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ABSTRACT. We recast the problem of calculating Vapnik-Chervonenkis (VC) den-

sity into one of counting types, and thereby calculate bounds (often optimal) on the
VC density for some weakly o-minimal, weakly quasi-o-minimal, and P-minimal

theories.
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1. INTRODUCTION

The notion of VC dimension, which arose in probability theory in the work of Vapnik and
Chervonenkis [98], was first drawn to the attention of model-theorists by Laskowski [55],
who observed that a complete first-order theory does not have the independence property
(as introduced by Shelah [86]) if and only if, in each model, each definable family of
sets has finite VC dimension. With this observation, Laskowski easily gave several
examples of classes of sets with finite VC dimension, by noting well-known examples
of theories without the independence property. This line of thought was pursued by
Karpinski and Macintyre [49], who calculated explicit bounds on the VC dimension of
definable families of sets in some o-minimal structures (with an eye towards applications
to neural networks), which were polynomial in the number of parameter variables. In a
further paper [50], they observe that their arguments also lead to a linear bound on the
VC density of definable families of sets in some o-minimal structures. They ask whether
similar (linear) bounds hold for the p-adic numbers (whose theory also does not have
the independence property). The bound in the o-minimal case in [50] was established
independently, using a more combinatorial approach, by Wilkie (unpublished), and more
recently, also by Johnson and Laskowski [47].
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In this paper we give a sufficient criterion (Theorem on a first-order theory for
the VC density of a definable family of sets to be bounded by a linear function in
the number of parameter variables, and show that the criterion is satisfied by several
theories of general interest, including the theory of the p-adics and all weakly o-minimal
theories. In a sequel to this paper [6] we give different arguments to get similar bounds
in a variety of other examples where our criterion does not apply. Before we state our
main results, we introduce our setup and review some definitions and basic facts. We
hope that the present paper (unlike its sequel [0]) can be read with only little technical
knowledge of model theory beyond basic first order logic. The first few chapters of [42]
or [63] or similar texts should provide sufficient background for a prospective reader.

1.1. VC dimension and VC density. Let X be an infinite set and S be a non-empty
collection of subsets of X. Given A C X, we say that a subset B of A is cut out by S if
B=SnNAforsome SeS;welet SNA:={SNA:S e S} be the collection of subsets
of A cut out by S. We say that A is shattered by S if every subset of A is cut out by
some element of S. The collection § is said to be a VC class if there is a non-negative
integer n such that no subset of X of size n can be shattered by S. In this case, the V('
dimension of S is the largest d > 0 such that some set of size d is shattered by S. We
denote by 7s(n) the maximum, as A varies over subsets of X of size n, of the numbers
of subsets of A that can be cut out by S; that is,

rs(n) = max{|SﬂA| Ae (i)}

(Here and below, (if ) denotes the set of n-element subsets of X.) The function n
7s(n) is called the shatter function of S. Clearly 0 < ws(n) < 2" for every n, and
if S is not a VC class, then wg(n) = 2" for every n. However, if S is a VC class, of
VC dimension d say, then by a fundamental observation of Sauer [83] (independently
made in [87] and, implicitly, in [98]), the function n — mg(n) is bounded above by a
polynomial in n of degree d. (In fact, for d,n > 1 one has 7s(n) < (en/d)?, where e
is the base of the natural logarithm.) Hence it makes sense to define the VC' density
of a VC class S as the infimum of all reals » > 0 such that ws(n)/n" is bounded
for all positive n. It turns out that in many case, the VC density (rather than the
VC dimension) is the decisive measure for the combinatorial complexity of a family of
sets. For example, the VC density of S governs the size of packings in & with respect
to the Hamming metric ([41], see also [64, Lemma 2.1]), and is intimately related to the
notions of entropic dimension [7] and discrepancy [68]. We refer to the surveys [65] B3]
for uses of VC density in combinatorics.

1.2. VC dimension and VC density of formulas. Let £ be a first-order language.
In an L-structure M, a natural way to generate a collection of subsets of M™ is to
take the family of sets defined by a formula, as the parameters vary. Given a tuple
x = (x1,...,2Ty) of pairwise distinct variables we denote by |x| := m the length of z. We
often need to deal with £-formulas whose free variables have been separated into object
and parameter variables. We use the notation ¢(z;y) to indicate that the free variables
of the L-formula ¢ are contained among the components of the tuples © = (21, ...,2zm)
and y = (y1,...,yn) of pairwise distinct variables (which we also assume to be disjoint).
Here the x; are thought of as the object variables and the y; as the parameter variables.
We refer to o(x;y) as a partitioned L-formula.
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In the rest of this introduction we let M be an infinite L-structure. Let p(z;y) be a
partitioned L-formula, m = |z|, n = |y|, and denote by

= {eM(M™;b) :be M™}

the family of subsets of M™ defined by ¢ in M using parameters ranging over M"™. We
call S, a definable family of sets (in M). We say that ¢ defines a VC class in M if
S, is a VC class; in this case the VC dimension of ¢ in M is the VC dimension of the
collection S, of subsets of M™, and similarly one defines the VC density of ¢ in M.

Since the shatter function 7, = 7s, of S, only depends on the elementary theory of M
(see Lemman 3.2| below), given a Complete E theory T with no finite models, we may also
speak of the shatter function of ¢ in T as well as VC dimension of ¢ in T and the VC
density of p in T.

