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ABSTRACT. We associate to every equicharacteristic zero Noetherian local ring R a faith-
fully flat ring extension which is an ultraproduct of rings of various prime characteristics,
in a weakly functorial way. Since such ultraproducts carry naturally a non-standard Frobe-
nius, we can define a new tight closure operation on R by mimicking the positive charac-
teristic functional definition of tight closure. This approach avoids the use of generalized
Néron Desingularization and only relies on Rotthaus’ result on Artin Approximation in
characteristic zero. If R is moreover equidimensional and universally catenary, then we
can also associate to it in a canonical, weakly functorial way a balanced big Cohen-Mac-
aulay algebra.
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INTRODUCTION

In this paper, we investigate when a ring of characteristic zero can be embedded in
an ultraproduct of rings of positive characteristic. Recall that an ultraproduct of a family
of rings is a sort of ‘average’ of its members; see §1 for more details. To facilitate the
discussion, let us call a ring of characteristic zero a Lefschetz ring if it is realized as an
ultraproduct of rings of prime characteristic. The designation alludes to an old heuristic
principle in algebraic geometry regarding transfer between positive and zero characteristic,
which Weil [63] attributes to Lefschetz. A Lefschetz field is a Lefschetz ring which happens
to be a field. To model-theorists it is well-known that the field C of complex numbers is
Lefschetz. Moreover, any field of characteristic zero embeds into a Lefschetz field. It
follows that any domain of characteristic zero embeds into a Lefschetz ring, but in doing
so, we loose the entire ideal theory of the domain. It is therefore natural to impose that the
embedding preserves enough of the ideal structure, leading to:

Question. Given a Noetherian ring R of characteristic zero, can we find a faithfully flat
ring extension of R which is Lefschetz?

Suppose that R is a ring of characteristic zero which admits a faithfully flat Lefschetz
extensionD. HenceD is an ultraproduct of a family (Dw) of ringsDw of prime character-
istic; infinitely many different prime characteristics must occur. Each Dw can be viewed
as a kind of ‘reduction modulo p’, or approximation, ofR. Faithful flatness guarantees that
the Dw retain enough properties of the original ring. (See §5 below.) For an easy example
consider the following criterion for ideal membership inR: given f0, . . . , fs ∈ R and given
fiw ∈ Dw whose ultraproduct is equal to the image of fi inD, we have f0 ∈ (f1, . . . , fs)R
if and only if f0w ∈ (f1w, . . . , fsw)Dw for almost all w.

The main motivation for posing the above question stems from the following observa-
tions. Any ring of prime characteristic p admits an endomorphism which is at the same
time algebraic and canonical, to wit, the Frobenius Fp : x 7→ xp. This has an immense im-
pact on the homological algebra of a prime characteristic ring, as is witnessed by a myriad
of papers exploiting this fact. To mention just a few: Peskine-Szpiro [43] on homological
conjectures, Hochster-Roberts [32] on the Cohen-Macaulay property of rings of invariants,
Hochster [24] on big Cohen-Macaulay algebras and Mehta-Ramanathan [42] on Frobenius
splitting of Schubert varieties. This approach has found its culmination in the tight closure
theory of Hochster-Huneke [27, 28, 35]. (For a more extensive history of the subject, see
[35, Chapter 0]; the same book is also an excellent introduction to tight closure theory.)

Hochster and Huneke also developed tight closure in characteristic zero (see [31] or [35,
Appendix 1]), but without any appeal to an endomorphism and relying on deep theorems
about Artin Approximation and Néron desingularization. Any Lefschetz ring D, however,
is endowed with a non-standard Frobenius F∞, obtained by taking the ultraproduct of the
Frobenii on the Dw. The endomorphism F∞ acts on the subring R of D, and although
it will in general not leave R invariant, its presence makes it possible to generalize the
characteristic p functional definition of tight closure to any Noetherian ring R admitting a
faithfully flat Lefschetz extension. This was carried out in [54] for the case where R is an
algebra of finite type over C. Here we had a canonical choice for a faithfully flat Lefschetz
extension, called the non-standard hull of R. The resulting closure operation was termed
non-standard tight closure. Variants and further results can be found in [52, 56, 57, 58, 59].

Let us briefly recall the construction of the non-standard hull of a finitely generated
algebra A over a Lefschetz field K, and at the same time indicate the problem in the
non-affine case. For ease of exposition assume that K is an ultraproduct of fields Kp of
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characteristic p, with p ranging over the set of prime numbers. (See also Proposition 1.4
below.) If A is of the form K[X]/I , where I is an ideal of K[X] = K[X1, . . . , Xn], and
we have already constructed a faithfully flat Lefschetz extension D of K[X], then D/ID
is a faithfully flat Lefschetz extension of A. So we may assume A = K[X]. There is an
obvious candidate for a Lefschetz ring, namely the ultraproduct K[X]∞ of the Kp[X]. In
a natural way K[X]∞ is a K-algebra. Taking the ultraproduct of the constant sequence
Xi in Kp[X] yields an element in K[X]∞, which we continue to write as Xi. By Łos’
Theorem (see Theorem 1.1 below), the elements X1, . . . , Xn ∈ K[X]∞ are algebraically
independent over K and hence can be viewed as indeterminates over K. This yields a
canonical embedding of K[X] into K[X]∞. Van den Dries observed that this embedding
is faithfully flat [16, 18], thus giving a positive answer to the question above for finitely
generated K-algebras.

In [51, §3.3], the Artin-Rotthaus Theorem [3] was used to extend results from the finitely
generated case to the complete case. This ad hoc application will be replaced in this pa-
per by constructing a faithfully flat Lefschetz extension for every Noetherian local ring of
equal characteristic zero. However, for the proof, a stronger form of Artin Approximation
is needed, to wit [48]. By the Cohen Structure Theorem, any equicharacteristic zero Noe-
therian local ring has a faithfully flat extension which is a homomorphic image of a power
series ringK[[X]] (whereK is as before), so the problem is essentially reduced toK[[X]].
There is again a natural candidate for a faithfully flat Lefschetz extension, namely the ul-
traproduct K[[X]]∞ of the Kp[[X]]. Since K[X]∞ is a subring of K[[X]]∞, so is K[X].
Moreover, one easily verifies that K[[X]]∞ with the X-adic topology is complete, that is
to say, each Cauchy sequence in K[[X]]∞ has a limit in K[[X]]∞. The obstruction in ex-
tending the above argument fromK[X] toK[[X]] is that theX-adic topology onK[[X]]∞
is not Hausdorff, and hence these limits are not unique. Therefore, to send f ∈ K[[X]] to
an element in K[[X]]∞, we must pick a limit in K[[X]]∞ of the Cauchy sequence (fn),
where fn ∈ K[X] is the truncation of f at degree n. It is not at all obvious how to do
this systematically in order to get a ring homomorphism h : K[[X]] → K[[X]]∞. (It is not
hard to prove that such an h, once defined, must be faithfully flat.) An example exhibits
some of the subtleties encountered: Let us say that a power series f ∈ L[[X]], where L is a
field, does not involve the variable Xi if f ∈ L[[X1, . . . , Xi−1, Xi+1, . . . , Xn]]. Similarly
we say that an element ofK[[X]]∞ does not involve the variableXi if it is the ultraproduct
of power series in Kp[[X]] not involving Xi. Using an example of from [47] we explain in
§4.33 why there can be no homomorphism h : K[[X]] → K[[X]]∞ with the property that
for arbitrary i, if f ∈ K[[X]] does not involve the variable Xi, then neither does h(f). (Of
course there is always a limit of the fn in K[[X]]∞ which has this property.) To circum-
vent these kinds of problems, we use Artin Approximation to derive the following positive
answer to the question posed at the beginning:

Theorem. For each equicharacteristic zero Noetherian local ring R, we can construct a
local Lefschetz ring D(R) and a faithfully flat embedding ηR : R→ D(R).

In fact, the result also holds for semi-local rings. More importantly, D can be made
functorial in a certain way, which is crucial for applications. See Theorem 4.3 for the
precise statement.

Organization of the paper. Sections 1–4 of Part 1 contain a proof of the theorem above.
The proof will be self-contained except for the use of Rotthaus’ result [48]. We also discuss
further connections with Artin Approximation and cylindrical approximation. In Section 5
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we investigate which algebraic properties are carried over from R to the rings whose ultra-
product is D(R). The reader who is mostly interested in the applications of the theorem
might skip this section at first reading and immediately proceed to Part 2 (referring back to
Section 5 whenever necessary).

We apply our main theorem in two ways. First, in Section 6 we define (non-standard)
tight closure in any equicharacteristic zero Noetherian local ring and prove the basic facts
(such as its triviality on regular rings, Colon Capturing and Briançon-Skoda). In contrast
with the Hochster-Huneke version from [31] or [35, Appendix 1] we do not have to invoke
generalized Néron desingularization. In order for this paper not to become too long, issues
such as the existence of test elements, persistence of tight closure, detailed comparison
with other tight closure operations, F-rationality and F-regularity will be postponed to a
future publication.

Our second application is a direct construction of a balanced big Cohen-Macaulay al-
gebra for each equicharacteristic zero Noetherian local ring, simpler than the one given in
[30]. This construction is weakly functorial on the subcategory of equidimensional and
universally catenary rings of bounded cardinality. Using non-standard hulls, the second
author gave a similar construction for finitely generated algebras over a field [56]. The
method, which itself relies on a result of [29], easily extends to the present situation, at
least for complete domains with algebraically closed residue field.

Conventions. Throughout, m and n range over the set N := {0, 1, 2, . . . } of natural num-
bers. By ‘ring’ we always mean ‘commutative ring with multiplicative identity 1’.

Part 1. Faithfully Flat Lefschetz Extensions

After some preliminaries on ultraproducts in §1 and on nested rings in §2, in §4 we
prove the theorem from the introduction (in the form of Theorem 4.3). The construction of
the desired Lefschetz extensions is achieved via cylindrical approximation in equicharac-
teristic zero, which is a corollary of Rotthaus’ theorem [48], as we explain in §3. In §5 we
then discuss the relationship between R and the components of D(R).

1. ULTRAPRODUCTS

Let W be an infinite set. A non-principal ultrafilter on W is a collection of infinite
subsets of W which is closed under finite intersections and has the property that for any
W ⊆ W , either W or its complement W \ W belongs to the collection. (One should
think of the subsets W which are in the ultrafilter as ‘big’ and those not in it as ‘small’.)
Given an infinite setW , any collection of infinite subsets ofW which is closed under finite
intersections can be enlarged to a non-principal ultrafilter on W . (See for instance [33,
Theorem 6.2.1].) Applying this to the collection of co-finite subsets of W implies that on
every infinite set there exists at least one non-principal ultrafilter. With a few exceptions
we will always consider a fixed ultrafilter on a given infinite set, so there is no need to name
the ultrafilter. Henceforth we call a set W endowed with some non-principal ultrafilter an
ultraset.

In the remainder of this section we let W be an ultraset, and we let w range over W .
For each w let Aw be a ring. The ultraproduct of the family (Aw) (with respect to W) is
by definition the quotient of the product

∏
w Aw modulo the ideal Inull consisting of the

sequences almost all of whose entries are zero. Here and elsewhere, a property is said to
hold for almost all indices if the subset of all w for which it holds lies in the ultrafilter. We
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will often denote the ultraproduct of the family (Aw) by

(1.0.1) ulim
w∈W

Aw :=
∏
w∈W

Aw

/
Inull.

Sometimes we denote such an ultraproduct simply by A∞, and we also speak, somewhat
imprecisely, of ‘the ultraproduct of the Aw’ (with respect to W). Given a sequence a =
(aw) in

∏
w Aw we call its canonical image in A∞ the ultraproduct of the aw and denote

it by
a∞ := ulim

w∈W
aw.

Similarly if aw = (a1w, . . . , anw) ∈ (Aw)n for each w ∈ W and ai∞ is the ultraprod-
uct of the aiw for i = 1, . . . , n, then a∞ := (a1∞, . . . , an∞) ∈ (A∞)n is called the
ultraproduct of the n-tuples aw. If all Aw are the same, say equal to the ring A, then the
resulting ultraproduct is called an ultrapower of A (with respect to W), denoted by

AW := ulim
w∈W

A.

The map δA : A → AW which sends a ∈ A to the ultraproduct of the constant sequence
with value a is a ring embedding, called the diagonal embedding of A into AW . We will
always view AW as an A-algebra via δA. Hence if A is an S-algebra (for some ring S),
then so is AW in a natural way.

Let A∞ and B∞ be ultraproducts, with respect to the same ultraset W , of rings Aw
and Bw respectively. If for each w we have a map ϕw : Aw → Bw, then we obtain a map
ϕ∞ : A∞ → B∞, called the ultraproduct of the ϕw (with respect to W), by the rule

a = ulim
w

aw 7→ ϕ∞(a) := ulim
w

ϕw(aw).

(The right-hand side is independent of the choice of the aw such that a = ulimw aw.)
Almost all ϕw are homomorphisms if and only if ϕ∞ is a homomorphism, and the ϕw are
injective (surjective) if and only if ϕ∞ is injective (surjective, respectively).

These definitions apply in particular to ultrapowers, that is to say, the case where all Aw
and Bw are equal to respectively A and B. In fact, we then can extend them to arbitrary S-
algebras, for some base ring S. For instance, letA andB be S-algebras, and let ϕ : A→ B
be an S-algebra homomorphism. The ultrapower of ϕ (with respect to W), denoted ϕW ,
is the ultraproduct of the ϕw := ϕ. One easily verifies that ϕW : AW → BW is again an
S-algebra homomorphism.

The main model-theoretic fact about ultraproducts is called Łos’ Theorem. For most of
our purposes the following equational version suffices.

1.1. Theorem (Equational Łos’ Theorem). Given a system S of equations and inequalities

f1 = f2 = · · · = fs = 0, g1 6= 0, g2 6= 0, . . . , gt 6= 0

with fi, gj ∈ Z[X1, . . . , Xn], the tuple a∞ is a solution of S in A∞ if and only if almost
all tuples aw are solutions of S in Aw.

In particular it follows that any ring-theoretic property that can be expressed “equation-
ally” holds for A∞ if and only if it holds for almost all the rings Aw. For example, the
ring A∞ is reduced (a domain, a field) if and only if almost all the rings Aw are reduced
(domains, fields, respectively). All these statements can deduced from Łos’ Theorem using
appropriately chosen systems S. For instance, a ring B is reduced if and only if the system
X2 = 0, X 6= 0 (in the single indeterminate X) has no solution in B. We leave the details
of these and future routine applications of Łos’ Theorem to the reader. An example of a
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property which cannot be transferred betweenA∞ and theAw in this way is Noetherianity.
(However, A∞ is Artinian of length ≤ l if and only if almost all Aw are Artinian of length
≤ l, see [36, Proposition 9.1].) Also note that if almost all Aw are algebraically closed
fields, then A∞ is an algebraically closed field; the converse is false in general, as [36,
Example 2.16] shows.

We refer to [13], [19] or [33] for in-depth discussions of ultraproducts. A brief review by
the second author, adequate for our present needs, can be found in [54, §2]. Using induction
on the quantifier complexity of a formula, Theorem 1.1 readily implies the “usual” version
of Łos’ Theorem, stating that in A∞, the tuple a∞ satisfies a given (first-order) formula
in the language of rings if and only if almost all aw satisfy the same formula (in Aw). In
particular, a sentence in the language of rings holds in A∞ if and only if it holds in almost
all Aw. Similarly, if for each w we are given an endomorphism ϕw : Aw → Aw of Aw,
then its ultraproduct ϕ∞ is an endomorphism of A∞, and a formula in the language of
difference rings (= rings with a distinguished endomorphism) holds for the tuple a∞ in
(A∞, ϕ∞) if and only if it holds for almost all aw in (Aw, ϕw). On occasion, we invoke
these stronger forms of Łos’ Theorem. (See for instance, [33, Theorem 9.5.1] for a very
general formulation.)

The ultraproduct construction also extends to more general algebraic structures than
rings. For example, if for each w we are given an Aw-module Mw, we may define

M∞ := ulim
w∈W

Mw :=
∏
w∈W

Mw

/
Mnull

where Mnull is the submodule of
∏
wMw consisting of the sequences almost all of whose

entries are zero. Then M∞ is a module over A∞ in a natural way. If the A∞-module M∞
is generated by m1∞, . . . ,ms∞, then the Aw-module Mw is generated by m1w, . . . ,msw,
for almost all w. It is possible to formulate a version of Łos’ Theorem for modules. Since
this will not be needed in the present paper, let us instead illustrate the functoriality inherent
in the ultraproduct construction by establishing a fact which will be useful in §4. Suppose
that for each w ∈ W we are given an Aw-algebra Bw and an Aw-module Mw.

1.2. Proposition. If M∞ has a resolution

· · · −→ (A∞)ni+1 ϕi−→ (A∞)ni
ϕi−1−−−→ (A∞)ni−1 −→ · · · ϕ0−→ (A∞)n0 −→M∞ → 0

by finitely generated free A∞-modules (A∞)ni and B∞ is coherent, then as B∞-modules

(1.2.1) TorA∞i (B∞,M∞) ∼=
(
TorAw

i (Bw,Mw)
)
∞

for every i ∈ N.

Here the module on the right-hand side of (1.2.1) is the ultraproduct of the Bw-modules
TorAw

i (Bw,Mw). Before we begin the proof, first note that we may identify the free
A∞-module (A∞)n with the ultraproduct (Anw)∞ of the free Aw-modules Anw in a canon-
ical way. Under this identification, if a1w, . . . ,amw are elements of Anw, then the A∞-
submodule of (A∞)n generated by the ultraproducts a1∞, . . . ,am∞ ∈ (A∞)n of the
a1w, . . . ,amw, respectively, corresponds to the ultraproduct N∞ of the Aw-submodules
Nw := Awa1w+ · · ·+Awamw of Anw (an A∞-submodule of (Anw)∞). The canonical sur-
jections πw : Anw → Anw/Nw induce a surjection π∞ : (A∞)n = (Anw)∞ → (Anw/Nw)∞
whose kernel is N∞. Hence we may identify (A∞)n/N∞ and (Anw/Nw)∞.

Proof (Proposition 1.2). The A∞-linear maps ϕi are given by certain ni−1 × ni-matrices
with entries in A∞. Hence each ϕi is an ultraproduct ϕi = ulimw ϕi,w of Aw-linear maps
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ϕi,w : Ani+1
w → Ani

w with kerϕi = (kerϕi,w)∞ and imϕi = (imϕi,w)∞. Hence for
given i > 0 the complex

Ani+1
w

ϕi,w−−−→ Ani
w

ϕi−1,w−−−−→ Ani−1
w −→ · · · ϕ0,w−−−→ An0

w −→Mw → 0

is exact for almost allw, by Łos’ Theorem. On the other hand, tensoring the free resolution
of M∞ from above with B∞ we obtain the complex

· · · −→ (B∞)ni+1 ψi−→ (B∞)ni −→ · · · ψ0−−→ (B∞)n0 −→ B∞ ⊗A∞ M∞ → 0

where ψi := 1⊗ϕi. (We identify (B∞)ni andB∞⊗A∞ (A∞)ni as usual, for each i.) Writ-
ing each ψi as an ultraproduct ψi = ulimw ψi,w of Bw-linear maps ψi,w : Bni+1

w → Bni
w

yields, for given i > 0, that ψi,w = 1 ⊗ ϕi,w for almost all w, hence TorAw
i (Bw,Mw) ∼=

kerψi−1,w/ imψi,w for almost all w. Since B∞ is coherent, the B∞-module kerψi−1 is
finitely generated, and we get

TorA∞i (B∞,M∞) = kerψi−1/ imψi ∼=
(
kerψi−1,w/ imψi,w

)
∞.

This proves the case i > 0 of the proposition. Using the remarks preceding the proof it is
easy to show that B∞ ⊗A∞ M∞ ∼=

(
Bw ⊗Aw

Mw

)
∞, proving the case i = 0. �

1.3. Lefschetz rings. An ultraproduct A∞ of rings Aw with respect to an ultraset W will
be called Lefschetz (with respect to W) if almost all of the Aw are of prime characteristic
and A∞ is of characteristic zero. (The condition on char(A∞) holds precisely if for each
prime number p, the set {w : char(Aw) = p} does not belong to the ultrafilter of W .) A
Lefschetz field is a Lefschetz ring that happens to be a field; in this case almost all Aw are
fields. The following proposition is a well-known consequence of Łos’ Theorem. We let
p range over the set of prime numbers. As usual Fp denotes the field with p elements and
Falg
p its algebraic closure.

1.4. Proposition. There is a (non-canonical) isomorphism between the field of complex
numbers C and an ultraproduct of the Falg

p .

Proof. Equip the set P of prime numbers with a non-principal ultrafilter and let F∞ be
the ultraproduct of the Fp := Falg

p with respect to the ultraset P . By the remarks following
Theorem 1.1, we see that F∞ is an algebraically closed field. Since l is a unit in F p,
for every prime l distinct from p, it is a unit in F∞, by Łos’ Theorem. Consequently,
F∞ has characteristic zero. The cardinality of F∞ is that of the continuum; see [13,
Proposition 4.3.7]. Any two algebraically closed fields of characteristic zero, of the same
uncountable cardinality, are isomorphic, since they have the same transcendence degree
over Q. Hence C ∼= F∞. �

1.5. Remark. Note that that the particular choice of non-principal ultrafilter on P used in
the proof above is irrelevant. The same argument may also be employed to show, more
generally: every algebraically closed field of characteristic zero of uncountable cardinality
2λ (for some infinite cardinal λ) is isomorphic to a Lefschetz field F∞ with respect to P
all of whose components Fp are algebraically closed fields of characteristic p. It follows
that every field of characteristic zero can be embedded into a Lefschetz field all of whose
components are algebraically closed fields.

The following class of Lefschetz rings will be of special interest to us:

1.6. Definition. A Lefschetz ring A∞ (with respect to the ultraset W) will be called an
analytic Lefschetz ring (with respect toW) if almost all of theAw are complete Noetherian
local rings of prime equicharacteristic with algebraically closed residue field. Let A∞
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and B∞ be analytic Lefschetz rings. An ultraproduct ϕ∞ : A∞ → B∞ of local ring
homomorphisms ϕw : Aw → Bw will be called a homomorphism of analytic Lefschetz
rings (with respect to W).

By Łos’ Theorem every analytic Lefschetz ring is a local ring, and every homomor-
phism of analytic Lefschetz rings is a local homomorphism of local rings. If A = A∞
is a Lefschetz ring (an analytic Lefschetz ring) with respect to W and I a finitely gener-
ated proper ideal of A, then A/I is isomorphic to a Lefschetz ring (an analytic Lefschetz
ring, respectively) with respect to the same ultraset W . Hence if the maximal ideal of
the analytic Lefschetz ring A∞ is finitely generated, then the residue field of A∞ may be
identified with the ultraproduct K∞ of the residue fields Kw of Aw in a natural way. In
particular K∞ is itself Lefschetz and algebraically closed.

1.7. Example. For fixed n let Aw := Kw[[X1, . . . , Xn]] be the ring of formal power
series in indeterminatesX1, . . . , Xn over an algebraically closed fieldKw of characteristic
p(w) > 0. If for every integer p > 0, almost all p(w) are > p, then the ultraproduct A∞
of the Aw has characteristic zero and hence is an analytic Lefschetz ring. In this example,
A∞ is a K∞-algebra in a natural way. In general, if K is a Lefschetz field (with respect to
W) and K → A is a homomorphism of analytic Lefschetz rings (with respect to W), then
we call A an analytic Lefschetz K-algebra (with respect to W). The analytic Lefschetz
K-algebras with respect to W form a category whose morphisms are the homomorphisms
of analytic Lefschetz rings with respect to W that are also K-algebra homomorphisms.

We will on occasion use the following construction.

1.8. Ultraproducts of polynomials of bounded degree. Let X = (X1, . . . , Xn) be a
tuple of indeterminates and let B∞ be the ultraproduct of the polynomial rings Aw[X].
Taking the ultraproduct of the natural homomorphisms Z[X] → Ap[X] gives a canonical
homomorphism Z[X]W → B∞. We will continue to write Xi for the image of Xi under
this homomorphism. On the other hand, A∞ is a subring of B∞. Using Łos’ Theorem, we
see that X1, . . . , Xn remain algebraically independent over A∞, so that we have in fact a
canonical embedding A∞[X] ⊆ B∞. Suppose now we are given, for some d ∈ N and
each w, a polynomial

Qw =
∑
ν

aνwX
ν ∈ Aw[X] (aνw ∈ Aw)

of degree at most d. Here the sum ranges over all multi-indices ν = (ν1, . . . , νn) ∈ Nn
with d ≤ |ν| := ν1 + · · · + νn, and as usual Xν is shorthand for Xν1

1 · · ·Xνn
n . Let

aν∞ ∈ A∞ be the ultraproduct of the aνw and put

Q∞ :=
∑
ν

aν∞X
ν ,

a polynomial in A∞[X] of degree ≤ d. (The polynomial Q∞ has degree d if and only if
almost all Qw have degree d.) We call Q∞ the ultraproduct of the Qw. This is justified
by the fact that the image of Q∞ under the canonical embedding A∞[X] ⊆ B∞ is the
ultraproduct of the Qw. In contrast, ultraproducts of polynomials of unbounded degree do
no longer belong to the subring A∞[X].

