Fall 2016

Homework 8 (due: We, Nov. 22)

(1) Suppose a hedge fund has developed a stock screening method that identifies start-up companies with exceptional growth prospects. Let us call these companies the (potential) "Big Winners" (think of Google, Amazon, or Apple). Let us make the following assumptions: Only 1% of the start-up companies are Big Winners. If a company is a Big Winner, then the screening method will identify it in 100% of the cases. If the company is not a Big Winner, then in 10% of the cases the method identifies it incorrectly as a Big Winner.

Suppose a start-up company has been identified as a Big Winner by the stock screening method. What is the probability (in absence of any other evidence) that the start-up company is really a Big Winner? Hint: Review conditional probability, in particular Bayes' formula.

(2) Let (X, Y) be a pair of random variables with a joint Gaussian distribution. Suppose both random variables are centered and that X has variance s and Y has variance t, where $0 < s \leq t$.

(a) Show that $\mathbb{E}(XY) = s$ if and only X and Z = Y - X are independent. Hint: You have to show two implications: $\mathbb{E}(XY) = s$ implies that X and Z are independent and, conversely, the independence of X and Z implies that $\mathbb{E}(XY) = s$.

(b) Suppose that $\mathbb{E}(XY) = s$. What is the probability density function p(x, y) of the joint distribution of X and Y?

(3) If we model the price S_t of a stock at time $t \ge 0$ by a geometric Brownian motion, then

(1)
$$S_t = S_0 \exp(\sigma B_t - \frac{1}{2}\sigma^2 t),$$

where $\sigma \geq 0$ is a parameter measuring the volatility of the stock and $\{B_t\}_{t\in[0,\infty)}$ is (standard) Brownian motion.

(a) We know that this model is compatible with risk-neutral valuation with interest rate r = 0. Explain why we then should have $\mathbb{E}(S_t) = S_0$.

(b) Verify $\mathbb{E}(S_t) = S_0$ by explicit computation based on formula (1) and the distribution of B_t .

(c) If the risk-free interest rate is the constant $r \ge 0$, then $S_0 = e^{-rt}\mathbb{E}(S_t)$ in risk-neutral valuation. Find a simple modification of the formula (1) that is compatible with this formula.

(4) We consider a Brownian motion B_t for $t \ge 0$. Then the stochastic process defined as $X_0 = 0$ and $X_t = tB_{1/t}$ for t > 0 is a version of Brownian motion. This means that the distributions of the vectors $(X_{t_1}, \ldots, X_{t_n})$ and $(B_{t_1}, \ldots, B_{t_n})$ are the same whenever $n \in \mathbb{N}$ and $0 \le t_1 < \cdots < t_n$. It also implies that the process has continuous sample paths $t \mapsto X_t$ almost surely (= with probability one).

(a) To make the statement about distributions plausible, determine the distribution of X_t and determine $\text{Cov}(X_t, X_s)$ for $s, t \ge 0$. What type of random variable is X_t and what is its mean and variance?

(b) Use the process X_t to show that

$$\lim_{t \to +\infty} \frac{B_t}{t} = 0$$

almost surely. In other words, the typical Brownian path grows at a sublinear rate.