). Finally, if \(\mathcal{A} \) is another \(\sigma \)-algebra, with \(\mathcal{A} \subseteq \mathcal{A} \), then \(\sigma(Y) \subseteq \mathcal{A} \) and \(\mathcal{A} \subseteq \mathcal{A} \), so \(\mathcal{A} \subseteq \sigma(Y) \).

5) The Borel \(\sigma \)-algebra on a topological space.

Let \((X, \mathcal{O}) \) be a topological space, i.e., \(X \) is a set and \(\mathcal{O} \) is a family of subsets of \(X \) ("open sets") satisfying...
4. The usual axioms:

Then the \textbf{Borel} σ-algebra on \mathbb{R}, denoted $\mathcal{B}(\mathbb{R})$, is the smallest σ-algebra on \mathbb{R} containing all open sets, i.e.,

$$\mathcal{B}(\mathbb{R}) = \mathcal{B}.$$

The elements in $\mathcal{B}(\mathbb{R})$ are called \textit{Borel sets} in \mathbb{R}.

So every open set is Borel; every closed set is countable union of Borel sets in \mathbb{R}.

Countable set-theoretic operations on Borel sets give Borel sets.

For ex. \(\emptyset \cup \text{set of cardinals} \in \text{Borel set in } \mathbb{R}. \) (Why?)

\textbf{Rem.:} Often it is desirable to generate a given σ-algebra by a suitable family of sets.

\textbf{Ex.} Let $\mathcal{R} = \{ \mathbb{R} \times \mathbb{R}^n : \mathbb{R} \text{ rectangle in } \mathbb{R} \}$, i.e.,

$$M = [a_1, b_1] \times \cdots \times [a_n, b_n] \in \mathcal{R}.$$

Then $\mathcal{B}(\mathbb{R}^n) = \mathcal{B}(\mathcal{R})$.

\textbf{Proof (outline)}:

\(R \in \mathcal{R} \) (why?), so $2(\mathcal{R}) \subseteq \mathcal{B}(\mathbb{R}^n)$. Every open set in \mathbb{R}^n is a countable union of rectangles (exercise?). So, $\emptyset \subseteq 2(\mathcal{R})$, hence $2(\mathcal{R}) = 2(\emptyset) \subseteq 2(\mathbb{R})$.
We conclude $\mu(\mathbb{R}) = \infty$.

Def. (Measures)

Let X be a set equipped with a σ-algebra \mathcal{A}. A (positive) measure $\mu : (X, \mathcal{A}) \to [0, \infty]$ is a function $\mu : \mathcal{A} \to [0, \infty]$ such that:

1. $\mu(\emptyset) = 0$.
2. If $\{A_n : n \in \mathbb{N}\}$ is a countable disjoint collection in \mathcal{A} (i.e., $A_n \cap A_m = \emptyset$ for $n \neq m$), then
 \[\mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} \mu(A_n) \in [0, \infty].\]

(Countable additivity)

The pair (X, \mathcal{A}) is called a measurable space, and the triple (X, \mathcal{A}, μ) a measure space.

Rem. 1. Countable additivity implies finite additivity. If $\mathcal{A} = (X, \mathcal{A}, \mu)$ is a measure on X and $\{A_1, \ldots, A_k\}$ is a finite disjoint collection in \mathcal{A}, then
\[
\mu\left(\bigcup_{k=1}^{k} A_k\right) = \sum_{k=1}^{k} \mu(A_k).
\]

Proof. Define $\emptyset = A_{k+1} = A_{k+2} = \cdots$ and use $\mu(\emptyset) = 0$ and count. additivity. QED.
6) Ex. Let $X = \mathbb{R}(X)$, $a \in X$

$$\mu = \delta_a$$

"Dirac measure at a".

$$\mathcal{S}_a(M) = \begin{cases} 0 & : \text{if } a \notin M \\ 1 & : \text{if } a \in M. \end{cases}$$

Ex. (Counting measure)

For all $\mathcal{U} \subseteq \mathbb{R}(X)$,

$$\mu(M) = \begin{cases} +\infty & : \text{if } M \text{ infinite} \\ \#M = \text{number of elements in } M & : \text{otherwise}. \end{cases}$$

Then (X, \mathcal{U}, μ) a measure space.