2. EMBEDDINGS AND EXISTENTIAL THEORIES

In this section, we want to address the following question: given S-algebras A and B,
when does there exist an S-algebra homomorphism A → B? If one is willing to replace
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B by some ultrapower, then a simple criterion exists (Corollary 2.5 below). Although
this does not solve the question raised above, it suffices for showing that a faithfully flat
Lefschetz extension exists (see §4). To obtain the desired functoriality, we need a nested
version of this result, which we now explain.

2.1. Nested rings. A nested ring is a ring R together with a nest of subrings, that is, an
ascending chain of subrings

R0 ⊆ R1 ⊆ · · · ⊆ Rn ⊆ · · ·
of R whose union equals R. We agree that whenever R is a nested ring, we denote the
subrings in the nest by Rn, and we express this by saying that R = (Rn) is a nested ring.
Every ring R can be made into a nested ring using the nest with Rn := R for all n. (We
say that R is trivially nested.)

Let R = (Rn) and S = (Sn) be nested rings. A homomorphism ϕ : S → R is called a
homomorphism of nested rings if ϕ(Sn) ⊆ Rn for all n. Alternatively, we say that R is a
nested S-algebra (via ϕ). Note that in this case, Rn is naturally an Sn-algebra, for every
n. An S-algebra homomorphism R→ R′ between nested S-algebras R and R′ which is a
homomorphism of nested rings is called a homomorphism of nested S-algebras. IfR→ R′

is injective, we may identify R with a subalgebra of R′, and we refer to this situation by
calling R a nested S-subalgebra of R′. A bijective homomorphism of nested rings (nested
S-algebras) is called an isomorphism of nested rings (nested S-algebras, respectively).

2.2. Example. Let L be a field and Y0, Y1, . . . an infinite sequence of finite (possibly
empty) tuples Yn = (Yn1, . . . , Ynkn

) of distinct indeterminates, kn ∈ N. For each n put

Sn := L[[Y0]][Y1, . . . , Yn],

Rn := L[[Y0]][Y1, . . . , Yn]alg,

An := L[[Y0, . . . , Yn]].

Here and elsewhere, given a domain D and a finite tuple Y of indeterminates we denote
by D[[Y ]]alg the subring of D[[Y ]] consisting of all elements which are algebraic over
D[Y ]. (If D is an excellent domain, then D[[Y ]]alg is equal to the Henselization D[Y ]∼

of D[Y ]1+Y D[Y ] at the ideal generated by the indeterminates, see [46, p. 126].) We make
the subrings S :=

⋃
Sn, R :=

⋃
nRn and A :=

⋃
nAn of L[[Y0, Y1, . . . ]] into nested

rings with nests (Sn), (Rn) and (An), respectively. Then R is a nested S-subalgebra of
the nested S-algebra A. (This example will play an important role in §3.)

Let S be a nested ring and V a nested S-algebra with nest (Vn). We say that V is of finite
type (over S) if each Vn is a finitely generated Sn-algebra, and for some n0, each Vn with
n ≥ n0 is the Sn-subalgebra of V generated by Vn0 , that is to say, Vn = Sn[Vn0 ]. Choose
n0 minimal with this property. Clearly, all the knowledge about V is already contained in
the initial chain V0 ⊆ V2 ⊆ · · · ⊆ Vn0 , and consequently, we refer to it as the relevant part
of V , and to n0 as its length.

2.3. Nested equations and nested algebras of finite type. In the following let S be a
nested ring. A nested system of polynomial equations with coefficients from S is a finite
sequence S of systems of polynomial equations

(2.3.1)

P00(Z0) = · · · = P0k(Z0) = 0,
P10(Z0, Z1) = · · · = P1k(Z0, Z1) = 0,

...
...

Pn0(Z0, . . . , Zn) = · · · = Pnk(Z0, . . . , Zn) = 0,
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for some n and k ∈ N, some tuples Zi = (Zi1, . . . , Ziki
) of indeterminates over S (where

ki ∈ N) and some polynomials Pij ∈ Si[Z0, . . . , Zi]. Given a nested S-algebra A, a tuple
(a0, . . . ,an) with ai ∈ (Ai)ki is called a nested solution of S in A if Pij(a0, . . . ,ai) =
0 for all i = 0, . . . , n and j = 0, . . . , k. Similarly, given an ideal a of the nested S-
algebra A, we call (a0, . . . ,an) an approximate nested solution of S modulo a in A, if
Pij(a0, . . . ,ai) ≡ 0 mod a for all i, j.

Let V be a nested S-algebra of finite type and let n be the length of its relevant part.
For i ≤ n, choose tuples ai ∈ V ki

i , such that each Vi is generated as an Si-algebra by
a0, . . . ,ai. Let Pi1, . . . , Pik be generators of the kernel of the Si-algebra homomorphism
Si[Z0, . . . , Zi] → V given by Z0 7→ a0, . . . , Zi 7→ ai. In particular

Vi ∼= Si[Z0, . . . , Zi]/(Pi0, . . . , Pik)Si[Z0, . . . , Zi].

The system of equations P00 = · · · = Pnk = 0 form a nested system of polynomial
equations with coefficients from S, called a defining nested system of equations for V . (It
depends on the choice of generators ai.) Note that the generating tuple (a0, . . . ,an) is a
nested solution of this system in V . Conversely, any nested system of polynomial equations
with coefficients from S together with a nested solution in some nested S-algebra B gives
rise to a nested S-subalgebra of B of finite type.

Given an ultraset U and a nested S-algebra B we consider the ultrapower BUn as an Sn-
subalgebra of BU in the natural way. We make the S-subalgebra

⋃
nB

U
n of the ultrapower

BU into a nested S-algebra by means of the nest (BUn ). We denote this nested S-algebra
by B〈U〉. The main result of this section is the following criterion for the existence of a
homomorphism of nested S-algebras from a nested S-algebra A to an ultrapower of B.

2.4. Theorem. Let A and B be nested S-algebras. If each Sn is Noetherian, then the
following are equivalent:

(2.4.1) every nested system of polynomial equations with coefficients from S which
has a nested solution in A also has one in B;

(2.4.2) for every nested S-subalgebra of finite type V of A, there exists a homomor-
phism of nested S-algebras ϕV : V → B;

(2.4.3) there exists a homomorphism of nested S-algebras η : A → B〈U〉, for some
ultraset U .

Proof. Suppose that (2.4.1) holds, and let V be a nested S-subalgebra of finite type of A.
Suppose V0 ⊆ · · · ⊆ Vn is the relevant part of V (so that Vm = Sm[Vn] for all m ≥ n).
Let S be a defining nested system of equations of V and let (a0, . . . ,an) with ai ∈ (Ai)ki

be the nested solution in A arising from a generating set of V over S (see §2.3). By
assumption, there exists a nested solution (b0, . . . ,bn) of S with bi ∈ (Bi)ki for all i.
Hence the Sn-algebra homomorphism Sn[Z0, . . . , Zn] → Bn given by Zi 7→ bi for i =
0, . . . , n factors through an Sn-algebra homomorphism ϕV : Vn → Bn with ϕV (Vi) ⊆ Bi
for all i. Since Vm = Sm[Vn] for m ≥ n, we can extend this to a homomorphism of nested
S-algebras V → B, proving implication (2.4.1) ⇒ (2.4.2).

Assume next that (2.4.2) holds. Let U be the collection of all nested S-subalgebras of
finite type of A (an infinite set). For each finite subset E =

{
(a1, n1), . . . , (ak, nk)

}
of

A × N let 〈E〉 be the subset of U consisting of all nested S-subalgebras V = (Vn) of
finite type of A with ai ∈ Vni for all i. Any finite intersection of sets of the form 〈E〉 is
again of that form. Hence we can find a non-principal ultrafilter on U containing each 〈E〉,
where E runs over all finite subsets of A × N. For each V ∈ U , let ϕ̃V : A → B be the
map which coincides with ϕV on V and which is identically zero outside V . (This is of
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course no longer a homomorphism.) Define η : A → BU to be the restriction to A of the
ultraproduct of the ϕ̃V . In other words,

η(a) := ulim
V ∈U

ϕ̃V (a) for a ∈ A.

It remains to verify that the image of η lies inside B〈U〉 and that the induced homomor-
phism A → B〈U〉 is a homomorphism of nested S-algebras. For a, b ∈ An, we have for
each V ∈ 〈{(a, n), (b, n)}〉 that ϕ̃V (a) = ϕ(a) and ϕ̃V (b) = ϕ(b) lie in Bn and

ϕ̃V (a+ b) = ϕV (a+ b) = ϕV (a) + ϕV (b) = ϕ̃V (a) + ϕ̃V (b).

Since this holds for almost all V , we get that η(a), η(b) ∈ BUn and η(a+ b) = η(a)+η(b).
In particular, the image of η lies inside B〈U〉. By a similar argument, one also shows that
η(ab) = η(a)η(b) and η(sa) = sη(a) for s ∈ S. We have shown (2.4.2) ⇒ (2.4.3).

Finally, suppose that η : A→ B〈U〉 is a homomorphism of nested S-algebras, for some
ultraset U . Suppose moreover that we are given a nested system S of polynomial equations
with coefficients from S as above, which has a nested solution (a0, . . . ,an) in A. Then(
η(a0), . . . , η(an)

)
is a nested solution of S in the nested S-algebra B〈U〉. Using Łos’

Theorem it follows that S has a nested solution in B. This shows (2.4.3) ⇒ (2.4.1). �

Applying the theorem to trivially nested rings we obtain the following partial answer to
the question raised at the beginning of this section. It is an incarnation of a model-theoretic
principle (originating with Henkin [23]) which has proven to be useful in other situations
related to Artin Approximation; for instance, see [5, Lemma 1.4] and [17, Lemma 12.1.3].

2.5. Corollary. Let S be a Noetherian ring and let A and B be S-algebras. The following
are equivalent:

(2.5.1) every (finite) system of polynomial equations with coefficients from S which is
solvable in A, is solvable in B;

(2.5.2) for each finitely generated S-subalgebra V of A, there exists an S-algebra
homomorphism ϕV : V → B;

(2.5.3) there exists an ultraset U and an S-algebra homomorphism η : A→ BU . �

We finish this sections with some remarks about Theorem 2.4 and its corollary above.

2.6. Remark. Only the proof of the implications (2.4.1) ⇒ (2.4.2) and (2.5.1) ⇒ (2.5.2)
used the assumption that each Sn (respectively, S) is Noetherian. These implications do
hold without the Noetherian assumption, provided we allow for infinite systems (in finitely
many variables) in (2.4.1) and (2.5.1) respectively.

2.7. Remark. In the proof of (2.4.2) ⇒ (2.4.3) we may replace the underlying set of the
ultraset U by any cofinal collection of nested S-subalgebras of finite type of A.

2.8. Remark. We can strengthen (2.4.3) and (2.5.3) by making η canonical, that is to say,
independent of the choice of S-algebra homomorphisms ϕV . Let us just give the argument
in the non-nested case. Replace the above index set U by the set A of all S-algebra homo-
morphisms ϕ : V → B whose domain V is a finitely generated S-subalgebra of A. Given
a finite subset E of A, let 〈E〉 be the subset of all ϕ ∈ A whose domain contains E. If
we assume (2.5.2) and A is not finitely generated, then A is infinite and no 〈E〉 is empty,
so that we can choose a non-principal ultrafilter on A which contains all the 〈E〉, for E
a finite subset of A. The remainder of the construction is now the same. Namely, define
η : A → BA to be the restriction to A of the ultraproduct of all ϕ̃, where for each ϕ ∈ A
we let ϕ̃ : A→ B be the extension by zero of ϕ. The same argument as above then yields
that η is an S-algebra homomorphism.
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2.9. Remark. We also have criteria forA to embed into an ultrapower ofB: under the same
assumptions as in Corollary 2.5, the following are equivalent:

(2.9.1) every (finite) system of polynomial equations and inequalities with coefficients
from S which is solvable in A, is solvable in B;

(2.9.2) given a finitely generated S-subalgebra V of A and finitely many non-zero
elements a1, . . . , an of V there exists an S-algebra homomorphism V → B
sending each ai to a non-zero element of B;

(2.9.3) there exists an ultraset U and an embedding A→ BU of S-algebras.

In particular, if all the ϕV in (2.5.2) can be taken injective, then so can η in (2.5.3). Sim-
ilar criteria may be formulated in the general nested case. We leave the proof (which is
analogous to the proof of Theorem 2.4) to the reader.

In the next remarks (not essential later) we assume that the reader is familiar with basic
notions of model theory; see [13] or [33].

2.10. Remark. The language L(S) of S-algebras (in the sense of first-order logic) consists
of the language L = {0, 1,+,−, ·} of rings augmented by a unary function symbol s×,
for each s ∈ S. We construe each S-algebra as an L(S)-structure by interpreting the ring
symbols as usual and s× as multiplication by s. We can then reformulate (2.5.1) in more
model-theoretic terms as:

(2.5.1)′ B is a model of the positive existential theory of A in the language L(S).
Similarly (2.9.1) may be replaced by

(2.9.1)′ B is a model of the (full) existential L(S)-theory of A.

2.11. Remark. Suppose that B is |A|-saturated (as an L(S)-structure). Then to (2.5.1)–
(2.5.3) in Corollary 2.5 we may add the equivalent statement

(2.5.3)′ There exists an S-algebra homomorphism A→ B.

For a proof see for instance [33, Theorem 10.3.1]. The assumption on B is satisfied if
S (and hence L(S)) is countable, A has cardinality at most ℵ1, and B is an ultraproduct
of a countable family of S-algebras with respect to a non-principal ultrafilter. (See [13,
Theorem 6.1.1].) If, on the other hand, B is ℵ0-saturated, then in Remark 2.9 we may
replace (2.9.2) with

(2.9.2)′ For every finitely generated S-subalgebra V of A there exists an embedding
V → B of S-algebras.

3. ARTIN APPROXIMATION AND EMBEDDINGS IN ULTRAPRODUCTS

In this section, K is a field which is the ultraproduct of fields Kp (not necessarily
algebraically closed nor of different characteristics) with respect to an ultraset P . In most
applications, P will have as underlying set the set of prime numbers and eachKp will have
characteristic p. For a finite tuple X = (X1, . . . , Xn) of indeterminates, we put

K[[X]]∞ := ulim
p∈P

Kp[[X]].

We start with an important fact about ultraproducts of powers series rings taken from [6,
Lemma 3.4]; since we will need a similar argument below (Proposition 4.30), we indicate
the proof. The ideal of infinitesimals of a local ring (S,m) is the ideal Inf(S) :=

⋂
d∈N md

of S. The m-adic topology on S is separated if and only if Inf(S) = 0, and this is the case
if S is Noetherian by Krull’s Intersection Theorem.
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3.1. Proposition. There is a surjective K[X]-algebra homomorphism

π : K[[X]]∞ → K[[X]]

whose kernel is Inf(K[[X]]∞).

Proof. We start by defining π. Let f∞ ∈ K[[X]]∞ and choose fp ∈ Kp[[X]], for p ∈ P ,
whose ultraproduct is f∞. Write each fp as

fp :=
∑
ν

aνpX
ν

with aνp ∈ Kp. Here the sum ranges over all multi-indices ν ∈ Nn. Let aν∞ ∈ K be the
ultraproduct of the aνp and define

π(f∞) :=
∑
ν

aν∞X
ν ∈ K[[X]].

It follows from Łos’ Theorem that π is a well-defined K[X]-algebra homomorphism. Its
surjectivity is clear. So it remains to show that the kernel of π is Inf(K[[X]]∞). If f∞ ∈
Inf(K[[X]]∞), then by Łos’ Theorem, for each d ∈ N, there is a member Ud of the
ultrafilter such that fp ∈ (X1, . . . , Xn)dKp[[X]] for all p ∈ Ud. In particular, for each
ν ∈ Nn we have that aνp = 0, for all p ∈ U|ν|+1. Therefore aν∞ = 0, and since this holds
for all ν, we see that f∞ ∈ kerπ. The converse holds by reversing the argument. �

3.2. Remark. In fact, we may replace in the above K[[X]]∞ by its subring K[X]∞,
given as the ultraproduct of the Kp[X]. That is to say, π induces a surjective K[X]-
algebra homomorphism K[X]∞ → K[[X]] with kernel equal to the intersection of all
(X1, . . . , Xn)dK[X]∞ for d ∈ N. Indeed, it suffices to show that π maps K[X]∞ onto
K[[X]]. Let us explain this just in case the underlying set of P is countable and hence,
after identification, we may think of it as a subset of N. Given f =

∑
ν aνX

ν ∈ K[[X]],
choose aνp ∈ Kp so that their ultraproduct is aν and put

fp :=
∑
|ν|≤p

aνpX
ν ∈ Kp[X].

Then π(f∞) = f , where f∞ ∈ K[X]∞ is the ultraproduct of the polynomials fp.

3.3. Artin Approximation. Recall that a Noetherian local ring (R,m) is said to satisfy
Artin Approximation if every system of polynomial equations over R which is solvable in
the completion R̂ of R is already solvable in R. In view of Corollary 2.5, this is equivalent
with the existence of an ultraset U and an R-algebra homomorphism

(3.3.1) R̂→ RU .

In fact, if R satisfies Artin Approximation, then R is existentially closed in R̂, that is to
say, every system of polynomial equations and inequalities over R which is solvable in
R̂ has a solution in R. (Since R is dense in R̂, inequalities, and also congruence condi-
tions, can be incorporated in a system of equations.) Artin proved (in [1] and [2, Theorem
1.10], respectively) that the ring of convergent complex power series C{X} and the ring
of algebraic power series L[[X]]alg, with L an arbitrary field, satisfy Artin Approximation.
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Artin’s Conjecture. A local ring (R,m) satisfying Artin Approximation is necessarily
Henselian, and Artin conjectured that the converse holds if R is excellent. This conjecture
was eventually confirmed to be true [44, 61, 62]. In each of these papers, Artin’s Conjec-
ture is derived from generalized Néron Desingularization, stating that a homomorphism
A → B of Noetherian rings is regular if and only if B is the direct limit of smooth A-
algebras. In the development of tight closure in characteristic zero in the sense of Hochster
and Huneke [31], this latter theorem plays an essential role. In this paper we give an alter-
native definition of tight closure relying only on a weaker form of Artin Approximation,
to wit, Rotthaus’ result [48] on the Artin Approximation property for rings of the form
L[[X]][[Y ]]alg with L a field of characteristic zero. (In Theorem 3.15 below, which is not
needed anywhere else, we do need generalized Néron Desingularization.)

Strong Artin Approximation. We say that a Noetherian local ring (R,m) satisfies Strong
Artin Approximation, if any system of polynomial equations over R which is solvable
modulo arbitrary high powers of m is already solvable inR. By Corollary 2.5, this amounts
to the existence of an ultraset U and an R-algebra homomorphism

(3.3.2)
∏
n∈N

R/mn → RU .

From (3.3.1) and (3.3.2) it follows that R satisfies Strong Artin Approximation if and only
if R satisfies Artin Approximation and R̂ satisfies Strong Artin Approximation. In [6], a
very quick proof using ultraproducts is given to show that L[[X]] satisfies Strong Artin Ap-
proximation, for every uncountable algebraically closed fieldL. Using the Cohen Structure
Theorem, one then deduces from this and the positive solution of Artin’s Conjecture, that
every equicharacteristic, excellent, Henselian local ring with an uncountable algebraically
closed residue field satisfies Strong Artin Approximation.

Uniform Strong Artin Approximation. Any version in which the same conclusion as in
Strong Artin Approximation can be reached just from the solvability modulo a single power
mN of m, where N only depends on (some numerical invariants of) the system of equa-
tions, is called Uniform Strong Artin Approximation. In [6], using ultraproducts, Uniform
Strong Artin Approximation for R = L[[X]]alg is shown to follow from Artin Approxima-
tion for that ring. In more general situations, additional restrictions have to be imposed on
the equations (see [2, Theorem 6.1] or [6, Theorem 3.2]) and substantially more work is
required [14, 55]. For instance, the proof of the parametric version in [15, Theorem 3.1]
uses the positive solution [48] of Artin’s Conjecture in the equicharacteristic case.

Nested Conditions. An even more subtle question regarding (Strong or Uniform Strong)
Artin Approximation for subrings of L[[X]] is whether one can maintain side conditions
on the solutions requiring some of the entries of a solution tuple to depend only on some of
the variables, provided the given (approximate) solutions also satisfy such constraints. In
[6], several examples are presented to show that this might fail in general (see also §4.33
below). However, Rotthaus’ approximation result [48] implies that cylindrical approxima-
tion does hold, provided charL = 0. (This was first noted in [6].) Here, by cylindrical
approximation we mean Artin Approximation for nested systems of polynomial equations
in the context of Example 2.2. We refer to Theorem 3.11 below for a precise formulation.

3.4. Embeddings in ultraproducts. We now turn to the issue of embedding a power
series ring in the ultraproduct of power series rings, which is needed for our construction
of a Lefschetz hull in the next section. The existence of a Lefschetz hull is immediate from
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the following corollary to Artin’s original result on the Artin Approximation property for
algebraic power series.

3.5. Proposition. For every finitely generated K[X]-subalgebra V of K[[X]] there exists
a K[X]-algebra homomorphism V → K[[X]]∞. In particular, there exists an ultraset U
and a K[X]-algebra homomorphism K[[X]] → K[[X]]U∞.

Proof. Translating the Artin Approximation property for K[[X]]alg in the terminology of
Corollary 2.5 yields the existence of a K[X]-algebra homomorphism ϕ : V → K[[X]]alg.
As the Henselian property can be expressed in terms of the solvability of certain systems
of polynomial equations, it follows by Łos’ Theorem that K[[X]]∞ is Henselian. By the
universal property of Henselizations there exists a unique K[X]-algebra homomorphism
K[[X]]alg → K[[X]]∞. Composition with ϕ yields the desired K[X]-algebra homomor-
phism V → K[[X]]∞. The last assertion is now clear by Corollary 2.5. �

The remainder of the section is devoted to enhancements of this, and in particular, the
nested version from Theorem 3.10, which we need to obtain functoriality of Lefschetz
extensions. In the following L denotes a field and S =

⋃
n Sn the nested subring of the

nested ring A =
⋃
nAn as defined in Example 2.2, so

Sn = L[[Y0]][Y1, . . . , Yn], An = L[[Y0, . . . , Yn]] for all n,

where Y0, Y1, . . . is an infinite sequence of finite tuples Yn of indeterminates. If we need to
emphasize the field, we will write SL andAL for S andA. We need some further notations
concerning nested rings.

3.6. Notation. LetQ =
⋃
nQn be a nested ring. We denote byQ(1) the ringQ considered

as a nested ring with nest Q(1)n := Qn+1. A homomorphism ψ : Q → R of nested rings
is then also a homomorphism Q(1) → R(1) of nested rings.

If I is an ideal ofQ, then we construeQ/I as a nested ring with nest given by (Q/I)n :=
Qn/I∩Qn for all n. If p is a prime ideal ofQ, then the localizationQp is a nested ring with
nest given by (Qp)n := (Qn)p∩Qn

for all n. If each Qn is a local ring with maximal ideal
mn, thenQ is local with maximal ideal m :=

⋃
n mn and residue fieldQ/m =

⋃
nQn/mn.

In this case we say that (Q,m) is a nested local ring. If moreoverQn∩mk = mk
n for every

k, then Inf(Q) ∩Qn = Inf(Qn) for all n.
If Q is a nested R-algebra, for some nested ring R =

⋃
nRn, and T an R0-algebra,

then we consider Q⊗R0 T as a nested R-algebra by means of the nest (Qn ⊗R0 T ).
Given a Henselian local ring (H, n) and a homomorphism ψ : Q → H we denote the

Henselization of Qn∩Q by Q∼ and we let ψ∼ : Q∼ → H be the unique extension of ψ
given by the universal property of Henselizations. (Often, H is to be understood from
the context.) Note that then Q∼ is a nested local ring with nest (Q∼)n := (Qn)∼. For
instance, applied to Q := S, H := A and ψ the natural inclusion S → A, we get the
nested S-subalgebra S∼ = R of A (see Example 2.2).

The argument in the proof of the following lemma was inspired by [5, Remark 1.5].

3.7. Lemma (Cylindrical Approximation). If V is a nested S-subalgebra of finite type of
A, then there exists a homomorphism of nested S-algebras ϕ : V → S∼.

Proof. We proceed by induction on the length n of the relevant part V0 ⊆ V1 ⊆ · · · ⊆ Vn
of V , where the case n = 0 holds trivially since then V = S. Consider the nested ring
T := S(1)⊗S1 A1 with nest (Tn) given by

Tn := S(1)n ⊗S1 A1 = L[[Y0, Y1]][Y2, . . . , Yn+1].
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In particular, T is a nested S(1)-subalgebra of A(1). Let W be the image of the homomor-
phism of nested T -algebras V (1)⊗S1 A1 → A(1) induced by the inclusion V (1) ⊆ A(1),
so W is a nested T -subalgebra of finite type of A(1). Since its relevant part has length
< n, we may apply our induction hypothesis to conclude that there is a homomorphism
of nested T -algebras W → T∼. Via the natural homomorphism V (1) → W , we get a
homomorphism of nested S(1)-algebras V (1) → T∼. Let W ′ be its image, so that W ′ is
a nested S(1)-subalgebra of finite type of T∼.

For our purposes in §4, we only have to deal with the case that the base field L has
characteristic zero. In that case, we can use [48, Theorem 4.2], which implies that S∼1 has
the Artin Approximation property. In case the characteristic of L is positive, we require
the positive solution of Artin’s Conjecture by [44, 61]. In any case, by (3.3.1), there exists
an ultraset U and an S1-algebra homomorphismA1 → (S∼1 )U . For each n, this S1-algebra
homomorphism extends to an Sn-algebra homomorphism

Tn = A1[Y2, . . . , Yn+1] → (S∼1 )U [Y2, . . . , Yn+1] → (S∼n+1)
U .

