Professor

University of California, Los Angeles, Department of Mathematics

Box 95155, Los Angeles, CA, 90095-1555, USA

Office | MS 6137 |

Office Hours | We, 1-2pm; Th, 2-3pm; and by appointment |

mbonk at math.ucla.edu | |

Phone | (310) 825-4948 |

FAX | (310) 206-6673 |

**Teaching**-
- Fall 2014:
- Math 275A: Probability theory, MWF, 11am-11:50am, MS 5118,
course web-page.

- Spring 2014:
- Math 246C: Complex Analysis, MWF, 2-3pm, MS 5148,
course web-page.

- Fall 2013:
- Math 246A: Complex Analysis, MWF, 2-3pm, MS 6627,
course web-page.

- Math 33A: Linear Algebra and Applications, MWF 12-1pm, HUMANTS A51,
course web-page.

- Winter 2013:
- Math 252B: Topics in Complex Analysis,
"Conformally Invariant Processes in the Plane II". Course notes: Part a CIPPIIa.pdf ,
Part b CIPPb.pdf

- Math 33AH: Linear Algebra and Applications.

- Fall 2012: Math 252A: Topics in Complex Analysis: "Conformally Invariant Processes in the Plane I". Course notes: Part a CIPPa.pdf ,
Part b CIPPb.pdf
- 2011/12: Math 246A-C: Complex Analysis. Lecture notes for 246A+B: Notes

- Fall 2014:
**Research Interests**- My research interests lie at the interface of geometry and analysis, including classical complex analysis, the geometry of negatively curved spaces, geometric group theory, dynamics of rational maps, and analysis on metric spaces. My current work often relies on an extension of classical results in geometry and analysis to a non-smooth or fractal setting.

**Publications****Recent Papers and Preprints**- M. Bonk, D. Meyer, Expanding Thurston maps, Preprint, September 2010 (arXiv link).
- M. Bonk, Uniformization of Sierpinski carpets in the plane, Invent. math. 186 (2011), 559-665 (arXiv link).
- M. Bonk, S. Merenkov, Quasisymmetric rigidity of square Sierpinski carpets, Ann. of Math. 177 (2013), 591-643 (arXiv link).
- M. Bonk, M. Lyubich, S. Merenkov, Quasisymmetries of Sierpinski carpet Julia sets, Preprint, March 2014 (arXiv link).
- M. Bonk, E. Saksman, Sobolev spaces and hyperbolic fillings, Preprint, August 2014 (arXiv link).
- M. Bonk, E. Saksman, T. Soto, Triebel-Lizorkin spaces on metric spaces via hyperbolic fillings, Preprint, November 2014 (arXiv link).