Homework 6 (due: Fr, Nov. 3)

(1) The last price of Wells Fargo (Ticker: WFC) on Thursday, 10/26/17, was $55.62. Options with expiration 11/17/17 had following last prices:

\[
\begin{array}{ccc}
\text{call} & \text{strike} & \text{put} \\
1.11 & 55 & 0.78 \\
0.85 & 55.5 & 1.04 \\
0.63 & 56 & 1.33 \\
\end{array}
\]

The spreads of the options were fairly low in the 0.04–0.06 range. The indicated price for the options is the average of bid and ask, which gives a good approximation for a realistic price. The call-put parity (neglecting interest rates) requires the (approximate) relation \(K + c = S_0 + p \) between the current stock price \(S_0 \), the strike price \(K \), the price \(c \) of the call, and the price \(p \) of the put.

(a) Compute \(S_0 + p - K - c \) for each of the three strike prices.

(b) The computations in (a) show that the call-put parity seems to be violated. Explain the reason for this!

(2) (a) A call ratio spread is implemented by buying a call \(O_1 \) and selling a larger number of calls \(O_2 \) at a higher strike price (with the same underlying and expiration). Suppose we buy one option \(O_1 \) with strike \(K_1 \) for the price \(c_1 \) and sell two options \(O_2 \) with strike \(K_2 > K_1 \) for the price \(c_2 \) each. Analyze the profit of this strategy depending on the price \(S_T \) of the stock at expiration \(T \) and represent this in a diagram.

(b) We consider a bull spread involving two call options \(O_1 \) and \(O_2 \) (with the same underlying and expiration) with strike \(K_1 \) and \(K_2 \), respectively, where \(K_1 < K_2 \). Devise a strategy based on put options that gives the same payoff as the bull spread.

(c) Devise a strategy based on options that leads to the same payoff as short selling the stock.

(3) (a) Suppose \(X_1 \) and \(X_2 \) are continuous random variables with probability density functions \(p_1 \) and \(p_2 \), respectively. Suppose that \(X_1 \) and \(X_2 \) are independent. Express the probability density function \(q \) of \(Y = X_1 + X_2 \) in terms of an integral involving the functions \(p_1 \) and \(p_2 \).

(b) Suppose that in (a) the random \(X_i \) is a normal random variable with mean \(\mu_i \) and standard deviation \(\sigma_i \) for \(i = 1, 2 \). Use the derived formula in (a) to find the probability density function of \(Y = X_1 + X_2 \) and to show that \(Y \) is also a normal random variable. What are the mean and the standard deviation of \(Y \)?
(c) Suppose X_1, \ldots, X_n are independent normal random variables with the same mean μ and standard deviation σ. Show that $S = X_1 + \cdots + X_n$ is also a normal random variable and find its mean and standard deviation.

(4) The purpose of Problems 4 is to develop some of the theoretical foundations for describing random stock price movements (cf. HW3, Prob. 4).

(a) Let Z_1 be a random variable representing a random quantity at time $t = 1$ (such as the random change of the price of an asset from time 0 to time 1). Suppose that Z_1 has mean μ and standard deviation σ. We divide the time $t = 1$ into a large number n of time intervals and suppose that each of the time intervals contributes independently in the same way to Z_1. More precisely, we assume that Z_1 is approximately given by a sum

$$X_1 + \cdots + X_n,$$

where X_1, \ldots, X_n are i.i.d. random variables.

What do we have to assume about the mean a_n and the standard deviation b_n of X_i, $i = 1, \ldots, n$, so that this can be valid?

(b) Let $n \to \infty$ in (a). What can we then say about the distribution of the random variable Z_1?

(c) Suppose we use the same model as in (a) and (b) for an arbitrary time $t \geq 0$. Then we divide t into $k = nt$ time intervals of length $1/n$ and assume that Z_t is approximately given by the sum

$$X_1 + \cdots + X_k.$$

Letting $n \to \infty$, what can we say about the distribution of Z_t? In particular, what are the mean μ_t and the standard deviation σ_t of Z_t in terms of μ, σ, and t? What is Z_0?