Since the right hand side is Henselian, we may replace the ring on the left by its Henseliza-
tion. Gathering these homomorphisms for all n yields a homomorphism of nested S(1)-
algebras T∼ → (S(1)∼)〈U〉. Applying (2.4.2) to the nested S(1)-subalgebra of finite type
W ′ ⊆ T∼, yields the existence of a homomorphism of nested S(1)-algebrasW ′ → S(1)∼.
Composition with V (1) → W ′ gives a homomorphism V (1) → S(1)∼ of nested S(1)-
algebras. Since S0 = V0 = A0, this is in fact a homomorphism of nested S-algebras
V → S∼, as required. �

From now on we always assume that Y0 is the empty tuple. (The more general case was
only needed for inductive reasons, in the proof of the previous lemma.)

In the following corollary we specialize to L = K. Then, in a natural way, Bn :=
K[[Y1, . . . , Yn]]∞ is an Sn-algebra, and we may identify Bn with a subring of Bn+1, for
all n; hence the subring B :=

⋃
nBn of ulimpKp[[Y1, Y2, . . . ]] is a nested S-algebra with

nest (Bn).

3.8. Corollary. There exists an ultraset U and a homomorphism η : A → B〈U〉 of nested
S-algebras.

Proof. We only need to verify that condition (2.4.2) in Theorem 2.4 is fulfilled. To this
end, let V be a nested S-subalgebra of A of finite type. By Lemma 3.7, there exists a
homomorphism of nested S-algebras V → S∼. Since B is Henselian, the homomorphism
of nested rings S → B extends to a homomorphism of nested rings S∼ → B, and the
composition V → S∼ → B proves (2.4.2). �

We denote by m the ideal of S generated by all the indeterminates Yni, for all n and
i = 0, . . . , kn.

3.9. Remark. For each n, let πn be the canonical epimorphism Bn → An given by Propo-
sition 3.1 and let π : B → A be the induced homomorphism of nested S-algebras (given as
the direct limit of the πn). Then π induces an isomorphism between B/mcB and S/mcS,
for all c ∈ N. On the other hand, for a fixed c ∈ N, we can realize A as the union of all
nested S-subalgebras V of finite type of A such that V/mcV ∼= S/mcS. For those V , the
homomorphism V → S∼ given by Lemma 3.7 becomes an isomorphism modulo mc, and
applying Remark 2.7 with this collection we see that we may take η in Corollary 3.8 so
that its composition with π is congruent modulo mc to the diagonal embedding A ⊆ A〈U〉.
Without proof, we mention that one can achieve the even stronger condition that π ◦ η
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is equal to the diagonal embedding. (This however, even in characteristic zero, requires
generalized Néron Desingularization.)

Applying Corollary 3.8 with each Yn for n ≥ 1 equal to a single indeterminate yields
the following result, needed for the functorial construction of faithfully flat Lefschetz ex-
tensions in the next section.

3.10. Theorem. There exists an ultraset U and for each n a K[X1, . . . , Xn]-algebra ho-
momorphism

ηn : K[[X1, . . . , Xn]] → K[[X1, . . . , Xn]]U∞,
such that for all n ≤ m, the diagram

K[[X1, . . . , Xn]]
ηn //

��

K[[X1, . . . , Xn]]U∞

��
K[[X1, . . . , Xm]]

ηm // K[[X1, . . . , Xm]]U∞

commutes, where the vertical arrows are the natural inclusion maps. �

Given a nested system of polynomial equations S over S as in (2.3.1) we call the maxi-
mum of n, k0, . . . , kn and the degrees of the polynomials Pij the complexity of S. We say
that a nested S-algebra V of finite type has complexity ≤ d if V admits a defining nested
system of equations of complexity ≤ d. (See §2.3.) The proof of the next theorem is a
modification of the argument in [6, Theorem 4.3].

3.11. Theorem (Uniform Strong Artin Approximation with Nested Conditions). Given
c, d ∈ N, there exists N = N(c, d) ∈ N with the following property. Let L be a field,
let S := SL and let V be a nested S-algebra of finite type and of complexity at most
d. If ψ : V → S/mNS is a homomorphism of nested S-algebras, then there exists a
homomorphism ϕ : V → S∼ of nested S-algebras such that

V
ϕ //

ψ

��

S∼

q

��
S/mNS // S/mcS

commutes, where q is induced by the canonical isomorphism S∼/mcS∼ ∼= S/mcS.

Proof. Suppose the claim is false for some pair (c, d), so that we have counterexamples
for increasing powers of m. That is to say, for each p ∈ N there is a field Kp and a
nested SKp

-algebra V p of finite type with a defining nested system of equations Sp of
complexity at most d and a homomorphism of nested algebras V p → SKp

/mpSKp
which

is not congruent modulo mc to a homomorphism V p → S∼Kp
. We may assume that there

exist k ∈ N and indeterminates Zi = (Zi1, . . . , Zid), for i = 0, . . . , d, such that each
Sp has the form (2.3.1) with n = d, for some polynomials Pij ∈ (SKp

)i[Z0, . . . , Zi]
of degree ≤ d. Let K be the ultraproduct of the Kp with respect to some ultraset with
underlying set N. Taking the ultraproduct of the polynomials in Sp yields a nested system
S of equations with coeffcients in SK . Let V be the corresponding nested SK-algebra of
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finite type. By [18, (1.8)], V embeds into the ultraproduct of the Vp. Taking ultraproducts
of the homomorphisms V p → SKp

/mpSKp
∼= AKp

/mpAKp
yields a homomorphism

V → BK/ Inf(BK) ∼= AK of nested SK-algebras, where we used Proposition 3.1 for the
last isomorphism. By Lemma 3.7, applied to (the image under) V → AK , there exists a
homomorphism V → S∼K of nested SK-algebras, which we may assume to be congruent
to V → AK modulo mcAK , by Remark 3.9. By Łos’ Theorem, the ultraproduct B̃ of the
S∼Kp

is Henselian. Since B̃ is a nested SK-algebra, it is in fact a nested S∼K-algebra by the

universal property of Henselizations. Hence we have a composed homomorphism V → B̃
of nested SK-algebras which is congruent to V → AK modulo mcAK . Łos’ Theorem then
yields for almost all p a homomorphism V p → S∼Kp

of nested SKp
-algebras which modulo

mc is equal to the original homomorphism V p → SKp
/mcSKp

, a contradiction. �

3.12. Remark. Conversely, Lemma 3.7 is an immediate consequence of Theorem 3.11.
Indeed, let V be a nested S-subalgebra of A of finite type. Since A/mNA ∼= S/mNS, this
induces for each N a homomorphism V → S/mNS of nested S-algebras. For sufficiently
large N this yields by Theorem 3.11 a homomorphism V → S∼ of nested S-algebras.

3.13. Remark. Spelling out the previous result in terms of equations yields the following
equational form of cylindrical approximation: For all c, d ∈ N there exists a bound N =
N(c, d) ∈ N with the following property. Let L be a field and let S be a nested system
of polynomial equations with coefficients from SL, of complexity at most d. If S has an
approximate nested solution a = (a0, . . . ,an) in AL modulo (Y1, . . . , Yn)N , then S has a
nested solution in S∼L which is congruent to a modulo (Y1, . . . , Yn)c.

3.14. Remark. Let L(n) be the language of rings augmented by unary predicate symbols
R0, . . . , Rn. We construe a formal power series ring S[[X1, . . . , Xn]] over a ring S as an
L(n)-structure by interpreting Ri by the subring S[[X1, . . . , Xi]]. The previous remark
yields the following existential Lefschetz principle for nested power series rings: An exis-
tentialL(n)-sentence holds in C[[X1, . . . , Xn]] if and only if it holds in Falg

p [[X1, . . . , Xn]]
for all but finitely many primes p. For existential sentences not involving the Ri, this has
already been noted elsewhere, see [7, Proposition 1]. For n = 1 a much stronger transfer
principle holds in which not only existential sentences are carried over, but any sentence.
(This follows from the Ax-Kochen-Ershov Principle.)

We finish this section by indicating a strengthening of Theorem 3.10 (not needed later).
Given a power series f ∈ Z[[X]] = Z[[X1, . . . , Xn]], let fp be its image in Kp[[X]] and
let f∞ be the ultraproduct of the fp in K[[X]]∞. One verifies that the map f 7→ f∞ is an
injective Z[X]-algebra homomorphism Z[[X]] → K[[X]]∞ which extends to an injective
Z[X]-algebra homomorphism Z[[X]]⊗ZK → K[[X]]∞. We will view Z := Z[[X]]⊗ZK
as a subring of K[[X]]∞ via this embedding. Write mn for the ideal in Z[X] generated
by X1, . . . , Xn. Since Z/mk

nZ
∼= K[[X]]/mk

nK[[X]], for all k, we see that K[[X]] is
the mnZ-adic completion of Z. In particular, Z is a dense subring of K[[X]], equal to
the K[X]-subalgebra of K[[X]] generated by all power series with integral coefficients.
Inspecting the proof of Proposition 3.1, we see that π is in fact aZ-algebra homomorphism.
Let Z∼ be the Henselization of Z at the maximal ideal mnZ. By the universal property
of Henselizations, the embedding Z ⊆ K[[X]]∞ extends to a unique embedding Z∼ →
K[[X]]∞. Henceforth we will view Z∼ as a subring of K[[X]]∞. Note that since K[X] is
a subring of Z∼, so is its Henselization K[[X]]alg at mnK[X].

3.15. Theorem. The ultraset U and the K[X1, . . . , Xn]-algebra homomorphisms ηn in
Theorem 3.10 can be chosen so that in addition each ηn is a Z∼-algebra homomorphism.
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Proof. This theorem follows as above from the corresponding extension of Lemma 3.7.
To this end, replace the filtered ring S in Lemma 3.7 and its proof by the nested ring
T =

⋃
n Tn, where Tn is the Henselization of Z[[Y0, . . . , Yn]] ⊗Z K at (Y0, . . . , Yn)Z.

Whenever we invoked Rotthaus’ result, we now use the positive solution of Artin’s Con-
jecture due to [44, 61, 62] instead. Note that each Tn is excellent. (Use for instance the
Jacobian Criterion [40, Theorem 101].) Details are left to the reader. �

3.16. Remark. By the same argument as in Remark 3.9, we can choose the ηn moreover so
that its composition with the canonical epimorphism πU : K[[X]]U∞ → K[[X]]U is equal
to the diagonal embedding K[[X]] ⊆ K[[X]]U , for each n.

3.17. Remark. By Theorem 3.15, the existential Lefschetz principle from Remark 3.14
remains true upon augmenting L(n) by additional constant symbols, one for each power
series in Z[[X]] = Z[[X1, . . . , Xn]], to be interpreted in the natural way in S[[X]].

4. LEFSCHETZ HULLS

Our objective in this section is to prove the theorem stated in the introduction, in a
more precise form. Throughout, we fix a Lefschetz field K with respect to some ultraset
with underlying set equal to the set of the prime numbers, whose components Kp are
algebraically closed fields of characteristic p. See the remark following Proposition 1.4 on
how to obtain such K, of arbitrarily large cardinality.

In obtaining a functorially defined Lefschetz extension, we face the following complica-
tion: not every automorphism of K is an ultraproduct of automorphisms of its components
Kp. The simplest counterexample is complex conjugation on C, for no algebraically closed
field of positive characteristic has a subfield of index 2. In fact, each algebraically closed
subfield of K has an automorphism which cannot be extended to an automorphism of K
that is an ultraproduct of automorphisms of the Kp. (Otherwise, every automorphism of
the algebraic closure Qalg of Q inside K would extend to an automorphism of the alge-
braically closed subfield ulimp Falg

p of K which is an ultraproduct of automorphisms of
the Falg

p , and this is impossible since Gal(Qalg|Q) is not abelian.) This prevents us from
outright defining a functor from the category of equicharacteristic zero Noetherian local
rings R whose residue field is contained in K to a category of analytic Lefschetz rings.
(Another obstacle is pointed out in §4.33 at the end of this section.) The way around this
problem is to fix some additional data of R, as we explain next.

4.1. Quasi-coefficient fields. Let (R,m) be a Noetherian local ring which contains the
rationals (that is to say, R has equicharacteristic zero). A subfield k of R is called a
quasi-coefficient field of R if R/m is algebraic over the image of k under the residue
homomorphism R → R/m. Every maximal subfield of R is a quasi-coeffcient field.
A quasi-coefficient field is called a coefficient field if the natural map k → R/m is an
isomorphism. In general, coefficient fields may not exist. If R is Henselian then a subfield
of R is a coefficient field if and only if it is maximal. In particular, if R is complete, then
R has a coefficient field. Every quasi-coefficient field k of R is contained in a unique
coefficient field of R̂, namely, the algebraic closure of k in R̂. For proofs and more details,
see [41, §28].

4.2. The category CohK . In order to state a refined version of the theorem from the
introduction, we introduce a category CohK (for “Cohen”). Its objects are quadruples
Λ = (R,x, k, u) where

(a) (R,m) is a Noetherian local ring (the underlying ring of Λ),
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(b) x is a (finite) tuple of elements of R which generate m,
(c) k is a quasi-coefficient field of R, and
(d) u : R→ K is a local homomorphism (that is to say, u is a ring homomorphism

with keru = m).
A morphism Λ → Γ from Λ to another such quadruple Γ = (S,y, l, v) is given by a local
ring homomorphism α : R→ S such that

(a) α(x) is an initial segment of y (if x = (x1, . . . , xn) and y = (y1, . . . , ym),
then n ≤ m and yi = α(xi) for i = 1, . . . , n),

(b) α(k) ⊆ l, and
(c) v ◦ α = u.

We will often identify a morphism Λ → Γ with its underlying homomorphism α : R → S
and hence denote it also by α.

Let Loc be the category of (not necessarily Noetherian) local rings, with the local ring
homomorphisms as morphisms. Given an ultraset W we denote by LefW the category
of analytic Lefschetz rings with respect to W as defined in §1. (Its objects are ultraprod-
ucts, with respect to W , of complete local rings with algebraically closed residue fields
of positive characteristic, and its morphisms are ultraproducts of local homomorphisms.)
We stress once more that LefW , as a subcategory of Loc, is not full. We will denote the
forgetful functor with values in Loc always by ring (regardless of the source category). If
F andG are functors from a category C to Loc, then we will say that a natural transforma-
tion η : F → G is faithfully flat if the ring homomorphism ηΛ : F (Λ) → G(Λ) is faithfully
flat, for each object Λ in C.

4.3. Theorem. There exists an ultrasetW , a functor D : CohK → LefW and a faithfully
flat natural transformation η : ring → ring ◦D.

We call D(Λ) the Lefschetz hull of Λ. Let us state in more detail what the above
functoriality amounts to. Given a morphism Λ → Γ in CohK with underlying homo-
morphism α : R → S, where R := ring(Λ) and S := ring(Γ), we get a morphism
D(α) : D(Λ) → D(Γ) in LefW and faithfully flat homomorphisms ηΛ : R → D(Λ) and
ηΓ : S → D(Γ) fitting into a commutative diagram

(4.3.1)

R
α //

ηΛ

��

S

ηΓ

��
D(Λ)

D(α)
// D(Γ).

(Technically speaking we should have written R → ring(D(Λ)), etc., but we’ll always
identify D(Λ) with its underlying ring.)

The proof proceeds in two steps. We first prove the theorem for a certain subcategory
AnK of CohK given by quotients of power series rings over K (see §4.4). The existence
of the functor D for these rings then follows from Theorem 3.10. The second step consists
in associating in a functorial way to an object Λ = (R,x, k, u) of CohK a complete local
K-algebra which is a faithfully flat R-algebra (see §4.13). This is achieved by making
a base change to K using k and u, and then taking completion. By Cohen’s structure
theorem, x then determines a unique ring C(Λ) in AnK isomorphic to the latter. After the
proof of Theorem 4.3 we discuss a construction of Lefschetz hulls with some additional
properties.
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We adopt the following notation for polynomial and power series rings: we fix a count-
able sequence of indeterminates X1, X2, . . . , and for each n and each ring S, we let S[n]
and S[[n]] be shorthand for respectively S[X1, . . . , Xn] and S[[X1, . . . , Xn]]. We write
K[[n]]∞ for the ultraproduct of the Kp[[n]].

4.4. Power series rings. We first describe in more detail the category of quotients of
power series rings overK, which we denote by AnK . Its objects are local rings of the form
K[[n]]/I , for some n and some ideal I of K[[n]]. A morphism in AnK is a K-algebra
homomorphism α : K[[n]]/I → K[[m]]/J where n ≤ m, I ⊆ J , and α is induced by
the inclusion K[[n]] ⊆ K[[m]]. To each object K[[n]]/I of AnK we associate the object
(K[[n]]/I,x,K, πn) in CohK , where x = (x1, . . . , xn) with xi := Xi + I for each i and
πn : K[[n]] → K is the residue map. Every AnK-morphism α : K[[n]]/I → K[[m]]/J
gives rise to a CohK-morphism (with underlying homomorphism α) between the objects
corresponding to K[[n]]/I and K[[m]]/J , respectively. It is easily verified that via this
identification, AnK becomes a full subcategory of CohK .

We now embark on the proof of Theorem 4.3, first for the subcategory AnK . Let U be
the ultraset from Theorem 3.10 and set

D(n) := K[[n]]U∞ for each n.

By that theorem, there exists, for each n, a K[n]-algebra homomorphism ηn : K[[n]] →
D(n) such that for each n ≤ m, the diagram

(4.4.1)

K[[n]] //

ηn

��

K[[m]]

ηm

��
D(n) // D(m)

commutes, where the horizontal maps are the natural inclusions. We construe D(n) as a
K-algebra via η0; then each ηn is a K-algebra homomorphism.

4.5. Remark. If we are only interested in constructing a Lefschetz extension for a single
K[[n]], then the existence of a K[n]-algebra homomorphism ηn : K[[n]] → D(n) already
follows by combining Theorem 2.4 with the more elementary Proposition 3.5.

4.6. Remark. Suppose that K = C. If we are willing to weaken the requirement that ηn
be a K[n]-algebra homomorphism, then under assumption of the Continuum Hypothesis
2ℵ0 = ℵ1 the passage to the ultrapower C[[n]]U∞ is superfluous: Let L be a countable
subfield of C; then Sn = L[n] is countable, and under the assumption 2ℵ0 = ℵ1 it follows
along the lines of Remark 2.11 that there exists, for each n, an Sn-algebra homomorphism
%n : C[[n]] → C[[n]]∞ such that %n is the restriction of %m to C[[n]], for all n ≤ m.

Note that D(n), being an ultrapower of the analytic Lefschetz ring K[[n]]∞, is itself
an analytic Lefschetz ring. Indeed, we can construct an ultraset W with the following
property: for each n, the ring D(n) is isomorphic to the ultraproduct with respect to W of
the rings Kw[[n]], where Kw := Kp(w) for some prime number p(w). (See [13, Propo-
sition 6.5.2].) From now on, we always represent D(n) in this way. The Lefschetz ring
D(n) is a K-algebra, where K := D(0) = KU , via the natural inclusion D(0) → D(n),
and the natural inclusions D(n) → D(m) (for n ≤ m) are K-algebra homomorphisms.
Next we show that D(n) gives the desired faithfully flat Lefschetz extension:
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4.7. Proposition. For each n, the homomorphism ηn : K[[n]] → D(n) is faithfully flat.

In the proof we use the following variant of [12, Corollary 8.5.3]. A module M over
a local ring R is called a big Cohen-Macaulay module over R if there exists a system of
parameters of R which is an M -regular sequence. If every system of parameters of R is an
M -regular sequence, then M is called a balanced big Cohen-Macaulay module over R. If
(R,m) is a regular local ring and M a balanced big Cohen-Macaulay module over R, then
M is flat, see [35, proof of Theorem 9.1].

4.8. Lemma. Let R be a Noetherian local ring and let M be a big Cohen-Macaulay
module over R. If every permutation of an M -regular sequence is again M -regular, then
M is a balanced big Cohen-Macaulay module over R.

Proof. We proceed by induction on d := dimR. There is nothing to show if d = 0, so
assume d > 0. By assumption, there exists a system of parameters (x1, . . . , xd) of R
which is an M -regular sequence. Let (y1, . . . , yd) be an arbitrary system of parameters.
By prime avoidance we find z ∈ m not contained in a minimal prime of (x1, . . . , xd−1)R
and of (y1, . . . , yd−1)R. Hence both (x1, . . . , xd−1, z) and (y1, . . . , yd−1, z) are systems
of parameters of R. Since a power of xn is a multiple of z modulo (x1, . . . , xd−1)R, the
sequence (x1, . . . , xd−1, z) is M -regular. Thus, by assumption, the permuted sequence
(z, x1, . . . , xd−1) is also M -regular. In particular, the canonical image of (x1, . . . , xd−1)
in R/zR is M/zM -regular, showing that M/zM is a big Cohen-Macaulay module over
R/zR. Moreover, every permutation of an M/zM -regular sequence is again M/zM -
regular. By induction hypothesis, the canonical image of (y1, . . . , yd−1) in R/zR, being a
system of parameters in R/zR, is M/zM -regular. Hence (z, y1, . . . , yd−1) is M -regular,
and therefore, using the assumption once more, so is (y1, . . . , yd−1, z). As some power of
z is a multiple of yd modulo (y1, . . . , yd−1)R, we get that (y1, . . . , yd) is M -regular, as
required. �

Proof of Proposition 4.7. Since (X1, . . . , Xn) is a Kw[[n]]-regular sequence for each w,
it is a D(n)-regular sequence by Łos’ Theorem. It follows that D(n) is a big Cohen-Mac-
aulay K[[n]]-algebra via the homomorphism ηn. Using Łos’ Theorem once more, one
shows that every permutation of a D(n)-regular sequence is again D(n)-regular (since ev-
ery permutation of aKw[[n]]-regular sequence inKw[[n]] remainsKw[[n]]-regular by [12,
Proposition 1.1.6]). Therefore, D(n) is a balanced big Cohen-Macaulay K[[n]]-algebra,
by the lemma above. Since K[[n]] is regular, ηn is flat by [35, proof of Theorem 9.1],
hence faithfully flat. �

Below, we write ID(n) to denote the ideal of D(n) generated by the image of an ideal
I of K[[n]] under ηn.

4.9. Remark. We have

Im(ηn) = Im(ηn+1) ∩D(n) for all n.

This follows from Xn+1D(n+ 1) ∩D(n) = (0) and the injectivity of ηn+1.

4.10. Proof of Theorem 4.3 for the category AnK . The construction of D(n) above
extends in a natural way to quotients of K[[n]]. Namely, if I = (a1, . . . , am)K[[n]] is an
ideal of K[[n]] and R := K[[n]]/I , then we choose biw ∈ Kw[[n]] whose ultraproduct in
D(n) is ηn(ai), for each i, and put

D(R) := ulim
w

Kw[[n]]/Iw.
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Here Iw is the ideal of Kw[[n]] generated by b1w, . . . , bmw. The canonical surjections
Kw[[n]] → Kw[[n]]/Iw yield a surjection D(n) → D(R) whose kernel is ID(n). On
the one hand, this shows that D(R) does not depend on the choice of the biw and that we
have an isomorphism ϕ : D(n)/ID(n) → D(R). On the other hand, composing with the
homomorphism ηn : K[[n]] → D(n) we obtain a homomorphism K[[n]] → D(R) whose
kernel contains I , and hence an induced K-algebra homomorphism

ηR : R = K[[n]]/I → D(R).

(According to this definition D(K[[n]]) = D(n) and ηK[[n]] = ηn, for all n.) We have a
commutative diagram

R
ηR //

��

D(R)
::

ϕ

vvvvvvvvvvvvvvvv

D(n)/ID(n)

where the arrow on the left is the homomorphism obtained from ηn by base change modulo
I . Hence by Proposition 4.7 the homomorphism ηR is faithfully flat. In the following we
identify D(n)/ID(n) and D(R) via the isomorphism ϕ.

Let J be an ideal ofK[[n+m]] with I ⊆ J . The natural inclusionK[[n]] → K[[n+m]]
induces a morphism α : R → S := K[[n + m]]/J in AnK . (This is the only AnK-
morphism R → S.) Choose Jw ⊆ Kw[[n + m]] in the same way as we constructed the
Iw; so their ultraproduct is JD(n + m) and D(S) ∼= D(n + m)/JD(n + m). Since
ID(n) ⊆ JD(n+m), we have Iw ⊆ Jw for almost all w, by Łos’ Theorem. The natural
inclusions Kw[[n]] → Kw[[n+m]] give rise to homomorphisms

αw : Kw[[n]]/Iw → Kw[[n+m]]/Jw.

The ultraproduct of the αw yields a K-algebra homomorphism D(α) : D(R) → D(S)
making the diagram

D(n)

��

// D(n+m)

��
D(R)

D(α)
// D(S)

commutative. Together with (4.4.1) this gives a commutative diagram

R
α //

ηR

��

S

ηS

��
D(R)

D(α)
// D(S)

as required. �

This concludes the proof of Theorem 4.3 for the subcategory AnK . Before we turn to
the general case, we take a closer look at finite maps. We use the following version of the
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Weierstrass Division Theorem for D(n+1). Let f, g ∈ D(n+1) and suppose g is regular
in Xn+1 of order d, that is,

g ≡ Xd
n+1(1 + ε) mod (X1, . . . , Xn)D(n+ 1)

with ε ∈ Xn+1D(n + 1). Then there exist unique q ∈ D(n + 1) and r ∈ D(n)[Xn+1]
such that f = qg + r and the degree of r with respect to Xn+1 is strictly less than d.
(Use Łos’ Theorem and the Weierstrass Division Theorem in Kw[[n+ 1]].) A polynomial
P (Y ) ∈ A[Y ] in a single indeterminate Y with coefficients in a local ring (A, n) is called
a Weierstrass polynomial if P (Y ) is monic of degree d and P ≡ Y d mod nA[Y ].