i) If $A, B \in \mathcal{U}$ and $A \subseteq B$, then

$$\mu(A) \leq \mu(B) \quad (\text{monotonicity})$$

ii) If $\{A_n\}_{n \in \mathbb{N}}$ then

$$\mu\left(\bigcup_{n \in \mathbb{N}} A_n\right) = \sum_{n=1}^{\infty} \mu(A_n) \quad (\text{subadditivity})$$

iii) If $A_n \subseteq X$ for we $n \in \mathbb{N}$ and $\bigcup A_n \uparrow$ (i.e., $A_n \subseteq A_{n+1}$ for $n \in \mathbb{N}$), then

$$\mu\left(\bigcup_{n \in \mathbb{N}} A_n\right) = \lim_{n \to \infty} \mu(A_n) \quad (\text{continuity from below})$$

iv) If $A_n \subseteq \mathcal{U}$ for we $n \in \mathbb{N}$ and $\bigcap A_n \uparrow$ (i.e., $A_n \supseteq A_{n+1}$ for $n \in \mathbb{N}$) and $\mu(A_n) < \infty$ for $n \in \mathbb{N}$, then

$$\mu\left(\bigcap_{n \in \mathbb{N}} A_n\right) = \lim_{n \to \infty} \mu(A_n) \quad (\text{continuity from above})$$

\[\text{Q1.1.1)} \quad B = A \cup (B \setminus A) ; \quad A \cap (B \setminus A) = \emptyset \]

So,$$\mu(B) = \mu(A) + \mu(B \setminus A) \geq \mu(A).$$
11) \(B_n : = A_n \setminus \bigcup_{k=1}^{n-1} U A_k \) \(\subseteq A_n \).

Then \(U_{n \in N} B_n = U_{n \in N} A_n \) and \(\bigcap_{n \in N} B_n \). Pairwise disjoint.

So \(\mu \left(\bigcup_{n \in N} U A_n \right) = \mu \left(\bigcup_{n \in N} U B_n \right) \)

\[= \sum_{n \in N} \mu (B_n) \leq \sum_{n \in N} \mu (A_n). \]

iii) If \(A_n \uparrow \), then \(B_n = A_n \setminus \bigcup_{k=1}^{n-1} U A_k = A_n \setminus A_{n-1} \), \(A_0 = \emptyset \).

So \(\mu \left(\bigcup_{n \in N} U A_n \right) = \mu \left(\bigcup_{n \in N} U B_n \right) \)

\[= \lim_{N \to \infty} \sum_{n=1}^{N} \mu \left(A_n \setminus A_{n-1} \right) = \mu \left(\bigcup_{n \in N} A_n \right) \]

\[= \lim_{N \to \infty} \mu (A_n). \]

iv) \(B_n : = A_1 \setminus A_n \to \mu (A_1) = \mu (A_1) + \mu (B_n) \)

\[\bigcup_{n \in N} B_n = \bigcup_{n \in N} (A_1 \cap A_n^c) = A_1 \cap \bigcup_{n \in N} A_n^c \]

De Morgan \(A_1 \cap (\bigcap_{n \in N} A_n^c) = A_1 \setminus \bigcap_{n \in N} A_n \).

By iii)

\[\mu (A_1) = \mu \left(\bigcap_{n \in N} A_n \right) = \mu \left(\bigcup_{n \in N} B_n \right) \]

\[= \lim_{n \to \infty} \mu (B_n). \]
\[\mathcal{G} = \ldots + \lim_{n \to \infty} \frac{1}{\mu(A_n)} \mu(A_n) \] so
\[\mu(A) = \lim_{n \to \infty} \mu\left(\bigcap_{n=1}^{\infty} A_n \right) = \lim_{n \to \infty} \mu(A_n). \]

Since \(\mu(A) < \infty \) and \(\bigcap_{n=1}^{\infty} A_n = \lim_{n \to \infty} \mu(A_n). \]

\((X, \mathcal{A}, \mu)\) measure space

\(P(x)\) statement about point \(x \in X\)

(That may be true or false depending on \(x\)).

We say that \(P(x)\) is true for
\[\mu \text{-a.e. } \] every \(x\) (for \(\mu \text{-a.e. } x\))
if there is a \(\delta \) s.t. \(E \in \mathcal{A}\) with
\[\mu(E) = 0 \] (E is "an exceptional set")

\(P(x)\) is true for each \(x \in X \setminus E\).
(Statement is true for all points except for \(\mu\) pts. in a \(\delta\) s.t. \(\mu\) measure 0.

One would like to say:
\(P(x)\) holds for \(\mu\text{-a.e. } x\) if
\[\mu\left(\{ x \in X : P(x) \text{ false} \} \right) = 0, \]
but \(\{ x \in X : P(x) \text{ false} \} \neq \emptyset \) if \(A \in \mathcal{A} \)

in general.

