Homework 2 (due: Fr, Oct. 6)

(1) (a) Find the option chain for Facebook (ticker symbol: FB) on one of the days Oct. 2–Oct. 5 after markets close (1pm LA time). Make a table with the following information: last price for call/put options with strikes 160, 170, 180 and expirations Oct. 20, 2017 and Jan. 19, 2018 (a total of 12 values).

(b) Explain the terms volume and open interest that appear in the option chain.

(2) (a) Review the central limit theorem from some source (probability textbook, internet, etc.).

(b) Suppose X is a random variable that only takes the values $X = -1$ and $X = 1$ with equal (= 0.5) probability. What are the expected value μ_0 and the standard deviation σ_0 of X?

(c) Suppose X_1, X_2, X_3, \ldots are random variables that are independent and have the same distribution as the random variable X in (b). Suppose n is a natural number. What is the mean μ_n and what is the standard deviation σ_n of $Z_n = X_1 + \cdots + X_n$?

(d) Suppose n in (c) is very large. Then the central limit theorem suggests that Z_n has a distribution close to the distribution of $a_n + b_n N$, where N is a standard normal random variable. What are a_n and b_n here?

(3) You are collecting money for a charity and want to raise $10,000. For this purpose you send out letters to randomly chosen people asking for a donation of $10. From past experience you know that 10% of the people asked will donate $10 (and 90% will give nothing). The purpose of this problem is to find a number n such that if n letters are sent out, you will collect the desired amount of $10,000 with about 95% certainty. This number n should be as small as possible, because you do not want to send out more letters than necessary.

(a) Define a (discrete) random variable X that models the amount received from one donor.

(b) Suppose that the potential donors receiving your letters do not influence each other in their decision whether to make the $10 donation or not. Find a formula for the total amount S_n raised if n letters are sent out. To find this formula, use the concept of i.i.d. (independent and identically distributed) random variables and relate them to X defined in (a).
(c) Justify why for large n we can assume that S_n has a distribution closely approximated by the distribution of a normal random variable Z_n. What are the mean μ_n and the standard deviation σ_n of Z_n here?

(d) Let N be a standard normal random variable. Find a real number a_n such that

$$\Pr(S_n < 10,000) \approx \Pr(Z_n < 10,000) = \Pr(N < a_n).$$

Hint: Find c_n and d_n such that $c_n N + d_n$ has the same distribution as Z_n.

(e) Let N be a standard normal random variable. Find the value a such that

$$\Pr(N < a) = 0.05.$$

Hint: This is related to the cumulative distribution function of N. Its values can be looked up in tables or can be computed from built-in functions in standard programs for statistical computation.

(f) What is the number n of letters that should be sent out?

(4) You play a game that is stacked in your favor as follows. A (fair) coin is flipped. If it comes up tails, then you lose the amount B that you bet, but if it comes up heads then they your money is tripled (i.e., you receive the original amount B back plus $2B$ in winnings). You start with a (large) amount M_0 of money. Let M_n be your total amount after you played the game n times. We now consider two scenarios.

(a) Each time you bet $B = 1$. Express M_n in terms of M_0 and suitable i.i.d. random variables X_1, X_2, \ldots. Describe the distribution of X_1!

(b) In this second, more interesting scenario we fix a number $p \in [0, 1]$. Each time we bet the fraction p of the total amount that we have at this point. Express M_n again in terms of M_0 and suitable i.i.d. random variables Y_1, Y_2, \ldots. Describe the distribution of Y_1!

(c) The game in your favor. So should you choose $p = 1$ in (b), i.e., bet all the money you have each time? If not, which p should we choose to optimize the long-term outcome of the game? Hint: Typically, $M_n \approx M_0 e^{an}$ for large n, where a depends on p. You want to maximize a.