4.11. Proposition. If α : R → S is a finite morphism in AnK (that is to say, if S is
module-finite over R), then the natural map D(R) ⊗R S → D(S) is an isomorphism,
making the diagram

D(R)

D(α)

��

// D(R)⊗R S

∼=
yysssssssssssssssss

D(S)

commutative.

Proof. We keep the notation from above, so that in particular α : R = K[[n]]/I → S =
K[[n+m]]/J . The case m = 0 is clear. By an induction on m, we may reduce to the case
m = 1. The ideal

J1 := J ∩K[[n]][Xn+1]
of K[[n]][Xn+1] contains a monic polynomial P . Now P (as an element of K[[n + 1]])
is regular of order at most d = degree of P , hence can be written as P = uQ where
u ∈ K[[n+ 1]] is a unit and Q ∈ K[[n]][Xn+1] is a Weierstrass polynomial. Replacing P
by Q we may assume that P is a Weierstrass polynomial of degree d contained in J1. The
natural inclusion K[[n]][Xn+1] → K[[n+ 1]] induces an embedding

(4.11.1) K[[n]][Xn+1]/J1 → K[[n+ 1]]/J = S,

which is in fact an isomorphism, for given f ∈ K[[n+ 1]] we can write f − r = qP ∈ J
where q ∈ K[[n+1]] and r ∈ K[[n]][Xn+1] of degree< d, using Euclidean Division by P .
The image of P under ηn+1, which we continue to denote by P , lies in D(n)[Xn+1] and
is a Weierstrass polynomial of degree d. The natural inclusion D(n)[Xn+1] → D(n + 1)
induces a map

(4.11.2) D(n)[Xn+1]/PD(n)[Xn+1] → D(n+ 1)/PD(n+ 1).

From the uniqueness of quotient and remainder in Weierstrass Division by P it follows
that (4.11.2) is in fact an isomorphism. Since J = J1K[[n + 1]] and thus JD(n + 1) =
J1D(n+ 1), we get an induced isomorphism

(4.11.3) D(n)[Xn+1]/J1D(n)[Xn+1] → D(n+ 1)/JD(n+ 1) = D(S).

On the other hand, since I ⊆ J1 and R = K[[n]]/I we have

(4.11.4) K[[n]][Xn+1]/J1
∼= R[Xn+1]/J1R[Xn+1]

and using ID(n) ⊆ J1D(n)[Xn+1] and D(R) ∼= D(n)/ID(n) we get

(4.11.5) D(n)[Xn+1]/J1D(n)[Xn+1] ∼= D(R)[Xn+1]/J1D(R)[Xn+1].
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Therefore, by (4.11.1) and (4.11.3)–(4.11.5):

D(R)⊗R S ∼= D(R)⊗R R[Xn+1]/J1R[Xn+1]
∼= D(R)[Xn+1]/J1D(R)[Xn+1]
∼= D(n)[Xn+1]/J1D(n)[Xn+1] ∼= D(S).

It is straightforward to check that we have a commutative diagram as claimed. �

Faithful flatness of ηR : R→ D(R) now yields:

4.12. Corollary. If S is a finite R-module via α, then α is injective if and only if D(α) is
injective, and α is surjective if and only if D(α) is surjective. �

4.13. Proof of Theorem 4.3. We complete the proof of Theorem 4.3 by defining a functor
C : CohK → AnK and a faithfully flat natural transformation γ : ring → C. Then D
and η are realized as the composite functor D ◦ C and the natural transformation given
by ηC(Λ) ◦ γΛ, for each object Λ. In essence, C will be a kind of ‘completion’ functor.
(See also §4.16 below.) More precisely, let Λ = (R,x, k, u) be an object in CohK and
let k∗ be the algebraic closure of k in R̂. Recall from §4.1 that k∗ is the unique coefficient
field of R̂ containing k. We view R̂ as a k∗-algebra via the inclusion k∗ ⊆ R̂. Let
x = (x1, . . . , xn) and let θΛ : k∗[[n]] → R̂ be the k∗-algebra homomorphism given by
Xi 7→ xi, for i = 1, . . . , n. We denote its kernel by IΛ. Consequently, we have associated
to each Λ a Cohen presentation k∗[[n]]/IΛ ∼= R̂ of the completion of its underlying ring.

Let û : R̂→ K be the completion of u and denote the restriction of û to k∗ by u∗. There
is a unique local homomorphism k∗[[n]] → K[[n]] extending u∗ : k∗ → K and leaving the
variables invariant, which we denote by u∗n. Define the functor C on objects by the rule

C(Λ) := K[[n]]/u∗n(IΛ)K[[n]].

As for morphisms, let Λ → Γ = (S,y, l, v) be a morphism with underlying local ho-
momorphism α : R → S. Since k∗ (respectively, l∗) is the algebraic closure of k in R̂
(respectively, of l in Ŝ) and since α(k) ⊆ l, the completion α̂ : R̂→ Ŝ of αmaps k∗ inside
l∗. Let us denote the restriction of α̂ to a field embedding k∗ → l∗ by α∗, and the induced
map k∗[[n]] → l∗[[n+m]] leaving the variables X1, . . . , Xn invariant by α∗n. Since α(x)
is an initial segment of y, we get θΓ(Xi) = α(xi) ∈ Ŝ for i = 1, . . . , n. Therefore, we
have a commutative diagram

(4.13.1)

k∗[[n]]

α∗n

��

θΛ // R̂

α̂

��
l∗[[n+m]]

θΓ // Ŝ.

In particular, α∗n(IΛ) ⊆ IΓ. Since v ◦ α = u, we get v̂ ◦ α̂ = û which in turn yields
v∗n+m ◦ α∗n = u∗n. Hence u∗n(IΛ) ⊆ v∗n+m(IΓ) under the inclusion K[[n]] → K[[n+m]],
and this inclusion then induces a K-algebra homomorphism C(α) : C(Λ) → C(Γ). Note
that C(α) is indeed a morphism in AnK . Because every step in this construction is carried
out in a canonical way, C is a functor; details are left to the reader. Note that C is the
identity on the subcategory AnK of CohK .
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To define the natural transformation γ : ring → C we let γΛ be the composite map

R→ R̂ ∼= k∗[[n]]/IΛ → K[[n]]/u∗n(IΛ)K[[n]] = C(Λ)

where the isomorphism is induced by θΛ and the last arrow is the base change of u∗n. Each
map in this composition is canonically defined and faithfully flat. It is now straightforward
to check that γ is the desired faithfully flat natural transformation. �

4.14. Remark. It follows from our construction that the maximal ideals of C(Λ) and D(Λ)
are mC(Λ) and mD(Λ), respectively, where m is the maximal ideal of the underlying ring
of Λ.

4.15. Remark. If we do not insist that the ultraproducts are Lefschetz rings, then we can let
K be any ultraproduct of arbitrary fields, and Theorem 4.3 above, suitably reformulated,
remains true in this more general setting, apart from the Lefschetz condition.

4.16. Extension of scalars. On occasion, we need a Lefschetz extension with some addi-
tional properties, and to achieve this, we enlarge the category CohK to a category Coh∗K .
To this end, we need a method to extend scalars. Suppose that we have a quasi-coefficient
field k of a Noetherian local ring (R,m) and a local homomorphism u : R → L to a field
L. Let k∗ be the algebraic closure of k in R̂ (the unique coefficient field of R̂ containing k).
We view R̂ and L as k∗-algebras via respectively the inclusion k∗ ⊆ R̂ and the restriction
of û : R̂ → L to k∗. Let R̂(k,u) be the completion of the Noetherian local ring R̂ ⊗k∗ L
with respect to its maximal ideal m(R̂ ⊗k∗ L) = mR̂ ⊗k∗ L. We view R̂(k,u) as an R-
algebra (respectively, as an L-algebra) via the natural map R→ R̂→ R̂ ⊗k∗ L→ R̂(k,u)

(respectively, L → R̂ ⊗k∗ L → R̂(k,u)). The image of L in R̂ ⊗k∗ L is a coefficient field
of R̂⊗k∗ L, and hence of the complete Noetherian local ring R̂(k,u). TheR-algebra R̂(k,u)

is faithfully flat. The following transfer result will be used in the next section:

4.17. Lemma. Suppose that char k = 0. Then, for given i ∈ N, the completion R̂ of
R satisfies (Ri) (or (Si)) if and only if R̂(k,u) does. In particular, R̂ is reduced (regu-
lar, normal, or Cohen-Macaulay) if and only if R̂(k,u) has this property. Similarly, R̂ is
equidimensional if and only if R̂(k,u) is.

Proof. There is probably a more straightforward way to see this, but we argue as follows:
Since char k = 0, the homomorphism û|k∗ : k∗ → L is separable. Therefore the induced
homomorphism k∗[[n]] → L[[n]] is formally smooth [41, Theorem 28.10] hence regular
[41, p. 260]. By the Cohen Structure Theorem we may assume R̂ ∼= k∗[[n]]/I (as k∗-
algebras) for some ideal I of k∗[[n]]; then R̂(k,u)

∼= L[[n]]/IL[[n]] (as L-algebras). Now
use [41, Theorem 23.9, and the remark following it] to conclude that R̂ satisfies (Ri) (or
(Si)) if and only if R̂(k,u) has this property. The local ring R̂(k,u) is complete and hence
catenary. Thus if R̂(k,u) is equidimensional, then R̂ is equidimensional by [41, Theo-
rem 31.5]. Conversely, if R̂ is equidimensional, then so is R̂(k,u) by [30, (3.25)]. �

4.18. Remark. Suppose that char k = 0. If R is excellent, then R→ R̂ is regular, hence R
satisfies (Ri) (or (Si)) if and only if R̂ has this property, for every i ∈ N. Therefore, if R is
excellent, then R is reduced (regular, normal, or Cohen-Macaulay) if and only if R̂(k,u) is.
By [45], R̂ is equidimensional if and only ifR is equidimensional and universally catenary.
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Suppose we are given another Noetherian local ring (S, n) with quasi-coefficient field
l of characteristic zero and local homomorphim v : S → L, as well as a local homomor-
phism α : R → S such that u = v ◦ α and α(k) ⊆ l. Since α̂(k∗) ⊆ l∗, we get natural
maps

(4.18.1) R̂⊗k∗ L
bα⊗1−−−−→Ŝ ⊗k∗ L = Ŝ ⊗l∗ (l∗ ⊗k∗ L) → Ŝ ⊗l∗ L,

where the last map is induced by the map l∗⊗k∗ L→ L given by a⊗ b 7→ v(a)b, for a ∈ l
and b ∈ L. Taking completions yields an L-algebra homomorphism R̂(k,u) → Ŝ(l,v),
which we denote by α̂L.

4.19. The category Coh∗K . Let us first look at an object Λ = (R,x, k, u) in CohK . Ap-
plying the above construction with respect to the homomorphism u : R→ K, we get a K-
algebra R̂(k,u) which is isomorphic withC(Λ); the isomorphism is uniquely determined by
x. Allowing more general choices for x leads to the extension Coh∗K of CohK . Namely,
for objects we take the quadruples Λ = (R,x, k, u) where as before (R,m) is a Noetherian
local ring with quasi-coefficient field k and u : R→ K is a local homomorphism, but this
time x is a tuple in the larger ring R̂(k,u) generating its maximal ideal mR̂(k,u). A mor-
phism Λ → Γ = (S,y, l, v) in this extended category is given by a local homomorphism
α : R → S such that u = v ◦ α, α(k) ⊆ l, and such that α̂K : R̂(k,u) → Ŝ(l,v) sends x to
an initial segment of y. It is clear that CohK is a full subcategory of Coh∗K .

4.20. Remark. Up to isomorphism, the k∗-algebra R̂(k,u) is independent of the choice of
u, since every isomorphism between subfields of K can be extended to an automorphism
of K (but not necessarily to an ultraproduct of automorphisms of the Kp). It is also easy
to see that R̂(k,u) is independent of the choice of k, up to local isomorphism of local rings.

We extend C to a functor Coh∗K → AnK as follows. Let x = (x1, . . . , xn) and let ÎΛ
be the kernel of the K-algebra homomorphism θ̂Λ : K[[n]] → R̂(k,u) with Xi 7→ xi for
i = 1, . . . , n. We now put

C(Λ) := K[[n]]/ÎΛ.

It follows that C(Λ) ∼= R̂(k,u). Note that if Λ is an object of the subcategory CohK , then
ÎΛ = u∗n(IΛ)K[[n]] and θ̂Λ is the base change of θΛ over u∗n, showing that C(Λ) agrees
with the K-algebra defined previously. As for morphisms, let α : Λ → Γ be as above. We
have a commutative diagram

K[[n]]

��

θ̂Λ // R̂(k,u)

α̂K

��
K[[n+m]]

θ̂Γ // Ŝ(l,v)

where the first vertical arrow is the natural inclusion. It follows that ÎΛ ⊆ ÎΓ, thus giving
rise to a morphism C(α) : C(Λ) → C(Γ) in AnK . It is now straightforward to verify that
C is a functor. Furthermore, the composition

γΛ : R→ R̂(k,u)
∼= C(Λ)
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is faithfully flat and hence yields a faithfully flat natural transformation γ : ring → C
(extending the previously defined natural transformation γ). From this discussion it is
clear that we have the following extension of Theorem 4.3:

4.21. Theorem. There exists a functor D : Coh∗K → LefW and a faithfully flat natural
transformation η : ring → ring ◦D. �

4.22. Noether normalizations. To explain the advantages of this extended version, we
need to discuss Noether normalizations. Let (A,m) be a complete Noetherian local ring
with coefficient field k. A k-algebra homomorphism k[[d]] → A which is finite and in-
jective is called a Noether normalization of A. (Here necessarily d = dimA.) If x is
an n-tuple generating m whose first d entries form a system of parameters of A, then the
k-algebra homomorphism k[[d]] → A given by Xi 7→ xi for i = 1, . . . , d is a Noether
normalization of A. (See for instance [41, Theorem 29.4].) However, by choosing x even
more carefully, we can achieve this also for homomorphic images:

4.23. Lemma. Let (A,m) be a complete Noetherian local ring with an uncountable alge-
braically closed coefficient field k and let I be a set of proper ideals ofA. If the cardinality
of I is strictly less than that of k, then there exists a surjective k-algebra homomorphism
θ : k[[n]] → A with the property that for every I ∈ I, the k-algebra homomorphism
k[[d]] → A/I obtained by composing the restriction of θ to the subring k[[d]] with the
natural surjection A→ A/I is a Noether normalization of A/I , where d := dimA/I .

Proof. Choose generators y1, . . . , yn of m and let

xi =
n∑
j=1

aijyj , i = 1, . . . , n, and aij ∈ k

be general k-linear combinations of the yj . By [41, Theorem 14.14] there exists, for every
I ∈ I, a non-empty Zariski open subset UI of kn×n such that x1, . . . , xd (where d =
dimA/I) is a system of parameters modulo I for all (aij) ∈ UI . Since the transcendence
degree of k is strictly larger than |I|, the intersection

⋂
I∈I UI is non-empty. Choose

(aij) in this intersection and let (x1, . . . , xn) be the corresponding tuple. The k-algebra
homomorphism θ : k[[n]] → A given by Xi 7→ xi for all i has the required properties. �

Let us express the property stated in the lemma by saying that θ is normalizing with
respect to I. Let Λ = (R,x, k, u) be an object in Coh∗K and let i denote the embedding
of k in the algebraic closure of u(k) in K induced by u. The natural homomorphism
R → R̂(k,u) factors as R → R̂(k,i) → R̂(k,u). We say that Λ is absolutely normalizing if
θ̂Λ : K[[n]] → R̂(k,u) is normalizing with respect to the set of all ideals of the form IR̂(k,u)

with I an ideal in R̂(k,i). (This definition will be useful in §5.) By Lemma 4.23 and noting
that the cardinality of R̂(k,i) is at most 2|R|, we immediately get:

4.24. Corollary. If we choose K sufficiently large (e.g., so that 2|R| < |K|), then there
exists an absolutely normalizing object in Coh∗K with underlying ring R. �

We say that Λ is normalizing if the entries of the tuple x = (x1, . . . , xn) are in the
maximal ideal mR̂ of R̂ and if the k∗-algebra homomorphism k∗[[n]] → R̂ with Xi 7→ xi
for i = 1, . . . , n is normalizing with respect to the collection I consisting of the zero ideal
and all minimal prime ideals of R̂. (As before k∗ denotes the algebraic closure of k in R̂.)
Since R̂ is Noetherian, I is finite, and hence:
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4.25. Corollary. If k is uncountable, then there exists a normalizing object in Coh∗K with
underlying ring R. �

4.26. Remark. Let us discuss now how we intend to apply Theorem 4.3 and its extension,
Theorem 4.21, in practice. With aid of a faithfully flat Lefschetz extension of an equichar-
acteristic zero Noetherian local ring R, we’ll define in §6 a non-standard tight closure
relation on R, and in §7, a big Cohen-Macaulay algebra for R. If we only are interested in
the ring R itself, then no functoriality is necessary, and we remarked already that the proof
in that case is much simpler, as it only relies on Proposition 3.5.

Functoriality comes in when we are dealing with several rings at the same time, and
when we need to compare the constructions made in each of these rings. We explain the
strategy in the case of a single local homomorphism α : R→ S between equicharacteristic
zero Noetherian local rings. Choose an algebraically closed Lefschetz field K of suffi-
ciently large cardinality (for instance larger than 2|R| and 2|S|) and choose an embedding
of the residue field kS of S into K. Denote the compostion S → kS → K by v and
let u := v ◦ α. Choose a quasi-coefficient field k of R and then a quasi-coefficient field
l of S containing α(k). Finally, choose a tuple x in R generating its maximal ideal and
enlarge the tuple α(x) to a generating tuple y of the maximal ideal of S. These data yield
two objects Λ := (R,x, k, u) and Γ := (S,y, l, v) of CohK and α induces a morphism
between them. We take D(Λ) and D(Γ) as the faithfully flat Lefschetz extensions of R
and S respectively, and use D(α) to go from one to the other. Of course, in this way, the
closure operations defined on R and S, and similarly, the big Cohen-Macaulay algebras
associated to them, depend on the choices made, but this will not cause any serious prob-
lems. Therefore, we will often simply denote the Lefschetz extensions by D(R) and D(S)
with D(α) : D(R) → D(S) the homomorphism between them.

For certain α, more adequate choices for the quadruples Λ and Γ (and hence for the
Lefschetz extensions D(R) and D(S)) can be made. For instance, this is the case if α is
unramified, that is to say, if the image of the maximal ideal of R generates the maximal
ideal in S and α induces an algebraic extension of the residue fields. In that case, we can
take l = α(k) and y = α(x). It follows that C(α) : C(Λ) → C(Γ) is also unramified,
whence D(α) sends the maximal ideal of D(R) to the maximal ideal of D(S). We’ll tacitly
assume that whenever α is unramified (for instance ifα is surjective), then we choose D(R)
and D(S) with these additional properties. (See also §4.28 below.)

In the above construction of Λ, after we chose k and u, we could have chosen the tuple
x with entries in R̂(k,u), so that the resulting Λ is only an object in Coh∗K . This has the
following advantage: by an application of Corollary 4.24, we now may choose Λ so that
it is absolutely normalizing. We express this by saying that the corresponding Lefschetz
extension D(R) (:= D(Λ)) is absolutely normalizing. Similarly, we also say that D(R)
is normalizing if Λ is normalizing. One easily proves that if α : R → S is a local homo-
morphism as before, then Λ with underlying ring R and Γ with underlying ring S can be
chosen so that α is a morphism Λ → Γ and Γ and Λ are absolutely normalizing. If more-
over α is surjective and an absolutely normalizing object Λ of Coh∗K with underlying ring
R is given, then Γ with underlying ring S chosen as above is also absolutely normalizing.

Next, we extend Proposition 4.11. We call a morphism Λ → Γ in Coh∗K finite if the
underlying homomorphism α : R→ S is finite.

4.27. Proposition. If α : Λ → Γ is a finite morphism in Coh∗K , then D(α) is also finite.
If in addition α induces an isomorphism on the residue fields, then the natural map

D(Λ)⊗R S → D(Γ)
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is an isomorphism, making the diagram

D(Λ)

D(α)

��

// D(Λ)⊗R S

∼=
yysssssssssssssssss

D(Γ)

commutative. In particular, α is injective (respectively, surjective) if and only if D(α) is.

Proof. In view of Proposition 4.11 and Corollary 4.12, it suffices to show the analogous
statements with D replaced by the functor C. If α : (R,m) → (S, n) is finite, then all
the maps in (4.18.1) are finite and hence so is C(α). Assume next that α induces an
isomorphism on the residue fields. By the maximality property of coefficient fields we
have α̂(k∗) = l∗. Since the canonical map R̂ ⊗R S → Ŝ is an isomorphism by [41,
Theorem 8.7], we get a canonical isomorphism

(R̂⊗k∗ K)⊗R S ∼= (R̂⊗R S)⊗k∗ K ∼= Ŝ ⊗k∗ K ∼= Ŝ ⊗l∗ K.

Moreover, the m(Ŝ⊗l∗K)-adic topology on Ŝ⊗l∗K is equivalent with its n(Ŝ⊗l∗K)-adic
topology, since mS is n-primary. Hence taking completions and using [41, Theorem 8.7]
once more, we get a canonical isomorphism

R̂(k,v) ⊗R S ∼= Ŝ(l,v).

This in turn gives rise to a canonical isomorphism C(Λ) ⊗R S ∼= C(Γ), which fits in a
analogous commutative diagram as the above one. �

4.28. Quotients. Given an object Λ = (R,x, k, u) in Coh∗K and an ideal I of R, we
define the quotient object Λ/I as the quadruple (R/I, x̄, k, ū), where we identify k with
its image in R/I , where x̄ denotes the image of x in R̂(k,u)/IR̂(k,u) and where ū is the
factorization of u through R/I . The residue map π : R → R/I gives rise to a morphism
Λ → Λ/I . It follows from Proposition 4.27 that π induces a surjective map D(Λ) →
D(Λ/I) and one easily checks that its kernel is ID(Λ). If Λ is absolutely normalizing,
then so is Λ/I .

4.29. Further basic properties. Recall from §4.4 that K = D(0) is just the ultrapower
KU . By construction, K is a coefficient field of D(Λ), for every Λ, and D(α) : D(Λ) →
D(Γ) is a morphism of analytic K-algebras with respect to W (as defined in §1.7), for
every morphism α : Λ → Γ in Coh∗K . The following is an analogue of Proposition 3.1.

4.30. Proposition. For each n there exists an exact sequence

0 → Inf(D(n)) → D(n) π−→ K[[n]] → 0

where π is a K[[n]]-algebra homomorphism.

Proof. Recall that Inf(D(n)) denotes the ideal of infinitesimals of D(n), that is to say, the
intersection of all mdD(n), where m := (X1, . . . , Xn)K[[n]]. Define π : D(n) → K[[n]]
as follows. Take an element f ∈ D(n) and realize it as an ultraproduct of power series
fw ∈ Kw[[n]], say of the form

fw =
∑
ν

aνwX
ν
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with aνw ∈ Kw, where ν ranges over Nn. For each such ν let aν ∈ K be the ultraproduct
of the aνw. Define now π(f) as the power series

∑
ν aνX

ν . We leave it to the reader to
verify that π is a well-defined, surjective K[n]-algebra homomorphism, and that its kernel
is equal to Inf(D(n)). (The argument is the same as in the proof of Proposition 3.1.) It
remains to show that it is in fact a K[[n]]-algebra homomorphism. Let f ∈ K[[n]] and
choose polynomials fl ∈ K[n] so that f ≡ fl mod ml. It follows that

ηn(f) ≡ ηn(fl) = fl mod mlD(n).

Taking the image under π shows that

π(ηn(f)) ≡ fl ≡ f mod mlK[[n]].

Since this holds for all l, we get that π(ηn(f)) = f , proving that π is a K[[n]]-algebra
homomorphism. �

4.31. Remark. The ultraproduct of the i-th partial derivative on each Kw[[n]], for i =
1, . . . , n, is a K-linear endomorphism of D(n), which we denote again by ∂/∂Xi. It
follows that

π

(
∂a

∂Xi

)
=
∂(π(a))
∂Xi

for each a ∈ D(n). In particular, for every f ∈ K[[n]] we have

ε(f) := ηn

(
∂f

∂Xi

)
− ∂(ηn(f))

∂Xi
∈ Inf(D(n)).

The map f 7→ ε(f) : K[[n]] → Inf(D(n)) is a derivation which is trivial on K[n]. We do
not know whether ε(f) = 0 for all f ∈ K[[n]]. (Note that ΩK[[n]]/K[n] 6= 0.)

4.32. Corollary. For each Λ = (R,x, k, u) in Coh∗K we have an isomorphism of R-
algebras

D(R)/ Inf(D(R)) ∼= K[[n]]/ÎΛK[[n]] ∼= R̂(k,η0◦u),

where D(R) := D(Λ). If n is an m-primary ideal of R, then nD(R) is mD(R)-primary
and

(4.32.1) D(R)/nD(R) ∼= (R/n)U .