If \(P(x)\) true, then \(\mu\text{-a.e. } x\), then \(\exists x\).
\(E \in \mathcal{A}\) with \(\mu(E) = 0\). Assume \(F \in \mathcal{A}\).
A measure space \((X, \mathcal{A}, \mu)\) is called complete (otherwise, complete with respect to \(\mu\)) if subsets of \(\mu\)-null sets are \(\mu\)-null sets. I.e., if \(A, B \subseteq X\), and \(B \subseteq A\), then \(B \in \mathcal{A}\) (and so \(\mu(B) = \mu(A) = 0\), and \(\mu(B) = 0\)).

Theorem: \((X, \mathcal{A}, \mu)\) measure space,
\[\mathcal{N} = \{ N \in \mathcal{A} : \mu(N) = 0 \} \]
family of \(\mu\)-null sets,
\[\mathcal{U} = \{ A \cup B : A \in \mathcal{A}, \forall N (N \in \mathcal{N} s.t. B \subseteq N) \} \]
Then \(\mathcal{U}\) is a \(\sigma\)-algebra on \(X\) with \(\mathcal{A} \subseteq \mathcal{U}\), and over \(\mathcal{U}\) can uniquely be extended to a measure on \(\mathcal{U}\) s.t. \(\mathcal{N}\) is complete.

Proof: \(\mathcal{N}\) is closed under countable unions; so \(\mathcal{U}\) is closed under countable unions. Obviously, \(\mathcal{U} \supseteq \mathcal{A}\), and,
\[\phi, \overline{X} \in \mathcal{U}. \]
Let \(M \in \mathcal{U}\); then \(M = A \cup B\), where \(A \in \mathcal{A}\), i.e. \(N \in \mathcal{N} s.t. B \subseteq N\).
\[A \cap N = \emptyset, \text{ otherwise, replace } A \text{ by } A \cap N \text{ and } B \text{ by } B \cup (A \cap N) \]

Then \[M^c = (A \cup B)^c = A^c \cap B^c = (A \cap N^c) \cup (N \setminus B) \subseteq N, \quad \forall \in N \]

So, \(\mathcal{U} \) is \(\mathcal{F} \)-algeba.

Define \(\mathcal{F}(A \cup B) = \mathcal{F}(A) \)

\[\text{if } A \cup B, B \in \mathcal{N}, N \subseteq N. \]

This is well-defined.

\[A \cup B = A_1 \cup B_1, \quad A_1, A_2 \in \mathcal{N}, \quad B_1, B_2 \in \mathcal{N}_2, \]

where \(N, N_1, N_2 \subseteq N. \)

Then \(A_1 \subseteq A_2 \cup B_2 \subseteq A_2 \cup N \subseteq N_2 \}

\[\mu(A_1) \leq \mu(A_2 \cup N \subseteq N_2) = \mu(A_2) + \mu(N \subseteq N_2) = \mu(A_2) + \mu(N) = \mu(A_2) \]

Similarly, \(\mu(A_2) \leq \mu(A_1) \) and \(\mu(A_1) = \mu(A_2) \).

It is easy to see \(\mathcal{N} \) is a \(\sigma \)-algebra, is complete, extends \(\mu \), and is uniquely determined with those properties.
Construction of non-trivial measures

premeasure \rightarrow outer measure \rightarrow measure.

Def. Let \mathcal{X} be a set, $\mu^+: \mathcal{P}(\mathcal{X}) \rightarrow [0, \infty]$ is called an outer measure on \mathcal{X} if

(i) $\mu^+(\emptyset) = 0$

(ii) $\mu^+(A) \leq \mu^+(B)$ whenever $A \subseteq B$ (monotonicity)

(iii) $\mu^+(\bigcup_{n=1}^{\infty} A_n) \leq \sum_{n=1}^{\infty} \mu^+(A_n)$, whenever $A_n \subseteq \mathcal{X}$, $n \in \mathbb{N}$. (Countable additivity).

Corollary: The (inner) version:
If μ^+ is an outer measure on \mathcal{X}, then there exists a natural σ-algebra \mathcal{A} (depending on μ^+) s.t. $\mu = \mu^+|\mathcal{A}$ is a measure.

We define $\mathcal{A} \subseteq \mathcal{P}(\mathcal{X})$ as the set of all $A \subseteq \mathcal{X}$ s.t.

\[\mu^+(T) = \mu^+(T \cap A) + \mu^+(T \cap A^c) \]

for all $T \subseteq \mathcal{X}$ (\textit{last sets}).

Note: The inequality is in μ is always true by (finite) subadditivity.