Proof. For the first statement use that the base change modulo ÎΛ of theK[[n]]-algebra ho-
momorphism π from Proposition 4.30 yields an epimorphism D(R) → K[[n]]/ÎΛK[[n]].
One verifies that its kernel is precisely Inf(D(R)). The second isomorphism is then clear
since K[[n]]/ÎΛ ∼= R̂(k,u). (Recall that η0 : K → K = KW is the diagonal embedding.)

Now let n be an m-primary ideal of R, say ml ⊆ n. Then mlD(R) ⊆ nD(R), hence
nD(R) is mD(R)-primary. To establish (4.32.1) we first treat the case that R = K[[n]].
By Proposition 4.30, π induces an isomorphism

D(n)/nD(n) ∼= K[[n]]/nK[[n]].

The natural homomorphism K[[n]] → (K[[n]]/n)U has kernel nK[[n]] (use Łos’ Theo-
rem). The general case follows from this by base change. �
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4.33. A note of caution— unnested conditions. In the following we fix a natural number
n. For a field L and i ∈ {1, . . . , n} let us write

L[[ ı̂ ]] := L[[X1, . . . , Xi−1, Xi+1, . . . , Xn]].

Let D( ı̂ ) be the ultraproduct of the Kw[[ ı̂ ]]. The natural inclusion D( ı̂ ) ⊆ D(n) is a
section of the canonical epimorphism

D(n) → D(n)/XiD(n) ∼= D( ı̂ ).

However, it is not true in general that ηn : K[[n]] → D(n) maps K[[ ı̂ ]] inside D( ı̂ ) for
all i (the exception being of course i = n by (4.4.1)). This is rather surprising since after
all, ηn sends a power series f to a limit of its truncations in D(n) and if f does not involve
Xi then neither does each truncation, yet the limit element must involve Xi.

To prove that such inclusions cannot hold in general, we use an example due to Roberts
in [47], which was designed to be a counterexample to a question of Hochster on solid
closure. Namely, suppose for n = 6, we would have inclusions

(4.33.1) η6(K[[ ı̂ ]]) ⊆ D( ı̂ )

for i = 4, 5, 6. Let z := X2
1X

2
2X

2
3 and ai := X3

i for i = 1, 2, 3. Given a field L, the
monomial z lies in the solid closure of the ideal (a1, a2, a3)L[[3]] if and only if

f := zX4X5X6 + a1X5X6 + a2X4X6 + a3X4X5 ∈ Z[6]

viewed as an element of L[[6]], has a non-zero multiple inside the L-subspace

L[[ 4̂ ]] + L[[ 5̂ ]] + L[[ 6̂ ]]

of L[[6]]. (See [25, §9].) With Hochster we say that this non-zero multiple of f is special.
If (4.33.1) holds, then for L := K the image under η6 of such a non-zero multiple lies in
the K-subspace

D( 4̂ ) + D( 5̂ ) + D( 6̂ ).
of D(6). By Łos’ Theorem, f , as an element of Kw[[6]], has then a non-zero multiple
which is special for almost all w. This in turn means that z, viewed as an element of
Kw[[3]], lies in the solid closure of (a1, a2, a3)Kw[[3]]. By [25, Theorem 8.6] solid closure
is trivial in Kw[[3]] (since Kw[[3]] is regular of positive characteristic). Hence z lies in
(a1, a2, a3)Kw[[3]], which is clearly false.

The failure of the existence of inclusions (4.33.1) bears a strong resemblance to the fact
that there is no Artin Approximation for unnested conditions (see our discussion in §3.3).

5. TRANSFER OF STRUCTURE

Throughout this section (R,m) denotes an equicharacteristic zero Noetherian local ring,
and K is a Lefschetz field with respect to some ultraset with underlying set equal to the set
of the prime numbers, whose components Kp are algebraically closed fields of character-
istic p. Whenever necessary, we assume thatK has cardinality> 2|R|. We fix once and for
all an object Λ = (R, k,x, u) of Coh∗K with underlying ring R. (We might on occasion
require some additional properties for Λ, such as being absolutely normalizing.) By abuse
of notation, we write D(R) for D(Λ). We view D(R) as anR-algebra via the faithfully flat
map ηΛ : R → D(R) and often surpress this map in our notation. In particular, given an
ideal I in R, we simply write ID(R) for the ideal in D(R) generated by ηΛ(I). Moreover,
we construct a Lefschetz hull for R/I always by means of the quotient Λ/I , as explained
in §4.28. In particular, D(R/I) ∼= D(R)/ID(R). The other notations introduced in §4
remain in force.
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5.1. Approximations. By construction, D(R) is an ultraproduct (with respect to some
unspecified ultraset) of equicharacteristic complete Noetherian local rings Rw with alge-
braically closed residue field Kw (of prime characteristic p(w)). We think of Rw as an
approximation of R. Each Rw is of the form Kw[[n]]/Iw, where Iw are ideals whose
ultraproduct is equal to ÎΛD(n) (in the notation of §4.19). In this section, we make more
precise how the Rw play the role of a reduction modulo p of R. A similar study for affine
K-algebras was carried out in [54] and the subsequent papers, using effective bounds and
the resulting first-order definability (as established in [18, 50]). Since no such tool is avail-
able in the present situation, our arguments are purely algebraic. Here is a first example:

5.2. Theorem.
(5.2.1) Almost all Rw have the same dimension (respectively, embedding dimension

or depth) as R.
(5.2.2) Almost all Rw are regular (respectively, Cohen-Macaulay or Gorenstein) if

and only if R has the same property.

Before we begin the proof, let us introduce some more notations. Given an element a ∈
D(R) choose elements aw ∈ Rw whose ultraproduct is a. We call aw an approximation of
a. If a′w is another choice of elements whose ultraproduct is a, then aw = a′w for almost
all w. We use similar terminology for tuples of elements in D(R), and given a finitely
generated ideal I = (a1, . . . , as)D(R) of D(R), let Iw := (a1w, . . . , asw)Rw, where aiw
is an approximation of ai. The ultraproduct of the Iw is I , and we call Iw an approximation
of I . If we choose different generators and approximations of these generators and denote
the resulting ideals by I ′w, then the ultraproduct of the I ′w is again I and therefore Iw = I ′w
for almost all w. With an approximation of an ideal I of R we mean an approximation of
its extension ID(R) to an ideal of D(R). Note that then Rw/Iw is an approximation of
R/I . By faithful flatness of R→ D(R) we have:

5.3. Lemma. If I and J are ideals of R with approximations Iw and Jw, then

(5.3.1) ID(R) ∩R = I ,
(5.3.2) ID(R) ∩ JD(R) = (I ∩ J)D(R),
(5.3.3)

(
ID(R) :D(R) JD(R)

)
= (I :R J)D(R),

and the ideals in (5.3.2) and (5.3.3) have approximations Iw ∩ Jw and (Iw :Rw
Jw),

respectively.

Let m be the maximal ideal of R. As a first step in the proof of Theorem 5.2 we show
the following lemma, of interest in its own right:

5.4. Lemma. A d-tuple z = (z1, . . . , zd) ∈ Rd is a system of parameters for R if and
only if almost every zw is a system of parameters for Rw, where zw = (z1w, . . . , zdw) is
an approximation of z. Similarly, z is an R-regular sequence if and only if z is a D(R)-
regular sequence if and only if almost every zw is an Rw-regular sequence.

Proof. Suppose z is a system of parameters for R, so d = dimR. We claim that almost
every zw is a system of parameters for Rw. We have mr ⊆ (z1, . . . , zd)R for some r, and
since this is preserved in D(R), we get by Łos’ Theorem that mr

w ⊆ (z1w, . . . , zdw)Rw,
for almost all w. This shows that almost all Rw have dimension at most d, and it suffices
to shows that dimRw = d for almost all w. Suppose on the contrary that dimRw < d
for almost all w. We may assume, after renumbering if necessary, that the ideal nw :=
(z1w, . . . , zd−1,w)Rw of Rw is mw-primary for almost all w. For those w let rw ∈ N be
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minimal such that (zdw)rw ∈ nw. By Noetherianity of R, we have for some s that

(n : zsd) = (n : zrd)

for all r ≥ s, where n := (z1, . . . , zd−1)R. By (5.3.3) we get

(5.4.1)

(
nD(R) :D(R) z

r
d

)
= (n :R zrd)D(R)

= (n :R zsd)D(R)

=
(
nD(R) :D(R) z

s
d

)
,

for all r ≥ s. Suppose rw > s for almost all w, and let b ∈ D(R) equal the ultra-
product of the (zdw)rw−s−1. By Łos’ Theorem, bzs+1

d ∈ nD(R). By (5.4.1), we have
bzsd ∈ nD(R) and hence, by Łos’ Theorem once more, (zdw)rw−1 ∈ nw for almost all
w, contradicting the minimality of rw. Therefore, rw ≤ s and hence (zdw)s ∈ nw,
for almost all w. By Łos’ Theorem, this yields zsd ∈ nD(R) and hence zsd ∈ n by
faithful flatness of R → D(R), contradicting that z is a system of parameters for R.
Conversely, assume that zw is a system of parameters for Rw for almost all w. Then
dimRw = d for almost all w. We have already shown dimRw = dimR for almost all
w, hence dimR = d. Therefore it suffices to show that (z1, . . . , zd)R is m-primary. Now
(z1w, . . . , zdw)Rw is mw-primary, hence dimRw/(z1w, . . . , zdw)Rw = 0 for almost allw.
The rings Sw := Rw/(z1w, . . . , zdw)Rw are approximations to S := R/(z1, . . . , zd)R.
Thus dimS = 0 by what we have shown above, or equivalently, (z1, . . . , zd)R is m-
primary.

If z is R-regular, then z is also D(R)-regular due to faithful flatness of R → D(R),
see [41, Exercise 16.4]. By Łos’ Theorem, if z is D(R)-regular, then almost all zw are
Rw-regular. Finally, suppose that almost all zw are Rw-regular, and let i ∈ {1, . . . , d− 1}
and a ∈ R with azi+1 ∈ (z1, . . . , zi)R. Then we have awzi+1,w ∈ (z1w, . . . , ziw)Rw
for almost all w, hence aw ∈ (z1w, . . . , ziw)Rw for almost all w, and therefore a ∈
(z1, . . . , zi)D(R), by Łos’ Theorem. Now (5.3.1) yields a ∈ (z1, . . . , zi)R. Similarly
one shows that 1 /∈ (z1, . . . , zd)R. Hence z is R-regular. �

Proof of Theorem 5.2. Suppose that R has embedding dimension e, so that we can write
m = (z1, . . . , ze)R for some z1, . . . , ze ∈ R. Hence mw = (z1w, . . . , zew)Rw, where ziw
is an approximation of zi. If the embedding dimension of almost all Rw would be strictly
less than e, then after renumbering if necessary, mw = (z1w, . . . , ze−1,w)Rw for almost all
w (by Nakayama’s Lemma). Therefore mD(R) = (z1, . . . , ze−1)D(R) by Łos’ Theorem,
hence m = (z1, . . . , ze−1)R by faithful flatness of R → D(R), contradiction. From
Lemma 5.4 it follows that dimR = dimRw for almost all w. Now suppose R has depth
d, and let z = (z1, . . . , zd), with zi ∈ m for all i be an R-regular sequence. By Lemma 5.4
almost every approximation zw ∈ m of z is an Rw-regular sequence in mw and hence Rw
has depth at least d, for almost all w. On the other hand, since R has depth d, the quotient
R/(z1, . . . , zd)R has depth zero, that is to say, m is an associated prime of (z1, . . . , zd)R.
Choose s /∈ (z1, . . . , zd)R such that sm ⊆ (z1, . . . , zd)R and let sw be an approximation
of s. By Łos’ Theorem, swmw ⊆ (z1w, . . . , zdw)Rw and sw /∈ (z1w, . . . , zdw)Rw for
almost all w. Hence the depth of almost all Rw equals d.

Since R is regular (respectively, Cohen-Macaulay) if and only if its dimension is equal
to its embedding dimension (respectively, to its depth), the desired transfer follows from the
preservation of these invariants in the approximations. Let d := dimR, and recall that R
Gorenstein means that R is Cohen-Macaulay and for some (equivalently, every) R-regular
sequence z = (z1, . . . , zd) in m, the socle of R/n is principal, where n := (z1, . . . , zd)R;
that is, there exists a ∈ R such that (n : m) = n + aR. In order to show that R is
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Gorenstein if and only if almost all Rw are, we may assume, by our agument above, that
R and hence almost all Rw are Cohen-Macaulay. Suppose that R is Gorenstein. Let z,
n, and a as above, and let aw and nw be approximations of a and n respectively, so nw is
generated by an Rw-sequence, for almost all w. By Łos’ Theorem, we get

(5.4.2) (nw : mw) = nw + awRw,

for almost all w. It follows that almost all Rw are Gorenstein. Conversely, if almost all Rw
are Gorenstein, then there exist aw ∈ Rw satisfying (5.4.2). By Łos’ Theorem,

(5.4.3)
(
nD(R) :D(R) mD(R)

)
= nD(R) + a∞D(R)

where a∞ ∈ D(R) is the ultraproduct of the aw.
Let f and g be elements in (n : m) but not in n. From (5.4.3) it follows that f ≡

a∞b∞ mod nD(R) and g ≡ a∞c∞ mod nD(R), for some b∞, c∞ ∈ D(R). By faithful
flatness ofR→ D(R), neither f nor g belongs to nD(R), so that b∞ and c∞ must be units
in D(R). In particular, f ∈ gD(R) + nD(R) and g ∈ fD(R) + nD(R). Therefore, again
by faithful flatness, f ∈ gR + n and g ∈ fR + n. Since this holds for every choice of f
and g, the socle of R/n is principal, showing that R is Gorenstein. �

Since a Noetherian local ring is a discrete valuation ring (DVR) if and only if it has
positive dimension and its maximal ideal is principal [41, Theorem 11.2], we get:

5.5. Corollary. The following are equivalent:

(5.5.1) R is a DVR;
(5.5.2) almost every Rw is a DVR;
(5.5.3) D(R) is a valuation ring. �

5.6. Flatness and Noether normalization. Let Γ be an object in Coh∗K with underlying
ring S, and Λ → Γ a morphism in Coh∗K with underlying homomorphism α : R → S.
We denote the induced morphism D(R) → D(S) := D(Γ) by D(α). By definition, D(α)
is an ultraproduct of Kw-homomorphisms αw : Rw → Sw, where Sw is an approximation
of S.

5.7. Proposition. If α : R→ S is finite, then so are almost all αw. If α moreover induces
an isomorphism on the residue fields, then the following are equivalent:

(5.7.1) α is flat;
(5.7.2) D(α) is flat;
(5.7.3) almost all αw are flat.

Proof. The first assertion and the implication (5.7.1) ⇒ (5.7.2) are immediate by Propo-
sition 4.27. From the commutative diagram (4.3.1) and the faithful flatness of ηR := ηΛ
and ηS := ηΓ we get (5.7.2) ⇒ (5.7.1). Hence remains to show that (5.7.1) and (5.7.3)
are equivalent. We use the local flatness criterion [41, Theorem 22.3]: a finitely generated
module M over a local Noetherian ring (A, n) is flat if and only if TorA1 (A/n,M) = 0.
Since ηR is flat we have an isomorphism of D(R)-modules

D(R)⊗R TorR1 (R/m, S) ∼= TorD(R)
1

(
D(R)⊗R (R/m),D(R)⊗R S

)
.

Moreover D(R) ⊗R (R/m) ∼= D(R/m) = D(K), and D(R) ⊗R S ∼= D(S) by Propo-
sition 4.27. The finitely generated R-module S has a free resolution by finitely generated
free R-modules (since R is Noetherian). Hence by the faithful flatness of R → D(R),
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the finitely generated D(R)-module D(S) has a free resolution by finitely generated free
D(R)-modules. Since D(K) is a field and hence coherent, Proposition 1.2 yields

D(R)⊗R TorR1 (R/m, S) ∼= ulim
w

TorRw
1 (Kw, Sw).

The Noetherian local ring Rw has residue field Kw, and Sw is finitely generated as a
module over Rw, for almost all w. The claim now follows from the local flatness criterion
and faithful flatness of R→ D(R). �

5.8. Proposition. Let I be an ideal inRwith approximations Iw ⊆ Rw, and d = dimR/I .
If D(R) is absolutely normalizing, then the composition

Kw[[d]] ⊆ Kw[[n]] → Rw → Rw/Iw

(where the first map is given by inclusion and the remaining maps are the natural surjec-
tions) is a Noether normalization of Rw/Iw, for almost all w.

Proof. By Remark 4.26, the natural K-algebra homomorphism

K[[d]] → K[[n]]
bθΛ−→ C(Λ) → C(Λ)/IC(Λ) = C(Λ/I)

is injective and finite, hence a Noether normalization. By Proposition 4.11, applying D
yields a finite and injective homomorphism D(d) → D(R/I). By Łos’ Theorem, the
maps in the statement are therefore almost all injective and finite, since their ultraproduct
is precisely D(d) → D(R/I). �

5.9. Remark. Suppose I = (0). Then the conclusion of the proposition holds if D(R) is
only assumed to be normalizing.

Let us elaborate some more on the Proposition 5.8. Let T := K[[d]], where 0 ≤ d ≤ n.
We have a commutative diagram

T [Xd+1, . . . , Xn] //

��

D(d)[Xd+1, . . . , Xn]

��
K[[n]]

ηn // D(n).

Hence given f ∈ T [Xd+1, . . . , Xn] we may choose approximations fw of f in the subring
Tw[Xd+1, . . . , Xn] of Kw[[n]]. Note that Tw := Kw[[d]] is an approximation of T , so
that f is the ultraproduct of the polynomials fw of bounded degree, in the sense of §1.8.
Given generators f1, . . . , fr of an ideal J of T [Xd+1, . . . , Xn] we let Jw be the ideal of
Tw[Xd+1, . . . , Xn] generated by f1w, . . . , frw. (We think of Jw as an approximation of
the ideal J .)

Suppose that D(R) is normalizing. Recall that we denote the kernel of θ̂Λ by ÎΛ, and let
J := T [Xd+1, . . . , Xn]∩ ÎΛ, where as above T = K[[d]], with d := dimR. Then J∩T =
(0), and the natural inclusion T [Xd+1, . . . , Xn] → K[[n]] induces an isomorphism

T [Xd+1, . . . , Xn]/J → K[[n]]/ÎΛ = C(Λ).

Hence for every ideal M of T [Xd+1, . . . , Xn] containing J , we have M = MK[[n]] ∩
T [Xd+1, . . . , Xn]. By the remark following the proposition above, we see that thenMw =
MwKw[[n]] ∩ Tw[Xd+1, . . . , Xn] for almost all w. This fact is used in the proof of Theo-
rem 5.31 below.
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5.10. Remark. Because of its importance, let us give alternative arguments for (5.2.2) using
Noether normalization. These arguments work if Λ = (R,x, k, u) is absolutely normal-
izing. (In fact, it is enough that θ̂Λ be normalizing with respect to the zero ideal.) First,
in all three cases we may replace R by R̂(k,u) and hence assume that R is in AnK . (See
Theorem 23.7, Corollary to Theorem 23.3, and Theorem 23.4, respectively, in [41].) Say
R = K[[n]]/I for some n and some ideal I of K[[n]]. The restriction of the K-algebra
homomorphism K[[n]] → R with X 7→ x to T := K[[d]], where d := dimR, is a
Noether normalization of R. By Proposition 5.8, Tw → Rw is a Noether normalization
of Rw, for almost all w. The proof of [41, Theorem 29.4] shows that R is regular if and
only if T → R is surjective. Hence R is regular if and only if D(T ) → D(R) is surjec-
tive (by Corollary 4.12) if and only if Tw → Rw is surjective for almost all w. Therefore
R is regular if and only if almost each Rw is regular. By [12, Proposition 2.2.11], R is
Cohen-Macaulay if and only if T → R is flat. By Proposition 5.7 this is equivalent with
the flatness of almost all Tw → Rw, which in turn is equivalent with almost all Rw being
Cohen-Macaulay. Finally, for the Gorenstein property, observe thatR/n is Artinian, where
n is a parameter ideal of R, and so is D(R/n), as it is an ultrapower of (R/n) ⊗k K by
(4.32.1). Since being Gorenstein is first order definable for Artinian local rings by [49],
we get that R/n is Gorenstein if and only if D(R/n) is if and only if almost all Rw/nw
are. Since almost every nw is generated by an Rw-sequence, this is equivalent with Rw
Gorenstein for almost all w.

5.11. Hilbert-Samuel functions. We now want to strengthen (5.2.2) and show that almost
all Rw have the same Hilbert-Samuel function as R. For this, we assume that the reader
is familiar with the fundamentals of the theory of standard bases in power series rings; for
example, see [8]. We fix n > 0, and we denote by � the degree-lexicographic ordering on
Nn, that is, ν � µ if and only if |ν| < |µ|, or |ν| = |µ| and ν ≤ µ lexicographically. Let L
be a field. For every non-zero

f =
∑
ν

aνX
ν ∈ L[[n]] (with aν ∈ L for all ν ∈ Nn)

there exists a �-smallest λ ∈ Nn with aλ 6= 0, and we put c(f) := aλ and v(f) := λ.
It is convenient to define c(0) := 0 and v(0) := ∞ with ∞ + ν = ν + ∞ = ∞ for all
ν ∈ Nn ∪ {∞}. We extend � to Nn ∪ {∞} by Nn ≺ ∞. Note that v is a valuation on
L[[n]] with values in the ordered semigroup (Nn,�), that is, for all f, g ∈ L[[n]]:

(5.11.1) v(f) = ∞⇐⇒ f = 0,
(5.11.2) v(fg) = v(f) + v(g), and
(5.11.3) v(f + g) � min

{
v(f), v(g)

}
.

Given a subset s of L[[n]] we put

v(s) :=
{
v(f) : f ∈ sL[[n]]

}
⊆ Nn ∪ {∞}

where sL[[n]] denotes the ideal generated by s. Let f, g1, . . . , gm ∈ L[[n]]. We call an
expression

f =
m∑
i=1

qigi (where q1, . . . , qm ∈ L[[n]])

such that v(f) � v(qi) + v(gi) for all i a standard representation of f with respect to s =
{g1, . . . , gm} (inL[[n]]). Note that then v(f) equals the (�-) minimum of the v(qi)+v(gi).
If L ⊆ L′ is a field extension, and f ∈ L[[n]] has a standard representation with respect
to s in L′[[n]], then f has a standard representation with respect to s in L[[n]]. (Since
L[[n]] → L′[[n]] is faithfully flat.) Moreover:
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5.12. Lemma. An element f of K[[n]] has a standard representation with respect to a
subset s = {g1, . . . , gm} of K[[n]] if and only if almost every fw has a standard represen-
tation with respect to sw := {g1w, . . . , gmw}, where fw and giw are approximations of f
and gi respectively.

Proof. We may assume f 6= 0. Writing f = f0 + ε where f0 ∈ K[n] is homogeneous
of degree d := |v(f)| and ε ∈ md+1 we see that c(f)w = c(fw) and v(f) = v(fw)
for almost all w. Hence if f =

∑m
i=1 qigi is a standard representation of f with respect

to s, then fw =
∑m
i=1 qiwgiw is a standard representation of fw in terms of sw, where

qiw is an approximation of qi. Conversely, suppose that almost every fw has a standard
representation fw =

∑m
i=1 qiwgiw with respect to sw, where qiw ∈ Kw[[n]]. Since v is

a valuation, there is some i such that v(fw) = v(qiw) + v(giw) � v(qjw) + v(gjw) for
all j and almost all w. Therefore, if we let qj be the ultraproduct of the qjw and π as in
Proposition 4.30, then v(f) = v(π(qi)) + v(gi) � v(π(qj)) + v(gj)) for all j, showing
that f =

∑m
i=1 π(qi)gi is a standard representation of f with respect to s in D(K)[[n]].

Hence f has a standard representation with respect to s in K[[n]] by faithful flatness. �

Every ideal I of L[[n]] has a standard basis, that is, a finite subset s of I such that
every element of I has a standard representation with respect to s, or equivalently, such
that v(s) = v(I). (See [8, Theorem on p. 219].)

5.13. Proposition. A subset s of an ideal I ⊆ K[[n]] is a standard basis for I if and only
if its approximation sw is a standard basis for the approximation Iw ⊆ Kw[[n]] of I , for
almost all w. In particular we have v(I) = v(Iw) for almost all w.

Proof. We use the Buchberger criterion for standard bases: for non-zero f, g ∈ L[[n]] we
define

s(f, g) := c(g)Xµf − c(f)Xνg ∈ L[[n]]

where µ, ν are the multiindices in Nn such that Xµ+v(f) = Xν+v(g) = the least common
multiple of Xv(f) and Xv(g). Then a finite subset e of L[[n]] is a standard basis of the
ideal it generates if and only if s(f, g) has a standard representation with respect to e, for
all 0 6= f, g ∈ e [8, Theorem 4.1]. The claim follows from this and Lemma 5.12, since if
f, g ∈ s are non-zero then their approximations fw, gw are non-zero and s(fw, gw) is an
approximation of s(f, g) for almost all w. �

Given a Noetherian local ring (S, n) we use χS to denote the Hilbert-Samuel function
d 7→ length(S/nd+1) of S. By Corollary 4.32 we see that for fixed d ∈ N, we have
χR(d) = χRw

(d) for almost allw. Proposition 5.13 implies the following stronger version:

5.14. Corollary. For almost all w, we have χR = χRw
(that is, χR(d) = χRw

(d) for all
d).

Proof. Since R̂(k,u)/m
d+1R̂(k,u) = (R/md+1)⊗kK for all d, we have χR = χ bR(k,u)

. For
an ideal I of L[[n]], the Hilbert-Samuel functions of L[[n]]/I and L[[n]]/I ′, where I ′ is
the ideal generated by all Xν with ν ∈ v(I), agree. Hence by Proposition 5.13 we obtain
that χ bR(k,u)

= χRw
for almost all w. �

In particular, almost all Rw have the same Hilbert-Samuel polynomial as R, hence the
same multiplicity, and we see once more that almost all Rw have the same dimension and
the same embedding dimension as R. For later use we also show:
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5.15. Lemma. Let f1, . . . , fr ∈ K[[n]] and ε1, . . . , εr ∈ Inf(D(n)), and consider the
ideals I = (f1, . . . , fr)K[[n]] and Iε = (f1 + ε1, . . . , fr + εr)D(n) with respective
approximations Iw and Iε,w. Then v(Iw) ⊆ v(Iε,w) and hence dim(Kw[[n]]/Iw) ≥
dim(Kw[[n]]/Iε,w), for almost all w.

Proof. We may assume r > 0 and fi 6= 0 for all i. Let d := maxi |v(fi)|. Then for almost
all w we have εiw ∈ md+1

w and hence v(fiw + εiw) = v(fiw) = v(f) for almost all w.
Let s = {g1, . . . , gm} be a standard basis for I . Then its approximation sw is a standard
basis for Iw by Proposition 5.13, and thus v(Iw) = v(sw), for almost all w. For every
j ∈ {1, . . . ,m} there exists i ∈ {1, . . . , r} and ν ∈ Nn with v(gj) = v(fi) + ν. Hence
v(gjw) = v(fiw) + ν = v(fiw + εiw) + ν for almost all w. This shows v(Iw) = v(sw) ⊆
v(Iε,w) for almost all w. �

5.16. Irreducibility. Suppose that Λ = (R,x, k, u), and recall from the discussion before
4.24 that i = u|k is the embedding of k into the algebraic closure of u(k) inside K. We
call R absolutely analytically irreducible if R̂(k,i) is a domain. This does not depend on
the choice of k and u. (Cf. Remark 4.20.) From now on up to and including §5.27 we
assume that D(R) is absolutely normalizing.

5.17. Theorem. The following statements are equivalent:
(5.17.1) R is absolutely analytically irreducible;
(5.17.2) D(R) is a domain;
(5.17.3) almost all Rw are domains.

We first establish some auxiliary facts needed in the proof. Let T be a domain with
fraction field F = Frac(T ). Let Y = (Y1, . . . , Ym) be a tuple of indeterminates, and let
I be a finitely generated ideal of T [Y ]. There exists a non-zero δ ∈ T with the following
property: for all domains T ′ extending T , with fraction field F ′ = Frac(T ′), and all
f ∈ T ′[Y ] we have f ∈ IF ′[Y ] if and only if δf ∈ IT ′[Y ]. (See, e.g., [4, Corollary 3.5].)
In other words,

IF ′[Y ] ∩ T ′[Y ] =
(
IT ′[Y ] :T ′[Y ] δ

)
and therefore:

5.18. Lemma. If T ′ is a domain extending T , with fraction field F ′, and T ′ is flat over T ,
then

IF ′[Y ] ∩ T ′[Y ] =
(
IF [Y ] ∩ T [Y ]

)
T ′[Y ].

In the following proposition and lemma let T = K[[d]] and T ∗ = D(d).

5.19. Proposition. If I is a prime ideal of T [Y ] with I ∩ T = (0), then IT ∗[Y ] is a prime
ideal of T ∗[Y ] with IT ∗[Y ] ∩ T ∗ = (0).

For the proof we need:

5.20. Lemma. The fraction field F ∗ of T ∗ is a regular extension of F .

Proof. Since charF = 0 we only need to show that F is algebraically closed in F ∗. Let
y ∈ F ∗ be algebraic over F . To show that y ∈ F we may assume that y is integral over T .
Since T ∗ is integrally closed it follows that y ∈ T ∗. Let P (Y ) ∈ T [Y ] be a monic poly-
nomial of minimal degree such that P (y) = 0. Then π(y) is a zero of P in K[[d]], where
π : T ∗ → K[[d]] is the surjective K[[d]]-algebra homomorphism from Proposition 4.30
and K = D(K). Since K is algebraically closed it follows (using Hensel’s Lemma) that
P has a zero in K[[d]] = T . By minimality of P , this zero is y, so y ∈ T as required. �
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Proof of Proposition 5.19. Suppose that I is prime and I∩T = (0), or equivalently, IF [Y ]
is prime and IF [Y ]∩T [Y ] = I . By Lemma 5.20, IF ∗[Y ] is a prime ideal of IF [Y ]. (See
[9], Chapitre V, §15, Proposition 5 and §17, Corollaire to Proposition 1.) In particular
IT ∗[Y ] ∩ T ∗ = (0). Since T ∗ is flat over T , by Lemma 5.18 we have

IF ∗[Y ] ∩ T ∗[Y ] =
(
IF [Y ] ∩ T [Y ]

)
T ∗[Y ] = IT ∗[Y ].

It follows that IT ∗[Y ] is prime. �

Proof of Theorem 5.17. By Łos’ Theorem, almost all Rw are domains if and only if D(R)
is. Moreover, if this is the case, then every subring of the domain D(R) is also a domain.
Hence we only have to prove that if R is absolutely analytically irreducible, then D(R)
is a domain. Let us first assume that R̂(k,u) is a domain. Put T := K[[d]] and let J :=
T [Xd+1, . . . , Xn] ∩ ÎΛ, where d = dimR. Since θ̂Λ is a Noether normalization of C(Λ),

R̂(k,u)
∼= T [Xd+1, . . . , Xn]/J

and
D(R) ∼= D(T )[Xd+1, . . . , Xn]/JD(T )[Xd+1, . . . , Xn].

(See Proposition 4.11 and the discussion following Proposition 5.8.) Now R̂(k,u) is a
domain if and only if J is a prime ideal, and in this case, by Proposition 5.19, the expansion
JD(T )[Xn+1, . . . , Xn+m] of J to an ideal of D(T )[Xn+1, . . . , Xn+m] remains prime.
Hence D(R) is a domain, as required. The proof of Theorem 5.17 is now completed by
Lemma 5.21 below. �

5.21. Lemma. If R̂(k,i) is an integral domain then so is R̂(k,u).

Proof. We write l for the algebraic closure of u(k) inside K. It is easy to see that the
unique extension of a Noether normalization l[[d]] → R̂(k,i) of R̂(k,i) to a K-algebra ho-
momorphism K[[d]] → R̂(k,u) is a Noether normalization of R̂(k,u). Hence the argument
above, which allowed us to transfer integrality from R̂(k,u) to D(R), can be used to trans-
fer integrality of R̂(k,i) to R̂(k,u), provided we know that the fraction field of K[[d]] is a
regular extension of the fraction field of l[[d]]. This is shown as in Lemma 5.20. �

A prime ideal p of R is called absolutely analytically prime if R/p is absolutely analyt-
ically irreducible, that is to say, if pR̂(k,i) is prime. Since D(R) is absolutely normalizing,
so is D(Λ/I) = D(R)/ID(R) for every ideal I of R. Hence the theorem implies:

5.22. Corollary. The following statements are equivalent, for a prime ideal p of R:

(5.22.1) p is absolutely analytically prime;
(5.22.2) pD(R) is prime;
(5.22.3) almost all approximations pw of p are prime. �

5.23. Reducedness. A local ring A is called analytically unramified (or, analytically re-
duced), if its completion is reduced (that is to say, without non-zero nilpotent elements).

5.24. Theorem. The following statements are equivalent:

(5.24.1) R is analytically unramified;
(5.24.2) D(R) is reduced;
(5.24.3) almost all Rw are reduced.
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Proof. The implication (5.24.3) ⇒ (5.24.2) is a consequence of Łos’ Theorem, and the
implication (5.24.2)⇒ (5.24.1) is trivial. Hence we only need to show that if R̂ is reduced,
then almost all Rw are reduced. If R̂ is reduced, then so is R̂(k,i), by Lemma 4.17. Let
p1, . . . , ps be the minimal prime ideals of R̂(k,i). Since R̂(k,i) is reduced, their intersection
is zero, and hence so is the intersection of their approximations piw for almost all w. Since
D(R) is absolutely normalizing, almost all piw are prime ideals by Corollary 5.22, proving
that almost all Rw are reduced. �

5.25. Corollary. Suppose that R is excellent. For an ideal I of R the following are equiv-
alent:

(5.25.1) I is radical;
(5.25.2) ID(R) is radical;
(5.25.3) almost all approximations Iw of I are radical.

In particular, we have
√
ID(R) =

√
ID(R), and (

√
I)w =

√
Iw for almost all w. �

A Noetherian ring is called equidimensional if all its minimal primes have the same
dimension. A Noetherian local ring is called formally equidimensional if its completion is
equidimensional.

5.26. Corollary. If R is complete and k is algebraically closed, then the following are
equivalent, for a prime ideal p of R:

(5.26.1) p is a minimal prime ideal of R;
(5.26.2) pD(R) is a minimal prime ideal of D(R);
(5.26.3) for almost all w the approximation pw of p is a minimal prime ideal of Rw.

If R is arbitrary, then R is formally equidimensional if and only if almost all Rw are
equidimensional.

Proof. The intersection of the minimal prime ideals p1, . . . , ps ofR equals the (nil-) radical
ofR. By Corollary 5.22 the piD(R) are prime ideals of D(R), and almost all piw are prime
ideals ofRw. By the previous corollary and (5.3.2), the intersection p1D(R)∩· · ·∩psD(R)
equals the radical of D(R), and hence p1w ∩ · · · ∩ psw is the radical of Rw for almost all
w. This yields the equivalence of (5.26.1)–(5.26.3). It remains to show that when R is
arbitrary, it is formally equidimensional if and only if almost all Rw are equidimensional.
Using Lemma 4.17 we reduce to the case that R is complete and k is algebraically closed,
and then the claim follows from the earlier statements and (5.2.1). �

Given a ring A and ideals a1, . . . , as of A, the canonical homomorphism

A→ A/a1 × · · · ×A/as

is an isomorphism if and only if a1 ∩ · · · ∩ as = (0) and 1 ∈ ai + aj for all i 6= j. Hence
by Theorem 5.24 and Corollary 5.26 we get:

5.27. Corollary. Suppose that R is complete and k is algebraically closed. Let p1, . . . , ps
be the minimal prime ideals of R. The following statements are equivalent:

(5.27.1) the canonical homomorphism R→ R/p1 × · · · ×R/ps is bijective;
(5.27.2) the canonical homomorphism

D(R) → D(R)/p1D(R)× · · · ×D(R)/psD(R)

is bijective;



42 MATTHIAS ASCHENBRENNER AND HANS SCHOUTENS

(5.27.3) the canonical homomorphism

Rw → Rw/p1w × · · · ×Rw/psw

is bijective for almost all w. �

5.28. Remark. The proof of Theorem 5.17 shows that if θ̂Λ is normalizing with respect to a
prime ideal p of R̂(k,u), then almost all approximations of p are prime. Hence by the proof
of Theorem 5.24: if θ̂Λ is normalizing for all minimal primes of an ideal I of R̂(k,u), then
(
√
I)w =

√
Iw for almost all w. (This will be used in §5.30 below.)

5.29. Remark. Suppose that Λ is normalizing (see §4.25). Then Theorem 5.17 above re-
mains true, with the same proof. Moreover, if k is algebraically closed and p1, . . . , ps are
the minimal primes of R̂, then for almost all w, the approximations p1w, . . . , psw are the
minimal primes of Rw, and Theorem 5.24 and Corollary 5.26 also remain true. (This will
be used in Sections 6 and 7.)

5.30. Normality. Recall that a domain is called normal if it is integrally closed in its
fraction field. By Łos’ Theorem, R is a normal domain if and only if almost all Rw are
normal domains, and in this case R is a normal domain, by faithful flatness of R→ D(R).

5.31. Theorem. Suppose that R is a complete normal domain with algebraically closed
residue field. Then Λ with underlying ring R can be chosen such that D(R) = D(Λ) is a
normal domain.

The proof is based on the following criterion for normality due to Grauert and Remmert
[21, pp. 220–221]; see also [37]. Let B be a Noetherian domain, and N(B) be the non-
normal locus of B, that is, the set of all prime ideals p of B such that Bp is not normal.

5.32. Proposition. Let H be a non-zero radical ideal of B such that every p ∈ N(B)
contains H , and 0 6= f ∈ H . Then

B is normal ⇐⇒ fB = (fH :B H).

Let A be a ring and B an A-algebra of finite type, that is, B is of the form B = A[Y ]/J
where J = (f1, . . . , fr)A[Y ] is an ideal of the polynomial ring A[Y ] = A[Y1, . . . , Ym].
Given a tuple g = (g1, . . . , gs) with entries in {f1, . . . , fr} we write ∆g for the ideal of
A[Y ] generated by all the s×s-minors of the s×m-matrix

(
∂gi

∂Yj

)
, with the understanding

that ∆∅ := A. We let HB/A denote the nilradical of the ideal in A[Y ] generated by J and
by the ∆g ·

(
gA[Y ] : J

)
, for g ranging over all tuples with entries in {f1, . . . , fr}. The

image inB of the idealHB/A does not depend on the chosen presentationB ∼= A[Y ]/J of
the A-algebra B. (See [61, Property 2.13].) If A is Noetherian and p ⊇ J a prime ideal of
A[Y ], then Bp is smooth over A if and only if HB/A 6⊆ p. In this case, A→ Bp is regular
[61, Corollary 2.9]. In particular, if A is regular, then so is Bp [41, Theorem 23.7] and,
since a regular ring is normal, the canonical image ofHB/A inB is then a non-zero radical
ideal which is contained in every element of N(B). Therefore Proposition 5.32 implies:

5.33. Corollary. Let B be an integral domain, of finite type over a regular ring A, and let
f be a non-zero element of the canonical image H of HB/A in B. Then B is normal if and
only if fB = (fH :B H). �

Proof of Theorem 5.31. The desired object Λ has the form (R,x, k, u), where k is an ar-
bitary coefficient field of R, where u : R→ K is an arbitrary local homomorphism, and x
is determined as follows. Choose a Noether normalization θ : K[[n]] → R̂(k,u) of R̂(k,u).
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Let I := ker θ and put J := A[Xd+1, . . . , Xn] ∩ I , where d := dimR and A := K[[d]].
Let B := A[Xd+1, . . . , Xn]/J , so that B ∼= R̂(k,u) as A-algebras, and let H be the image
of the ideal HB/A of A[Xd+1, . . . , Xn] in R̂(k,u). We already remarked that H does not
depend on the choice of θ. By Lemma 4.23 we can choose θ normalizing for all mini-
mal prime ideals of H and for all ideals aR̂(k,u), where a is an ideal of R̂(k,i). Now put
xi := θ(Xi) for i = 1, . . . , n and x := (x1, . . . , xn). It follows that θ = θ̂Λ (hence
I = ÎΛ) for the thus constructed Λ, and Λ is absolutely normalizing.

We claim that D(R) = D(Λ) is a normal domain. By Lemma 5.21 and [41, Theo-
rem 23.9], R̂(k,u) is a normal domain, and therefore, D(R) is a domain, by Theorem 5.17.
With Aw := Kw[[d]], Proposition 5.8 yields for almost all w an isomorphism of Aw-
algebras

Rw ∼= Bw := Aw[Xd+1, . . . , Xn]/Jw

where Jw is an approximation of the ideal J of A[Xd+1, . . . , Xn]. We claim that HBw/Aw

is an approximation ofHB/A, for almost allw. This implies that for almost allw the canon-
ical image of HBw/Aw

in Bw is an approximation of H . Lemma 5.3 and Corollary 5.33
then show that almost all Bw are normal, as required.

To establish the claim, note that since a radical ideal of A[Xd+1, . . . , Xn] remains rad-
ical upon extension to K[[n]], the ideal HB/AK[[n]] is the radical of the ideal

I +
∑
g

∆g ·
(
gK[[n]] :K[[n]] I

)
where g ranges over all tuples with entries in a fixed set of generators of J , and similarly
the ideal HBw/Aw

Kw[[n]] is the radical of

Iw +
∑
g

∆gw ·
(
gwKw[[n]] :Kw[[n]] Iw

)
where Iw and gw are approximations of I and g respectively. Note that the ideal ∆gw of
Aw[Xd+1, . . . , Xn] is an approximation of the ideal ∆g of A[Xd+1, . . . , Xn]. It follows
thatHBw/Aw

Kw[[n]] is an approximation ofHB/AK[[n]], for almost allw, by Lemma 5.3,
Remark 5.28, and the choice of θ. Moreover

HB/A = HB/AK[[n]] ∩A[Xd+1, . . . , Xn]

and similarly, using the remarks preceding §5.10:

HBw/Aw
= HBw/Aw

Kw[[n]] ∩Aw[Xd+1, . . . , Xn].

This yields that HBw/Aw
is an approximation of HB/A, as claimed. �

A ring A is called normal if Ap is a normal domain for every prime ideal p of A.
If A has finitely many minimal prime ideals p1, . . . , ps then A is normal if and only if
A ∼= A/p1 × · · · × A/ps and each domain A/pi is normal. A local ring A is called
analytically normal if Â is normal.

5.34. Corollary. Suppose thatR is analytically normal. Then the object Λ with underlying
ring R can be chosen such that D(R) = D(Λ) is normal and almost all Rw are normal.

Proof. As in the proof of Theorem 5.24 reduce to the case that R is complete and k is
algebraically closed. The claim now follows from Corollary 5.27 and Theorem 5.31. �
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Recall that Serre’s condition (Ri) for a Noetherian ring A signifies that Ap is regular
for all prime ideals p of A of height at most i, see [41, §23]. In the transfer of property
(Ri), the fact that we do not know whether ηn commutes with partial differentiation (see
Remark 4.31) poses a technical difficulty. We confine ourselves to showing:

5.35. Theorem. Suppose that R is equidimensional and excellent and D(R) is absolutely
normalizing. Then for each i, if R satisfies (Ri) then so do almost all Rw.

To show this note that if R is excellent, then R satisfies (Ri) if and only if S := R̂(k,u)

does (see Remark 4.18). By Corollary 5.26, ifR is equidimensional and D(R) is absolutely
normalizing, then almost all approximations Rw of R are equidimensional. Note that the
Rw are also approximations of S. Now apply the following lemma to S:

5.36. Lemma. Suppose that R ∈ AnK , and R and almost all its approximations Rw are
equidimensional. Then for each i, if R satisfies (Ri) then so do almost all Rw.

Proof. Let f1, . . . , fr ∈ K[[n]] be generators of the ideal I := ÎΛ, and let h be the height
of I . Let J be the Jacobian ideal of I , that is to say the ideal ofK[[n]] generated by I and all
h× h-minors of the matrix with entries ∂fi/∂Xj . By the Jacobian criterion for regularity
for power series rings in characteristc zero [41, Theorem 30.8], given a prime ideal p of
R, the localization of R at p is regular if and only if JR 6⊆ p. Hence R satisfies (Ri) if
and only if JR has height at least i + 1. Since R is equidimensional, this is equivalent
with J having height at least h+ i+1, and hence with K[[n]]/J having dimension at most
n−(h+i+1). By (5.2.1) this is in turn is equivalent with dimKw[[n]]/Jw ≤ n−(h+i+1)
for almost all w, where Jw is an approximation of J . Now for every w let J̃w be the
Jacobian ideal of Iw. By Remark 4.31 and Lemma 5.15 we have dimKw[[n]]/J̃w ≤
dimKw[[n]]/Jw for almost allw. Hence ifR satisfies (Ri), then almost all J̃w have height
≥ h + i + 1 and thus, since almost all Rw are equidimensional, almost all J̃wRw have
height ≥ i + 1. Hence by the Jacobian criterion for regularity for power series rings over
the algebraically closed fields Kw of positive characteristic [41, Theorem 30.10], almost
all Rw satisfy (Ri). �

5.37. Affine approximations and localization. One of the main drawbacks of the present
theory is the fact that there is no a priori way to compare the D-extension of a local ring
with the D-extension of one of its localizations. For example, suppose that R is complete
and k algebraically closed, and let p be a prime ideal of R. From Theorem 5.17, we know
that we can choose D(R) such that pD(R) is a prime ideal, and then D(R)pD(R) is a
faithfully flat extension of Rp. However, it is not clear how this compares with a Lefschetz
extension D(Rp) of Rp: there is no obvious homomorphism from D(R) to D(Rp), since
the homomorphismR→ Rp is not local. (This problem is already apparent in the simplest
possible situation that R = k[[n]] with n > 1, and p is generated by a single variable.)

We have to take these considerations into account when comparing the affine approxi-
mations defined in [54] with the present version of approximations. Therefore, we restrict
our attention to the case thatR = Cm is a localization of a finitely generated k-algebraC at
a maximal ideal m. Here k is a Lefschetz field, realized as an ultraproduct of algebraically
closed subfields kp of Kp, with respect to the same ultraset as used for K. We consider k
as a subfield of K in the natural way. Suppose C = k[n]/I where I is an ideal of k[n]. As
explained in the introduction, the non-standard hull of C is

C∞ := k[n]∞/Ik[n]∞
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where k[n]∞ is the ultraproduct of the kp[n]. By [54, Corollary 4.2], the ideal mC∞ is
again prime and by definition [54, §4.3], the non-standard hull of R is then

R∞ := (C∞)mC∞ .

If C ′ = k[n′]/I ′ is another k-algebra and m′ a maximal ideal of C ′ such that R′ := C ′m′
is isomorphic to R as k-algebras, then R∞ ∼= (R′)∞ as Lefschetz rings [54, §4.3]. In
particular, since k is algebraically closed we can make a translation and assume that m =
(X1, . . . , Xn)k[n]. The embedding k[n]∞ ⊆ k[[n]]∞ factors through (k[n]∞)mk[n]∞ ,
where we denote the ultraproduct of the kp[[n]] by k[[n]]∞. Composing with the nat-
ural embedding k[[n]]∞ ⊆ K[[n]]∞ followed by the diagonal embedding K[[n]]∞ →
K[[n]]U∞ = D(n) yields a k[n]-algebra homomorphism(

k[n]∞
)
mk[n]∞

→ D(n).

Taking reduction modulo I gives a homomorphism R∞ → D(R) making

R

��

ηR // D(R)
;;

wwwwwwwwwwwwwww

R∞

commutative, where R → R∞ is the canonical embedding. Let Raff
p be approximations

of R in the affine sense, that is to say, p ranges over the set of prime numbers and the
ultraproduct of the Raff

p is equal to R∞. Recall that for almost all p, we can obtain Raff
p

as the localization of kp[n]/Iaff
p at the prime ideal maff

p , where Iaff
p and maff

p are respective
approximations of I and m in the sense of [54]. Let p(w) := charKw, so kp(w) is a
subfield of Kw, for each w. Let Rw be the completion of Raff

p(w) ⊗kp(w)
Kw at the ideal

generated by the Xi. Hence there is a canonical map Raff
p(w) → Rw and this is faithfully

flat. Alternatively, with the notation from §4.16, we have that

Rw = (R̂aff
p(w))(kp(w),uw)

where uw : Raff
p(w) → Kw is the composition of the residue map Raff

p(w) → kp(w) with
the inclusion kp(w) ⊆ Kw. It follows that the ultraproduct of the Rw is equal to D(R),
showing that the Rw are approximations of R in the present sense. Moreover, if c ∈ R,
then approximations cw of c in the present sense are obtained by taking approximations caff

p

of c in the sense of [54] and setting cw := caff
p(w) (as an element of Rw). Put succinctly, an

approximation ofR is obtained by the process of taking an approximation ofR in the sense
of [54], extending scalars and completing. We use this below to compare results between
the affine and the complete case.

5.38. Proposition. With the notations just introduced, the homomorphism R∞ → D(R)
is pure, and it is flat if R has dimension at most 2.

A homomorphism M → N between modules over a ring A is pure if it is injective (so
M can be regarded as a submodule of N ) and every finite system of linear equations with
constants in M which admits a solution in N admits a solution in M . For a module M
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over a ring A let µ(M) ∈ N∪ {∞} be the least number of elements in a generating set for
M , and put

µA(m) := sup
{
µ(kerϕ) : ϕ ∈ HomA(Am, A)

}
∈ N ∪ {∞} for all m.

The ring A is called uniformly coherent if µA(m) < ∞ for all m. If A is a finitely
generated algebra over a field then A is uniformly coherent if and only if dimA ≤ 2, and
in this case µA(m) ≤ m+ 2 for all m. (See [20, Corollary 6.1.21].)

5.39. Lemma. For each v in an ultraset V , let Cv → Dv be a flat homomorphism, with
each Cv a two-dimensional algebra over a field, and let C∞ → D∞ be their ultraproduct.
If D∞ → D∗ is any elementary map, then the composition C∞ → D∞ → D∗ is flat.