So (\star) is equivalent to

\[\mu^+(T) = \mu^+(T \cap A) + \mu^+(T \cap A^c) \]

for all $T \subseteq \mathcal{X}$. \(\blacksquare \)
12. Caratheodory's Theorem (precise version)

Let μ^* be a outer measure on X, and \mathcal{U} be the family of all sets $A \subseteq X$ satisfying (*).

Then \mathcal{U} is a σ-algebra on X and $\mu = \mu^*|_\mathcal{U}$ is a complete measure.

For the proof, we need:

Def. (Algebra) A family \mathcal{U} of subsets of X is called an algebra on X if

$\emptyset, X \in \mathcal{U}$, $A \in \mathcal{U}$ \implies $A^c \in \mathcal{U}$ and $\bigcup_{n \in \mathbb{N}} A_n \in \mathcal{U}$.

Let \mathcal{U} be an algebra on X, and suppose that $A \in \mathcal{U}$ implies $\bigcap_{n \in \mathbb{N}} A_n \in \mathcal{U}$. Then \mathcal{U} is a σ-algebra.

Proof. Let $A, B \in \mathcal{U}$, $n \in \mathbb{N}$.

Define $B_n = A \cap B$, $n \in \mathbb{N}$.

Then $B_n \in \mathcal{U}$ and $U A_n = \bigcup_{n \in \mathbb{N}} B_n \in \mathcal{U}$ by hypotheses.

So \mathcal{U} is closed under countable unions and σ-algebras.

Note: In the above, we can also require $A \in \mathcal{U}$, $n \in \mathbb{N}$, $A_n \in \mathcal{U}$, and $A_n \cap B \in \mathcal{U}$ for disjoint A_n (i.e., $B \in \mathcal{U}$ for disjoint A_n).
Proof of Caratheodory's Theorem:

1. A consisting of all satisfying (**) or equilibria (***) is a \(\tau \)-algebra

We'll show that \(A \) is an algebra that is closed under monotonone limits.

(Levi \(\rightarrow U \) \(\tau \)-algebra)

(*) symmetric in \(A, A^c \), so

\[A \cup A^c \]

Hence \(A \)

is closed under taking complements.

\(\phi \in \mathcal{X} \), because \(U \).

\[\forall T \in \mathcal{X}, \mu^*(T \cap \phi) + \mu^*(T \cap \phi^c) = \mu^*(\phi) + \mu^*(T) = \mu^*(T). \]

\[\mu^*(T \cap \phi^c) \]

\[\subseteq \mu^*(T \cap (A \cup B)) + \mu^* \left(T \cap (A \cup B)^c \right) \]

\[\subseteq \mu^*(T \cap (A \cap B)) + \mu^* \left(T \cap (A \cap B)^c \right) + \mu^* \left(T \cap (A^c \cup B) \right) \]

\[\subseteq \mu^*(T \cap (A \cup B)) + \mu^* \left(T \cap (A \cup B)^c \right) \]

i.e.

\[A \cup B \text{ solves } (**), \text{ and so } \mu^* \left(T \cap (A \cup B)^c \right). \]
15. Noted that on \mathcal{A}, μ^+ is finitely additive,

if $A, B \in \mathcal{A}$, and $\emptyset \cap A \cap B = \emptyset$

$$\mu^+(A \cup B) = \mu^+(A \cup B \setminus (A \cup B^c)) = \mu^+(A) + \mu^+(B).$$

Let $A_n \in \mathcal{A}$ where \mathcal{N}, arbitrary and pairwise disjoint, $B_n = A_n \cup \ldots \cup A_n \in \mathcal{F}$

$B \in \mathcal{U}$.

WTS $B \in \mathcal{U}$, $\mu^+(\bigcup_{n=1}^{\infty} A_n) = \mu^+(B)$.

$$\mu^+(T \cap B_n) = \mu^+(T \cap B_n \cap A_n) = \mu^+(T \cap A_n) + \mu^+(T \cap B_n \setminus A_n)$$

So, inductively,

$$\mu^+(T \cap B_n) = \sum_{k=1}^{n} \mu^+(T \cap A_k)$$

Now, $B_n \in \mathcal{U}$

$$\mu^+(T) = \mu^+(T \cap B_n) + \mu^+(T \cap B_n^c)$$

$$\geq \sum_{k=1}^{\infty} \mu^+(T \cap A_k) + \mu^+(T \cap B_n^c)$$

Letting n go to ∞, and using subadditivity,

$$\mu^+(T) = \geq \sum_{k=1}^{\infty} \mu^+(T \cap A_k) + \mu^+(T \cap B_n^c) = \mu^+(T \cap B) + \mu^+(T \cap B_n^c) \geq \mu^+(T\cap B)$$

$\Phi^3(\mu)$