Proof. We have to show that for every linear form L ∈ C∞[Y ] where Y = (Y1, . . . , Ym),
the solution set of L = 0 in (D∗)m is generated by the solution set of L = 0 in (C∞)m.
Let Lv be an approximation of L. For each v, there exist m + 2 tuples a1v, . . . ,am+2,v

with entries in Cv which generate the solution set of Lv = 0 in (Cv)m, by uniform co-
herence. These same tuples generate the solution set of Lv = 0 in (Dv)m, by flatness.
The ultraproducts a1∞, . . . ,am+2,∞ of these m + 2 tuples are then solutions of L = 0
and generate the solution set of L = 0 in (D∞)m, by Łos’ Theorem. Since D∞ → D∗ is
elementary, the ai∞ also generate the solution set of L = 0 in (D∗)m, as required. �

Proof of Proposition 5.38. We keep the notation from above. The inclusions

(5.39.1) Raff
p → Kp[[n]]/Iaff

p Kp[[n]]

are faithfully flat and hence pure. Their ultraproduct R∞ → K[[n]]∞/IK[[n]]∞ is also
pure. The diagonal embedding

(5.39.2) K[[n]]∞/IK[[n]]∞ →
(
K[[n]]∞/IK[[n]]∞

)U = D(R)

is pure, hence so is the composition

(5.39.3) R∞ → D(R).

Assume next that R has dimension at most 2. We may choose a finitely generated k-
algebra C such that R = Cm with C of dimension at most 2. It suffices to show that the
composition C∞ → R∞ → D(R) is flat. Almost all Caff

p have dimension at most 2 by
[54, Theorem 4.5]. Since (5.39.2) is elementary, and since Caff

p → Raff
p and (5.39.1) are

flat, Lemma 5.39 yields that (5.39.3) is flat, as required. �

We do not know in general whether R∞ → D(R) is flat (and hence faithfully flat).

5.40. The non-local case. Let A ⊇ Q be a Noetherian ring of cardinality at most the
cardinality of K. Let MaxA be the set of all maximal ideals of A, and for every n ∈
MaxA choose a faithfully flat Lefschetz extension ηAn : An → D(An) of the Noetherian
local ring An of equicharacteristic zero. The product of the ηAn yields a faithfully flat
embedding

(5.40.1) A→ A∗ :=
∏

n∈MaxA

D(An).

In general, A∗ is not a Lefschetz ring, but it is so if A is semi-local. Thus:

5.41. Proposition. Every semi-local Noetherian ring containing Q admits a faithfully flat
Lefschetz extension. �
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For arbitraryA, in spite of the fact thatA∗ is not Lefschetz, it still admits a non-standard
Frobenius, so that the constructions in the next two sections can be generalized to the non-
local case as well; see §6.17 for a further discussion.

Part 2. Applications

The standing assumption for the rest of this paper is that (R,m) is an equicharacteristic
zero Noetherian local ring and K is an algebraically closed Lefschetz field with respect
to an ultraset whose underlying set is the set of all prime numbers, whose approximations
Kp are algebraically closed fields of characteristic p (as in Section 5). We take K of
uncountable cardinality, as large as necessary. (Most of the time |K| > 2|R| will suffice.)
We fix a Lefschetz extension D(R) of R as defined in Part 1, and we let (Rw,mw) be
the corresponding approximation of R. In other words, we fix some Λ = (R,x, k, u) in
Coh∗K with underlying ring R and put D(R) := D(Λ). Where necessary, we’ll make
some additional assumptions on Λ (for instance so that D(R) is absolutely normalizing;
see §4.22). If α : R→ S is a local homomorphism, then we choose an object Γ of Coh∗K
so that α induces a morphism Λ → Γ, and hence a local homo D(α) : D(R) → D(S).
In the sequel, we often will use a subscript w to indicate a choice of approximation of
a certain object without explicitly mentioning this. For instance, Sw will stand for some
approximation of S, etc. We now discuss non-standard tight closure and big Cohen-Mac-
aulay algebras, and indicate several applications of these notions.

6. NON-STANDARD TIGHT CLOSURE

Every Lefschetz ring comes with a canonical endomorphism obtained by taking the
ultraproduct of the Frobenii on each component: let Fw : Rw → Rw be the Frobenius
x 7→ xp(w) on Rw, where p(w) denotes the characteristic of Rw, and let F∞ be the
ultraproduct of the Fw, that is to say,

F∞ : D(R) → D(R) : ulim
w

aw 7→ ulim
w

Fw(aw).

We call F∞ the non-standard Frobenius on D(R). More generally, for each w let lw
be a positive integer and let l∞ be its ultraproduct in the ultrapower ZW of Z. We let
Fl∞∞ denote the ultraproduct of the Flww , and call it an ultra-Frobenius on D(R). In this
paper, we are only concerned with the (powers of the) non-standard Frobenius F∞; for an
application of ultra-Frobenii, see [57]. Note that if α : R → S is a local homomorphism,
then for each l∞, we have a commutative diagram

D(R)
D(α)

//

Fl∞∞

��

D(S)

Fl∞∞

��
D(R)

D(α)
// D(S).

Given an ideal a of R, we use F∞(a)D(R) to denote the ideal in D(R) generated by all
F∞(a) with a ∈ a (and a similar notation for powers of F∞). Note that in general, F∞
does not leave the subring R invariant. In fact, we have an inclusion

(6.0.1) F∞(m)D(R) ⊆ Inf(D(R)).

It follows that F∞(m)D(R) ∩R = (0), by the faithful flatness of R→ D(R).
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Below we often make use of the important fact (easily checked using Łos’ Theorem and
[41, Theorem 16.1]) that the image of a D(R)-regular sequence in D(R) under F∞, and
hence under each of its powers Fm∞, is D(R)-regular. In particular, by Lemma 5.4, the
image under Fm∞ of any R-regular sequence in R is D(R)-regular.

6.1. Non-standard tight closure. Let a be an ideal of R. We say that z ∈ R belongs
to the non-standard tight closure of a if there exists c ∈ R not contained in any minimal
prime of R such that

(6.1.1) c Fm∞(z) ∈ Fm∞(a)D(R),

for all sufficiently big m. We denote the non-standard tight closure of an ideal a by cl(a).
A priori, this notion depends on the choice of D(R), that is to say, on the choice of Λ.
If we want to make this dependence explicit, we write clΛ(a). It is an interesting (and
probably difficult) question to determine whether different choices of Λ give rise to the
same closure operation. Here we take a pragmatic approach: we are primarily interested
in using non-standard tight closure to prove statements (about R) which do not mention it,
and for this, we are free to choose Λ to suit our needs.

The next proposition shows that cl( · ) shares some basic properties with characteristic
p tight closure. We denote the set of all elements of a ring A which are not contained in a
minimal prime of A by A◦ (a multiplicatively closed subset of A).

6.2. Proposition. Let a and b be ideals of R. Then the following hold:

(6.2.1) cl(a) is an ideal of R and a ⊆ b implies that cl(a) ⊆ cl(b);
(6.2.2) there exists c ∈ R◦ such that c Fm∞(cl(a))D(R) ⊆ Fm∞(a)D(R) for all suffi-

ciently large m;
(6.2.3) a ⊆ cl(a) = cl(cl(a));
(6.2.4) cl(a ∩ b) ⊆ cl(a) ∩ cl(b), cl(a + b) = cl(cl(a) + cl(b)), and cl(ab) =

cl(cl(a) cl(b));
(6.2.5) if R is reduced and the residue class of z ∈ R lies in clΛ/p

(
a(R/p)

)
for each

minimal prime p of R, then z ∈ clΛ(a).

Proof. The proofs of the first four properties are as in the case of tight closure in positive
characteristic. Suppose thatR is reduced. Let p1, . . . , ps be all the minimal prime ideals of
R, and for each j choose an element cj inside all minimal primes except pj . In particular,
cjpj = 0. By assumption, for each j there exists an element dj /∈ pj such that

djFm∞(z) ∈ Fm∞(a)D(R/pj),

for all large m. By the discussion in §4.28, this means that

(6.2.1) djFm∞(z) ∈ Fm∞(a)D(R) + pjD(R),

for all large m. Put c := c1d1 + · · ·+ csds; note that c does not lie in any minimal prime
of R. Multiplying (6.2.1) with cj and taking the sum over all j, we get that cFm∞(z) lies in
Fm∞(a), for all large m, showing that z ∈ cl(a). �

Next we derive versions of some other well-known results about tight closure in prime
characteristic. We say that an ideal of R is non-standard tightly closed if it is equal to its
non-standard tight closure.

6.3. Theorem. If R is regular, then every ideal of R is non-standard tightly closed.
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Proof. The image under Fm∞ of any regular system of parameters of R is D(R)-regular,
and by Łos’ Theorem and [12, Proposition 1.1.6] every permutation of a D(R)-regular
sequence in D(R) is D(R)-regular. Hence the R-algebra structure on D(R) given by

(6.3.1) R→ D(R) : a 7→ Fm∞(a)

is that of a balanced big Cohen-Macaulay algebra. Since R is regular, this implies that the
homomorphism (6.3.1) is flat. (See the remarks preceding the proof of Proposition 4.7.)
Suppose towards a contradiction that z lies in the non-standard tight closure of an ideal a
in R but not in a. For some non-zero c ∈ R, we have relations (6.1.1) for m sufficiently
large. Thus

c ∈
(
Fm∞(a)D(R) :D(R) Fm∞(z)

)
= Fm∞(a :R z)D(R)

where we used flatness of (6.3.1) for the last equality. Since z /∈ a, the colon ideal (a :R z)
is contained in m. Therefore, c is zero by (6.0.1), contradiction. �

6.4. Remark. For this argument to work, it suffices that (6.1.1) only holds for m = 1; the
ensuing notion is the analogue of what was called non-standard closure in [54].

In the next result, we require that R is a homomorphic image of a Cohen-Macaulay
local ring S, say R = S/I . In order to get a induced map on the Lefschetz hulls, we tacitly
assume that Λ is equal to a quotient Γ/I for some object Γ in Coh∗K whose underlying
ring is S (see §4.28).

6.5. Theorem (Colon Capturing). Suppose that R is a homomorpic image of a Cohen-
Macaulay local ring and that R is equidimensional. If z = (z1, . . . , zd) is a system of
parameters of R, then for each i = 1, . . . , d, we have an inclusion(

(z1, . . . , zi−1)R :R zi
)
⊆ cl

(
(z1, . . . , zi−1)R

)
.

Proof. Write R = S/I with S a Cohen-Macaulay local ring and consider z already as a
tuple in S. Suppose I has height e. By prime avoidance, we can find y1, . . . , ye ∈ I , such
that for each i, the ideal J + (z1, . . . , zi)S has height e + i, where J := (y1, . . . , ye)S.
In particular, (y1, . . . , ye, z1, . . . , zd) is a system of parameters in S, whence S-regular.
By the Unmixedness Theorem (see for instance [41, Theorem 17.6]), the ideal J has no
embedded associated primes. We can now use the same argument as in the proof of [54,
Theorem 8.1], to get c ∈ S not contained in any minimal prime of I and N ∈ N such that

(6.5.1) cIN ⊆ J.

Let a ∈ S be such that its image in R lies in
(
(z1, . . . , zi−1)R : zi

)
, and hence azi lies in

I + (z1, . . . , zi−1)S. For a fixed m, applying Fm∞ yields

Fm∞(a)Fm∞(zi) ∈ Fm∞(I)D(S) +
(
Fm∞(z1), . . . ,Fm∞(zi−1)

)
D(S).

Multiplying this with c and using that F∞(I)D(S) ⊆ IND(S), we get from (6.5.1) that

cFm∞(a)Fm∞(zi) ∈ JD(S) +
(
Fm∞(z1), . . . ,Fm∞(zi−1)

)
D(S).

By the remark before §6.1, the sequence(
y1, . . . , ye,Fm∞(z1), . . . ,Fm∞(zd)

)
is D(S)-regular, so that the previous equation can be simplified to

cFm∞(a) ∈ JD(S) +
(
Fm∞(z1), . . . ,Fm∞(zi−1)

)
D(S).

By our choice of Λ we have D(R) = D(S)/ID(S). Taking the reduction modulo ID(S)
we get equations exhibiting a as an element of the non-standard tight closure of the ideal
(z1, . . . , zi−1)R. (Note that the image of c lies in R◦.) �
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6.6. Remark. Every complete Noetherian local ring R is a homomorphic image of a Coh-
en-Macaulay (in fact, regular) local ring by Cohen’s Structure Theorem, hence Colon Cap-
turing holds for R. If we were able to prove that

(6.6.1) cl(a) ?= cl(aR̂) ∩R,

for every ideal a in R, then we get Colon Capturing for every equidimensional and univer-
sally catenary Noetherian local ring R. Note that the inclusion ⊆ in (6.6.1) is immediate.
On the other hand, even for tight closure in characteristic p, the other inclusion is still open.
Below (see the remark following Lemma 6.27), we prove Colon Capturing for complete
reduced R with algebraically closed residue field and D(R) normalizing.

Using the previous theorem, we get a direct proof of the celebrated Hochster-Roberts
Theorem [32]. A ring homomorphism A → B is called cyclically pure if a = aB ∩ A,
that is to say, if A/a → B/aB is injective, for every ideal a of A. A cyclically pure
homomorphism A→ B between local rings A and B is automatically local. Moreover:

6.7. Lemma. Let A and B be Noetherian local rings with respective completions Â and
B̂. The completion Â→ B̂ of a cyclically pure homomorphism A→ B is cyclically pure.

Proof. The homomorphism B → B̂ is faithfully flat, hence cyclically pure; thus the com-
position A → B → B̂ is cyclically pure. So from now on we may suppose that B = B̂.
It suffices to show that Â→ B is injective, since the completion of A/a is equal to Â/aÂ
for any ideal a in A. Let a ∈ Â be such that a = 0 in B, and for each i choose ai ∈ A

such that a ≡ ai mod piÂ, where p is the maximal ideal of A. Then ai lies in piB, hence
by cyclical purity, in pi. Therefore a ∈ piÂ for all i, showing that a = 0 in Â by Krull’s
Intersection Theorem. �

6.8. Theorem (Hochster-Roberts). If there exists a cyclically pure homomorphism R→ S
into a regular local ring S, then R is Cohen-Macaulay.

Proof. By Lemma 6.7 we reduce to the case that R and S are complete. Let (z1, . . . , zd)
be a system of parameters in R. We need to show that (z1, . . . , zd) is R-regular. To this
end assume that

azi ∈ a := (z1, . . . , zi−1)R,

for some i and some a ∈ R. Since R is a complete domain, we can apply Theorem 6.5,
to get that a ∈ clΛ(a), for a suitable choice of Λ with underlying ring R. So for some
c 6= 0 in R we have relations (6.1.1) for all sufficiently large m. Now R → S induces
a homomorphism D(R) → D(S). Applying this homomorphism to (6.1.1) we get that
a lies in cl(aS). (Note that c remains non-zero in S since R → S is injective.) Hence
a ∈ aS ∩R = a by Theorem 6.3 and cyclic purity. �

6.9. Remark. We say thatR is weakly non-standard F-regular if every ideal is non-standard
tightly closed, for every choice of Λ with underlying ring R. The argument in the proof
above actually gives two independent results. Firstly, if S is weakly non-standard F-regular,
then S is Cohen-Macaulay. Secondly, if R → S is cyclically pure and S is weakly non-
standard F-regular, then so is R.

For some more proofs of this theorem, see Remarks 6.28 and 7.5 below. By the argu-
ment in the beginning of the proof of [30, (2.3)], the theorem implies the following global
version; for further discussion, see Conjecture 7.18 in the next section.
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6.10. Corollary. If A → B is a pure homomorphism of Noetherian rings containing Q
and if B is regular, then A is Cohen-Macaulay. �

The integral closure of an ideal J ⊆ S of a ring S will be denoted by J . It is the set of
all z ∈ S which are integral over J , that is, which satisfy a relation

(6.10.1) zd + a1z
d−1 + · · ·+ ad−1z + ad = 0

with ai ∈ J i for each i. See [12, §10.2] for a proof that J is an ideal of S, and other basic
properties of J . The following is a useful characterization of integral closure:

6.11. Lemma. Let S be a Noetherian local ring and J an ideal of S. An element z ∈ S is
integral over J if and only if z ∈ JV for every local homomorphism S → V to a discrete
valuation ring V whose kernel is a minimal prime of S.

See [34, Lemma 3.4] for the proof in the case where S is a domain; the general case
easily reduces to this one; see for instance [26, Lemma 3.2].

Before we state the next property of tight closure, we make a general remark:

6.12. Lemma. Let J be an ideal of a ring S and suppose that z ∈ S satisfies an integral
relation (6.10.1). Then Jd−1zN ∈ JN for all N ∈ N.

Proof. We claim that zd+k ∈ Jk+1 for all k ∈ N. We show this by induction on k, the
case k = 0 being trivial. For the inductive step note that by (6.10.1) we have

zd+k+1 = −(a1z
d+k + · · ·+ ak+1z

d + ak+2z
d−1 + · · ·+ adz

k+1).

Since aizd+k+1−i ∈ Jk+2 for i = 1, . . . , k + 1 (by the inductive hypothesis) and ai ∈
J i ⊆ Jk+2 for i = k + 2, . . . , d, we get that zd+k+1 ∈ Jk+2 as required. Now clearly
Jd−1zN ⊆ JN if N < d, and by the claim we get

Jd−1zN = Jd−1zd+k ⊆ Jd−1Jk+1 = JN

for all N ≥ d, where k := N − d. �

6.13. Theorem (Briançon-Skoda). For every ideal a of R we have cl(a) ⊆ a. Moreover, if
a has positive height and is generated by at most m elements, then the integral closure of
am is contained in cl(a).

Proof. Let z ∈ cl(a); so we have a relation (6.1.1) for some c ∈ R◦ and all sufficiently
large m. In order to prove that z ∈ a, we apply Lemma 6.11. Let V be a discrete val-
uation ring and let R → V be a local homomorphism with kernel a minimal prime of
R. This induces a homomorphism D(R) → D(V ), and applying this homomorphism to
the relations (6.1.1) shows that z ∈ cl(aV ). (Note that by assumption c 6= 0 in V .) By
Theorem 6.3, the latter ideal is just aV , and we are done.

Suppose now that a has positive height and is generated by ≤ m elements, and let z lie
in the integral closure of am. Then z satisfies a relation

zd + a1z
d−1 + · · ·+ ad = 0

with ai ∈ aim. By Łos’ Theorem, we have for almost all w an integral relation

zdw + a1wz
d−1
w + · · ·+ adw = 0

with aiw ∈ aimw for all i. For those w, we get for all N that

am(d−1)
w zNw ⊆ aNmw
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by Lemma 6.12. For N equal to the lth power of the characteristic of Rw we get aNmw ⊆
Flw(aw)Rw, since aw is generated by at most m elements by Łos’ Theorem. Hence taking
ultraproducts, we get

am(d−1)Fl∞(z) ⊆ Fl∞(a)D(R).
Since this holds for all l and since we assumed that a has positive height (hence R◦ ∩
am(d−1) 6= ∅), we get that z ∈ cl(a). �

6.14. Remark. The same argument together with [35, Remark 5.8.2] proves under the
hypothesis of the theorem that the integral closure of am+l lies in the non-standard tight
closure of al+1, for all l.

6.15. Remark. It follows that cl(a) = a for each principal ideal a in R. Hence a domain R
is normal if and only if every principal ideal is equal to its non-standard tight closure. In
particular, using Remark 6.9, we see that a cyclically pure subring of a regular local ring
(and more generally, a weakly non-standard F-regular local ring) is normal.

We immediately obtain the following classical version of the Briançon-Skoda Theorem
from [39]. (For the ring of convergent power series over C this was first proved in [11];
see [35, §5] or [53] for some more background.)

6.16. Theorem (Briançon-Skoda for regular rings). If A is a regular ring containing Q
and a an ideal of A generated by at most m elements, then the integral closure of am

is contained in a. In particular, if f is a formal power series in n variables over a field
of characteristic zero with f(0) = 0, then fn lies in the ideal generated by the partial
derivatives of f .

Proof. Since this is a local property, we may assume that A is local. By Theorem 6.13, the
integral closure of am is contained in cl(a), hence in a, by Theorem 6.3. It is an exercise
on the chain rule to show, using Lemma 6.11, that f lies in the integral closure of the ideal
J generated by the partials of f . (See [35, Exercise 5.1].) Hence fn lies in Jn ⊆ J by our
first assertion. �

6.17. Tight closure—non-local case. Although of minor use, one can extend the notion
of non-standard tight closure to an arbitrary Noetherian Q-algebra A as follows. For every
maximal ideal n of A choose a Lefschetz hull D(An) of the equicharacteristic zero Noe-
therian local ring An, and write cln for the ensuing notion of non-standard tight closure for
ideals ofAn. We define the non-standard tight closure of an ideal a ofA as the intersection

cl(a) :=
⋂

n∈MaxA

cln(aAn) ∩A.

We invite the reader to check that this is indeed a closure operation, admitting similar
properties as in the local case: for instance, the analogues of Theorems 6.3 and 6.13 hold.

IfA∗ is the product of all D(An) as in (5.40.1), then each of its factors admits the action
of a non-standard Frobenius. Let us denote the product of these Frobenii again by F∞. We
can now define directly a tight closure operation on ideals inA by mimicking the definition
in the local case, that is to say: z ∈ A belongs to the ‘global’ non-standard tight closure of
an ideal a if there is some c ∈ A◦ such that cFm∞(z) ∈ Fm∞(a)A∗, for all sufficiently large
m. It is immediate that an element in the ‘global’ non-standard tight closure of a belongs to
cl(a) as defined above. In caseA is semi-local, the converse also holds, but this is no longer
clear for arbitrary A, for we do not have yet an appropriate notion of uniform test elements
for non-standard tight closure (see also Proposition 6.24 below). This is presumably not
an easy problem, and we will not further investigate it here.
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6.18. Comparison with affine non-standard tight closure. We confine ourselves to the
geometric case, that is, where R is the local ring at a closed point on a scheme of finite
type over an algebraically closed Lefschetz field k ⊆ K as in §5.37. In such a ring, non-
standard tight closure was defined in [54] in a similar fashion, using the non-standard hull
R∞ instead of D(R). More precisely, an element z ∈ R lies in the (affine) non-standard
tight closure of an ideal a of R if there exists c ∈ R◦ such that

(6.18.1) c Fm∞(z) ∈ Fm∞(a)R∞

for all sufficiently large m, where we also write F∞ for the non-standard Frobenius on the
Lefschetz ring R∞. As discussed in §5.37, we have a natural embedding R∞ → D(R),
and this is compatible with the non-standard Frobenii defined on each ring. In particular,
taking the image of the relations (6.18.1) via this homomorphism shows that z ∈ cl(a) in
the present sense. Conversely, suppose there exists c ∈ R◦ such that (6.1.1) holds in D(R)
for all sufficiently large m. By Łos’ Theorem, for those m we have that

(6.18.2) cw Fmw (zw) ∈ Fmw (aw)Rw

where cw, zw, aw and Rw are approximations of c, z, a and R respectively. By our
discussion in §5.37, we can realize these approximations as follows. If caff

p , zaff
p , aaff

p and
Raff
p are approximations of c, z, a and R in the sense of [54], then we may take Rw to be

the completion of Raff
p(w) ⊗kp(w)

Kw and cw, zw and aw the corresponding image of caff
p(w),

zaff
p(w) and aaff

p(w) in this completion. (Recall that p(w) = charKw.) Therefore, by faithful
flatness, relation (6.18.2) already holds in the subring Raff

p(w), for almost all w, hence for
almost all characteristics. Taking ultraproducts of this relation in almost all Raff

p yields
(6.18.1), and since this is true for any sufficiently large choice of m, we showed that z lies
in the non-standard tight closure of a in the sense of [54]. In conclusion, we showed that
for localizations of finitely generated k-algebras at maximal ideals, both notions of tight
closure coincide.

6.19. Generic tight closure. We finish this section with studying a related closure oper-
ation, which also played an important role in the affine case. Let a be an ideal of R. We
say that an element z ∈ R lies in the generic tight closure of a if zw lies in the (positive
characteristic) tight closure of aw for almost all w. We denote the generic tight closure of
a by cl∗(a). Again, this depends on the choice of Λ with underlying ring R; if we want to
stress this dependence, we write cl∗Λ(a). From [35, Appendix 1] recall Hochster-Huneke’s
notion of tight closure in equicharacteristic 0. Here and below, given a ring S and a prime
p we let S(p) := S ⊗Z Fp, and for an ideal I of S we let I(p) be the image of I in S(p)
under the map z 7→ z(p) := z ⊗ 1: S → S(p).

6.20. Definition. An element z of R is in the (equational) tight closure a∗ of a if there
exists a finitely generated subring S of R with z ∈ S such that z(p) is in the (characteristic
p) tight closure of (a ∩ S)(p) in S(p), for all but finitely many primes p.

Let y = (y1, . . . , ym) ∈ Rm, and let J be the kernel of the ring homomorphism

Z[Y ] = Z[Y1, . . . , Ym] → R

given by Yj 7→ yj for all j. We get an induced embedding Z[Y ]/J → R, and we identify
Z[Y ]/J with its image, the subring S of R generated by y. Given a prime p we then have

S(p) = S ⊗Z Fp = Fp[Y ]/J(p)
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where J(p) is the image of J under the canonical surjection Z[Y ] → Fp[Y ]. We let
S∞ denote the ultraproduct of the S(p) with respect to the same ultraset that builds K
(and whose underlying set is the set of prime numbers). The canonical maps S → S(p)
combine to give a ring homomorphism S → S∞. Composing with the diagonal embedding
S∞ → SU∞, where U is the ultraset constructed in §4, we obtain an S-algebra structure on
SU∞. We also get an S-algebra structure on D(R) via the restriction of ηR to S.

6.21. Lemma. There exists an S-algebra homomorphism ϕ : SU∞ → D(R).

Proof. For every w let S̃w be the subring of Rw generated by the approximations yw =
(y1w, . . . , ymw) of y, and let S̃∞ be the ultraproduct of the S̃w. If P (Y ) ∈ J , so
P (y) = 0, then P (yw) = 0 for almost all w. Therefore, since J is finitely generated,
we have for almost all w a surjection S

(
p(w)

)
→ S̃w with yj(p(w)) 7→ yjw for all j.

Let ϕw : S
(
p(w)

)
→ Rw denote the composition of this surjection with the embedding

S̃w ⊆ Rw and let ϕ be the ultraproduct of the ϕw. One easily checks that ϕ is an S-
algebra homomorphism SU∞ → D(R). �

6.22. Remark. This means in particular that for every z ∈ S, the zw := ϕw(z(p(w)))
are an approximation of z. Indeed, z = ϕ(z) is by construction the ultraproduct of the
ϕw(z(p(w))).

6.23. Corollary. For every ideal a of R, we have a∗ ⊆ cl∗(a).

Proof. Let z ∈ a∗, and choose S = Z[y], where y = (y1, . . . , ym) ∈ Rm, which contains
z and such that z(p) is in the tight closure of (a ∩ S)(p) in S(p), for all but finitely many
p. Then z

(
p(w)

)
is in the tight closure of Iw := (a ∩ S)

(
p(w)

)
in S

(
p(w)

)
, for almost

all w. By [35, Theorem 2.3], almost each zw := ϕw
(
z
(
p(w)

))
is in the tight closure of

ϕw(Iw)Rw. By Remark 6.22, the zw and the ϕw(Iw)Rw are approximations of z and
(a ∩ S)R respectively. In particular, if aw is an approximation of a, then almost each zw
lies in the tight closure of aw, showing that z ∈ cl∗(a). �

The relation between generic tight closure and non-standard tight closure is more subtle.
We need a result on test elements. (See [35, Chapter 2] for the notion of test element.)

6.24. Proposition. Suppose that D(R) is normalizing and R is absolutely analytically
irreducible. There exists an element of R̂ almost all of whose approximations are test
elements.

Proof. The assumption on D(R) implies that the homomorphism T0 := k∗[[d]] → R̂
given by Xi 7→ xi is a Noether Normalization, where d := dimR and k∗ is the algebraic
closure of k in R̂ (whence a coefficient field of R̂). Moreover, this homomorphism induces
(by extension of scalars) the restriction of θ̂Λ : K[[n]] → R̂(k,u) to T := K[[d]] (see §4.22).
Let c be a non-zero element in the relative Jacobian J bR/T0

. (Recall that J bR/T0
is the 0-

th Fitting ideal of the relative module of Kähler differentials Ω bR/T0
.) By Remark 5.29,

almost each Rw is a domain, and by Proposition 4.27, almost each Rw is a finite extension
of Tw, of degree e. In particular, for almost all w, the field of fractions of Rw is separably
algebraic over the field of fractions of Tw. Since J bR/T0

⊆ J bR(k,u)/T
, almost each cw is a

non-zero element of JRw/Tw
, hence a test element for Rw by [35, Exercise 2.9]. �

6.25. Remark. From this we can also derive the same result for R analytically unramified
with k algebraically closed and D(R) normalizing. Namely, let p1, . . . , ps be the minimal
prime ideals of R̂. By Remark 5.29 the approximations p1w, . . . , psw are the minimal
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prime ideals of Rw, for almost all w, and almost all Rw are reduced. For each j, choose
tj ∈ R̂ inside all minimal prime ideals except pj . By Proposition 6.24, there exists cj ∈
R̂\pj whose approximation is a test element for almost allRw/pjw. Using Łos’ Theorem,
one shows that c := c1t1 + · · · + csts has the desired properties. (See for instance [35,
Exercise 2.10] for more details.)

6.26. Theorem. Suppose that R is complete and D(R) is normalizing. If R is either
absolutely analytically irreducible or otherwise reduced with k algebraically closed, then
cl∗(a) ⊆ cl(a) for every ideal a of R.

Proof. Let z ∈ cl∗(a), that is, zw is in the tight closure of a∗w for almost all w. By
either Proposition 6.24 or the remark following it, there exists an element c of R whose
approximation cw is a test element in Rw, for almost all w. Hence for almost w and for all
m:

cwFmw (zw) ∈ Fmw (aw)Rw.
Taking ultraproducts, we get for all m that

c Fm∞(z) ∈ Fm∞(a)D(R)

showing that z ∈ cl(a). �

For the Hochster-Huneke notion of tight closure in equicharacteristic zero, Colon Cap-
turing is only known to be true in locally excellent rings. Since Colon Capturing holds for
every complete Noetherian local ring of positive characteristic, hence for every approxi-
mation of R, Łos’ Theorem in conjunction with Lemma 5.4 immediately yields:

6.27. Lemma (Colon Capturing for generic tight closure). If (z1, . . . , zd) is a system of
parameters of R, then(

(z1, . . . , zi−1)R :R zi
)
⊆ cl∗

(
(z1, . . . , zi−1)R

)
for each i = 1, . . . , d. �

In particular, combining this lemma with Theorem 6.26 yields Colon Capturing for non-
standard tight closure in case R is reduced and complete, with algebraically closed k and
D(R) normalizing.

6.28. Remark. It follows from Theorem 5.2 that every ideal in an equicharacteristic zero
regular local ring is equal to its generic tight closure. Together with Lemma 6.27, we get
an even easier proof of the Hochster-Roberts Theorem (including the global version of
Corollary 6.10), using cl∗ in place of cl.

7. BALANCED BIG COHEN-MACAULAY ALGEBRAS

Recall that an R-algebra B is called a balanced big Cohen-Macaulay R-algebra, if any
system of parameters of R is a B-regular sequence. (If we only know this for a single
system of parameters, we call B a big Cohen-Macaulay R-algebra.) The key result on
big Cohen-Macaulay algebras was proved by Hochster-Huneke in [29]: if S is an excel-
lent local domain of prime characteristic p, then its absolute integral closure S+ is a bal-
anced big Cohen-Macaulay algebra. (Incidentally, this is false in equicharacteristic zero if
dimS ≥ 3, see [29].) The absolute integral closure A+ of a domain A is defined to be
the integral closure of A in an algebraic closure of its field of fractions. (We put A+ := 0
if A is not a domain.) In [56], this is used to give a canonical construction of a balanced
big Cohen-Macaulay algebra for a local domain S essentially of finite type over C, by
taking the ultraproduct of the S+

p , where Sp is an approximation of S in the sense of [54].
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The Sp are local domains, for almost all p, by [54, Corollary 4.2], so that the construction
makes sense. In view of the restrictions imposed by Theorem 5.17, we cannot directly
generalize this to arbitrary domains. We first consider the case that D(Λ) is a domain, or
equivalently, that almost all approximations Rw of R are domains. This is the case if R is
absolutely irreducible and Λ is absolutely normalizing or normalizing (by Theorem 5.17
and Remark 5.29, respectively), but also if R is a DVR (by Corollary 5.5).

7.1. Definition.
B(Λ) := ulim

w
R+
w .

We often write B(R) for B(Λ), keeping in mind that B(R) depends on the choice of Λ.

The canonical homomorphism ηR : R→ D(R) induces a homomorphism R→ B(R),
turning B(R) into an R-algebra. (Note that this is no longer an integral extension.) Since
the Rw are complete (hence Henselian), the R+

w are local, whence so is B(R). Moreover,
the canonical homomorphism R→ B(R) is local.

7.2. Theorem. The R-algebra B(R) is a balanced big Cohen-Macaulay algebra. If
α : Λ → Γ is a morphism in Coh∗K with underlying ring homomorphism R → S, where
D(Γ) is a domain, then there exists a (non-unique) homomorphism α̃ : B(R) → B(S)
giving rise to a commutative diagram

(7.2.1)

R
α //

��

S

��
B(R) α̃ // B(S).

Moreover, if α is finite, injective, and induces an isomorphism on the residue fields, then
B(R) = B(S).

Proof. Let z be a system of parameters in R with approximations zw. By Lemma 5.4
almost each zw is a system of parameters in Rw, hence is R+

w-regular by [29]. By Łos’
Theorem, z is B(R)-regular. From the homomorphism D(α) : D(R) → D(S) we get
homomorphisms Rw → Sw for almost all w, where Sw is an approximation of S. These
extend (non-uniquely) to homomorphisms R+

w → S+
w whose ultraproduct is the required

α̃. If α is finite, injective, and induces an isomorphism on the residue fields, then almost
all Rw → Sw are finite and injective by Proposition 4.27, and hence R+

w = S+
w . The last

assertion is now clear. �

7.3. Remark. Incidentally, the argument at the end of the proof shows that there is essen-
tially only one ring in each dimension d playing the role of a big Cohen-Macaulay algebra:
Indeed, suppose that the restriction of θ̂Λ to K[[d]] is a Noether normalization of R̂(k,u),
where d = dimR. (This is satisfied, for example, if Λ is absolutely normalizing.) Then
B(R) is isomorphic (non-canonically) to B(K[[d]]).

7.4. Corollary. If R is regular, then the R-algebra B(R) is faithfully flat.

Proof. We already mentioned that a balanced big Cohen-Macaulay algebra over a regular
local ring is automatically flat; see the remarks before Lemma 4.8. Since R → B(R) is
local, it is therefore faithfully flat. �
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7.5. Remark. This gives us a second direct proof of the Hochster-Roberts Theorem (The-
orem 6.8): with notation from the theorem, we may reduce again to the case that R and
S are complete and that R has algebraically closed residue field. Suppose (z1, . . . , zd) is
a system of parameters in R and let azi ∈ a := (z1, . . . , zi−1)R. Since (z1, . . . , zd) is
B(R)-regular by Theorem 7.2, we get a ∈ aB(R). Choose absolutely normalizing ob-
jects Λ and Γ of Coh∗K with underlying rings R and S, respectively, such that R → S
becomes an Coh∗K-morphism, hence induces a homomorphism B(R) → B(S) which
makes diagram (7.2.1) commutative. Then a ∈ aB(S). Since S → B(S) is faithfully flat
by Corollary 7.4, we get a ∈ aS and hence, by cyclical purity, a ∈ a.

As in positive characteristic, the ring B(R) has many additional properties (which fail
to hold for the big Cohen-Macaulay algebras in equicharacteristic zero constructed by
Hochster-Huneke in [30]). For instance, B(R) is absolutely integrally closed, hence in
particular quadratically closed, and therefore, the sum of any number of prime ideals is
either the unit ideal or again a prime ideal (same argument as in [56, §3]). Moreover:

7.6. Proposition. The canonical map Spec B(R) → SpecR is surjective.

Proof. Let p be a prime ideal in R and let q be a prime ideal in R̂(k,i) lying over p. By
Theorem 5.17, almost all approximations qw of q are prime ideals. Since Rw ⊆ R+

w

is integral, there exists a prime ideal Qw in R+
w whose contraction to Rw is qw. The

ultraproduct of the Qw is then a prime ideal in B(R) whose contraction to R is p. �

7.7. Big Cohen-Macaulay algebras— general case. We now define B(R) = B(Λ) for
an arbitrary equicharacteristic zero Noetherian local ring (R,m), under the assumption that
Λ is absolutely normalizing:

B(R) :=
⊕
P

B(R̂(k,i)/P)

where P runs over all prime ideals of R̂(k,i) of maximal dimension (that is to say, such
that dim(R̂(k,i)/P) = dimR). Note that this agrees with our former definition in case
D(Λ) (and hence R̂(k,i)) is a domain. Clearly, B(R) inherits an R-algebra structure via
the R̂(k,i)/P-algebra structure on each summand. We claim that B(R) is a balanced big
Cohen-Macaulay algebra. Indeed, if z is a system of parameters in R, then it remains so
in R̂(k,i) and hence in each R̂(k,i)/P since the P have maximal dimension. Therefore,
by Theorem 7.2, for each P, the sequence z is B(R̂(k,i)/P)-regular, hence B(R)-regular.
All the properties previously stated in the case that D(Λ) is a domain remain true in this
more general setup.

As in the Hochster-Huneke construction, there is a weak form of functoriality. We need
a definition taken from [30] (see also [35, §9]).

7.8. Definition. We say that a local homomorphism R → S of Noetherian local rings
is permissible if for each prime ideal q in Ŝ of maximal dimension, we can find a prime
ideal p in R̂ of maximal dimension such that p ⊆ q ∩ R̂. A Coh∗K-morphism is called
permissible if its underlying ring homomorphism is permissible.

As remarked in [35, §9], any local homomorphism with source an equidimensional and
universally catenary local ring is permissible. Moreover:

7.9. Lemma. If Λ → Γ = (S,y, l, v) is a permissible Coh∗K-morphism then the homo-
morphism R̂(k,i) → Ŝ(l,j) is permissible.
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Proof. Recall that i and j denote the respective embedding of k and l into the algebraic
closures k̃ and l̃ of u(k) and v(l) inside K. Let Q a prime ideal of maximal dimension in
Ŝ(l,j) and let q be its contraction to Ŝ. We have inequalities

(7.9.1) dim(Ŝ(l,j)) = dim
(
Ŝ(l,j)/Q

)
≤ dim(Ŝ/q) ≤ dim(Ŝ)

where the middle inequality follows from [41, Theorem 15.1], since the closed fiber is
trivial. As Ŝ(l,j) has the same dimension as Ŝ ⊗l l̃ and therefore as Ŝ, all inequalities in
(7.9.1) are equalities, so that q is a prime ideal of maximal dimension. By assumption,
there is a prime ideal p in R̂ of maximal dimension contained in q. By faithful flatness,
R̂(k,i)/pR̂(k,i) has dimension dim(R̂) = dim(R̂(k,i)). Since R̂/p is universally catenary
and equidimensional, so is R̂(k,i)/pR̂(k,i). Therefore, if P is a minimal prime of pR̂(k,i)

contained in Q, then it has maximal dimension, as required. �

We turn to the definition of B(R) → B(S) for a permissible homomorphism R→ S:

7.10. Corollary. Given a permissible Coh∗K-morphism α : Λ → Γ with Γ absolutely
normalizing, there exists a homomorphism α̃ : B(Λ) = B(R) → B(Γ) = B(S) making
(7.2.1) commutative.

Proof. By the lemma, for each prime ideal Q in Ŝ(l,j) of maximal dimension we can
choose a prime ideal Q′ of maximal dimension in R̂(k,i) such that Q′ ⊆ Q. Fix one such
prime ideal Q′ for each Q. The homomorphism

R̂(k,i)/Q
′ → Ŝ(l,j)/Q

induces by Theorem 7.2 a homomorphism

jQ : B(R̂(k,i)/Q
′) → B(Ŝ(l,j)/Q).

Define B(R) → B(S) now by sending a tuple (aP) with aP ∈ B(R̂(k,i)/P) and P a
prime ideal in R̂(k,i) of maximal dimension, to the tuple (jQ(aQ′)), where Q runs over
all prime ideals in Ŝ(l,j) of maximal dimension. It is easy to see that this gives rise to a
commutative diagram (7.2.1). �

It is also easy to see that if α : Λ → Γ is a permissible Coh∗K-morphism where D(Γ)
is a domain, then there exists a homomorphism α̃ making (7.2.1) commutative. Calling
Γ permissible if D(Γ) is a domain or absolutely normalizing (so B(Γ) is defined), we
therefore have:

7.11. Corollary. Given a permissible Coh∗K-morphism α : Λ → Γ between permissible
Coh∗K-objects, there exists a homomorphism α̃ : B(Λ) → B(Γ) making (7.2.1) commu-
tative. �

To show the strength of the existence of big Cohen-Macaulay algebras, let us give a
quick proof of the Monomial Conjecture.

7.12. Corollary (Monomial Conjecture). Given a system of parameters (z1, . . . , zd) in the
equicharacteristic zero Noetherian local ring R, we have for all t ∈ N that

(7.12.1) (z1z2 · · · zd)t /∈ (zt+1
1 , . . . , zt+1

d )R.

Proof. The sequence (z1, . . . , zd) is B(R)-regular and so (7.12.1) holds in B(R), hence a
fortiori in R. �
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The above proof does rely on the result of Hochster and Huneke that absolute integral
closure in positive characteristic yields big Cohen-Macaulay algebras. A more elementary
argument is obtained by using Lemma 5.4 together with the observation that the Monomial
Conjecture admits an elementary proof in positive characteristic [12, Remark 9.2.4(b)]. An
equally quick proof, which we will not produce here, relying also on the weak functoriality
property of B, can be given for the Vanishing Theorem of maps for Tor [30, Theorem 4.1].

7.13. B-closure. As in [56], we can use our construction of a big Cohen-Macaulay alge-
bra to define yet another closure operation on ideals of R as follows. Suppose that Λ is
permissible, and let a be an ideal of R. The B-closure of a in R is by definition

a+ := aB(R) ∩R.

We next show that the analogues of Theorems 6.3, 6.5 and 6.13 hold for a+ in place of
cl(a). As for the last property in the next theorem, persistence, it is not immediately clear
that it also holds for non-standard tight closure. We also remind the reader that if R is
equidimensional and universally catenary (for instance, an excellent domain), then every
local R-algebra is permissible.

7.14. Theorem. Let a be an ideal of R.

(7.14.1) If R is regular, then a = a+.
(7.14.2) If (z1, . . . , zd) is a system of parameters in R, then(

(z1, . . . , zi−1) :R zi
)
⊆ ((z1, . . . , zi−1)R)+

for all i (Colon Capturing).
(7.14.3) We have a+ ⊆ a, and if a is generated by m elements, then

al+m ⊆ (al+1)+

for all l (Briançon-Skoda).
(7.14.4) If Λ → Γ = (S, . . . ) is a permissible morphism between permissible objects

in Coh∗K , then a+S ⊆ (aS)+ (Persistence).

Proof. For (7.14.1), observe that R̂(k,i) is again regular (Lemma 4.17), so that the com-
position R → R̂(k,i) → B(R) is faithfully flat, by Corollary 7.4, hence cyclically pure.
For (7.14.2), let I := (z1, . . . , zi−1)R and suppose azi ∈ I . Since (z1, . . . , zd) is B(R)-
regular, we get a ∈ IB(R), and hence a ∈ I+. The argument in [56, §6.1] (the affine
case) can be copied almost verbatim to prove the second assertion in (7.14.3); for the first
assertion, we use Lemma 6.11 together with (7.14.1) in the same way as in the proof
of Theorem 6.13. (Note that R → V is automatically permissible, where V is as in
Lemma 6.11, and every Coh∗K-object with underlying ring V is permissible, so that we
get a homomorphism B(R) → B(V ), by Corollary 7.11.) Persistence is immediate from
weak functoriality of B. �

Conjecturally, in characteristic p, plus closure and tight closure coincide. A characteris-
tic zero analogue of this is that B-closure and generic tight closure should be the same. We
have at least the following analogue of [30, Theorem 5.12]. (The second statement relies
on Smith’s work [60]).

7.15. Proposition. SupposeR is formally equidimensional. For each ideal a ofR, we have
a+ ⊆ cl∗(a). If a is generated by a system of parameters, then a+ = cl∗(a).
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Proof. We give the proof in the case that D(R) is absolutely normalizing, the case that
D(R) is a domain being similar (and simpler). In view of Lemma 4.17, passing from R

to R̂(k,i) reduces the problem to the case that R is complete and equidimensional, with k
algebraically closed. (Note that both B-closure and generic tight closure commute with
such an extension of scalars). By Corollary 5.26, almost all Rw are equidimensional, and
their minimal primes pjw are approximations of the minimal primes pj ofR. By definition,
B(R) is the direct sum of the B(R/pj). Suppose z ∈ a+, so that z ∈ aB(R/pj) for each
j. Hence zw ∈ aw(Rw/pjw)+ for all j and almost all w. If B is an integral extension of
a Noetherian domain A of positive characteristic and I is an ideal of A, then IB ∩ A is
contained in the tight closure of I [35, Theorem 1.7]. Thus almost all zw lie in the tight
closure of aw(Rw/pjw), hence in the tight closure of aw (since this holds for all minimal
primes). This means that z ∈ cl∗(a).

Suppose that a is generated by a system of parameters. By Lemma 5.4, almost all aw
are generated by a system of parameters, and this remains true in the homomorphic images
Rw/pjw. By [60], the tight closure of aw(Rw/pjw) is contained in aw(Rw/pjw)+. Taking
ultraproducts yields cl∗(a) ⊆ aB(R). �

7.16. Remark. Suppose that R is complete and D(R) is normalizing. If R is either ab-
solutely analytically irreducible or reduced, equidimensional with k algebraically closed,
then the previous result in combination with Theorem 6.26 yields an inclusion a+ ⊆ cl(a).

7.17. Comparison with big Cohen-Macaulay algebras for affine local domains. We
want to compare the present construction with the one from [56] discussed in the introduc-
tion of this section. We restrict ourselves once more to the case that R is the localization of
a finitely generated k-algebra at a maximal ideal, with k an algebraically closed Lefschetz
field contained in K as in §5.37; we continue to use the notations introduced there. Let
Raff
p denote an approximation of R in the sense of [54]. Recall that the approximations Rw

in the sense of the present paper are defined as

Rw := completion of Raff
p(w) ⊗kp(w)

Kw, where p(w) = charKw.

Suppose thatR is an integral domain; then almost everyRaff
p is a domain. In general, R̂ and

the Rw, though reduced and equidimensional, will no longer be domains. So let p1, . . . , ps
be the minimal primes of R̂. Suppose that Λ is absolutely normalizing. It follows from
Corollary 5.26 that for almost all w, the pjw are the minimal prime ideals of Rw, and from
Theorem 5.2, that they have maximal dimension. By definition, B(R) is the direct sum of
all B(R̂/pj). The ultraproduct B(R) of the (Raff

p )+ is a big Cohen-Macaulay R-algebra;
see [56]. For each w and each j, the composition

Raff
p(w) → Rw → Rw/pjw

is injective and can be extended (non-uniquely) to a homomorphism(
Raff
p(w)

)+ → (Rw/pjw)+.

By construction

ulim
w

(
Raff
p(w)

)+ ∼= B(R)U

where U is the ultraset from §4. Therefore, the composition of the diagonal embedding
with the sum of the ultraproducts of the homomorphisms(

Raff
p(w)

)+ → (Rw/piw)+
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yields a homomorphism B(R) → B(R). The reader can verify that this fits in a commu-
tative diagram

R

��

// B(R)

zzvvvvvvvvvvvvvvvv

B(R)

In [56], the B-closure of an ideal a of R is defined as the ideal aB(R) ∩ R. Clearly,
we have aB(R) ∩ R ⊆ a+ and we suspect that both are equal. For this to be true, it
would suffice to show that the homomorphism B(R) → B(R) is cyclically pure. (Note,
however, that B(R) is not local.) We leave it to the reader to verify that the discussion in
§6.18 also applies to generic tight closure, that is to say, the two notions, the present one
and the ‘affine’ one from [54], coincide for localizations of finitely generated k-algebras at
maximal ideals. Using this together with Proposition 7.15 and [56, Corollary 4.5], we get
an equality aB(R) ∩R = a+ for a an ideal generated by a system of parameters.

7.18. Rational singularities. The main merit of the present approach to tight closure in
equicharacteristic zero and to the construction of balanced big Cohen-Macauly modules,
via D(R), is its flexibility. We want to finish with a brief discussion of an application of
our construction of B(R).

Let us return to the situation of the Hochster-Roberts Theorem, that is to say, a cycli-
cally pure homomorphism from a Noetherian local ring R into a regular local ring S. We
already showed that R (and also its completion R̂) is Cohen-Macaulay and normal (see
Theorem 6.8 and Remarks 6.15 and 7.5). In case R and S are of finite type over C, Boutot
has shown in [10], using deep Vanishing Theorems, that R has rational singularities. In
fact, he proves an even stronger result in that he only needs to assume that S has rational
singularities. Recall that an equicharacteristic zero excellent local domain R has rational
singularities (or, more correctly, is pseudo-rational) if it is normal, analytically unramified
and Cohen-Macaulay, and the canonical embedding

H0(W,ωW ) → H0(X,ωX)

is surjective (it is always injective), where W → X := SpecR is a desingularization, and
where in general, ωY denotes the canonical sheaf on a scheme Y .

In the affine case, the methods of the second author ([56]) yield a more elementary
argument for the fact that a cyclically pure subring of an affine regular ring has rational
singularities. In fact, one can prove a more general version, where S is only assumed
to have rational singularities and be Gorenstein. However, for this stronger version, one
needs a result of Hara in [22], which itself uses deep Vanishing Theorems. Moreover, if R
is in addition Q-Gorenstein, then it has log-terminal singularities by [57, Theorem B and
Remark 3.13]. (Here again we can weaken the assumption on S to be only log-terminal,
provided we use Hara’s result; see that article for the terminology.) Recall that R has
log-terminal singularities if and only if its canonical cover has rational singularities ([38,
Proposition 1.7]).

In [59], the second author derives the following generalization to arbitrary equicharac-
teristic zero Noetherian local rings, by combining the results of this paper with a study of
‘non-standard local cohomology’. (Note that no Vanishing Theorems are known to hold
for arbitrary excellent schemes.)
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Theorem ([59, Main Theorem A & B]). Every equicharacteristic zero local ring R which
admits a cyclically pure homomorphism into a regular local ring S is pseudo-rational. If
R is moreover Q-Gorenstein, then it has pseudo-log-terminal singularities
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