1.3. NIP theories. A partitioned L£-formula ¢(z;y) as above is said to have the inde-
pendence property for M if for every ¢ € N there are by,...,b; € M™ such that for every
S C{1,...,t} thereis ag € M™ such that for all i € {1,...,t}, M E ¢(ag;b;)) < i €
S. The structure M is said to have the independence property if some L-formula has
the independence property for M, and not to have the independence property (or to
be NIP or dependent) otherwise. By a classical result of Shelah [86] (with other proofs
n [52, 55 B0]), for M to be NIP it is actually sufficient that no formula p(z;y) with
|z| = 1 has the independence property for M. NIP is implied by (but not equivalent to)
another prominent tameness condition on first-order structures called stability: An L-
formula ¢(z; y) is said to be unstable for M if for every t € N there are a1,...,a; € M™
and by,...,by € M™ such that M = p(a;;b;) <= i < j, for all 4,5 € {1,...,t}. The
L-structure M is called unstable if some L-formula ¢ is unstable for M; and “stable”
(for formulas and structures) is synonymous with “not unstable.”

Laskowski’s observation [55] is that an L-formula defines a VC class in M if and
only if it does not have the independence property for M. In fact, given a collection &
of subsets of a set X, define the dual shatter function of S as the function n — 7%(n)
whose value at n is the maximum number of equivalence classes defined by an n-element
subfamily 7 of S, where two elements of X are said to be equivalent with respect to T
if they belong to the same sets of 7. Then a given partitioned £-formula ¢(x;y) has the
independence property precisely if W;w (n) = 2" for every n. The dual shatter function
of S, is really a shatter function in disguise: it agrees with the shatter function of S~
where ¢*(y; x) := ¢(x;y) is the dual of the partitioned formula . (See Section [3])

A complete L-theory T is said to have the independence property if some model of it
does, and is said not to have the independence property (or to be NIP) otherwise. Thus
a complete L-theory T is NIP if and only if every L-formula defines a VC class in every
model of T. Many theories arising in mathematical practice turn out to be NIP: By [86],
all stable theories (i.e., complete theories all of whose models are stable) are NIP; so,
for example, algebraically closed (more generally, separably closed) fields, differentially
closed fields, modules, or free groups furnish examples of NIP structures. Furthermore,
o-minimal (or more generally, weakly o-minimal) theories are NIP [55] [61]. By [36] any
ordered abelian group has NIP theory. Certain important theories of henselian valued
fields are NIP, for example, the completions of the theory of algebraically closed valued
fields and the theory of the field of p-adic numbers (and also their rigid analytic and
p-adic subanalytic expansions, respectively). In fact, in the language of rings with a
predicate for the valuation ring, an unramified henselian valued field of characteristic
(0,p) is NIP if and only if its residue field is NIP [12]. Similarly, henselian valued fields
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of characteristic (0, 0) and algebraically maximal Kaplansky fields of characteristic (p, p)
are NIP iff their residue fields are NIP [13] [12].

On the other hand, each pseudofinite field (infinite model of the theory of all finite
fields) is not NIP [29], since it defines the (Rado) random graph.

1.4. Uniform bounds on VC density. This paper is motivated by the following
question: Given a NIP theory T, can one find an upper bound, in terms of n only, on
the VC densities (in T) of all L-formulas v(x;y) with |y| = n? The intuition behind
this question is, of course, that the complexity of a family S, of sets defined by a first-
order formula ¢(z;y) in a NIP structure should be governed by the number n of freely
choosable parameters. Note that the minimum possible bound is |y| = n: for if ¢(x;y),
where x is a single variable, is the formula x = y; V- - - V & = y,,, then the subsets of M
cut out by S, are exactly the non-empty subsets of M of cardinality at most n, so ¢(z;y)
has VC density n (in any complete theory). We note here in passing that the VC density
of a formula ¢ in a NIP theory may take fractional values, and that the shatter function
of &, though not growing faster than polynomially, is not asymptotic to a real power
function in general. See Section [4] below, where we explicitly compute the VC density
of certain incidence structures (related to the Szémeredi-Trotter Theorem) and of the
edge relation in Spencer-Shelah random graphs, and investigate the asymptotics of a
shatter function in the infinitary hypercube.

In this paper we employ VC duality to translate the problem of bounding the VC den-
sity of a formula ¢ into the task of counting p*-types over finite parameter sets, which
then can be treated by model-theoretic machinery. Viewing VC density as a bound on
a number of types also illuminates the connection with a strengthening of the NIP con-
cept, which is that of dp-minimality. (See Section below for a definition.) Dolich,
Goodrick and Lippel [24] have observed that, if, in a theory, the dual VC density of
any L-formula in a single object variable is less than 2, then the theory in question is
dp-minimal. (No counterexample to the converse of this implication seems to be known.)

We now state our main results. First, an optimal bound on density is obtained for
weakly o-minimal theories (see Theorem below). Recall that a complete theory T
in a language containing a binary relation symbol “<” which expands the theory of
linearly ordered sets is called weakly o-minimal if in every model of T', each partitioned
L-formula ¢(x;y) with |z| = 1 defines a finite union of convex sets. (See [61] for more
on this notion, which generalizes the probably more familiar concept of an o-minimal
theory, cf. [25].)

Theorem 1.1. Suppose L contains a binary relation symbol “<”, interpreted in M as
a linear ordering. If T = Th(M) is weakly o-minimal, then every L-formula p(z;y)
has VC density at most n = |y| in T (in fact, m,(t) = O(t")).

This bound is the same as that obtained by Karpinski-Macintyre [49] for o-minimal
expansions of the reals, or by Wilkie and by Johnson-Laskowski [47] for all o-minimal
structures. The motivating example of a theory which is weakly o-minimal but not o-
minimal is the theory of real closed valued fields, that is, real closed fields equipped with
a predicate for a proper convex valuation ring. In fact, the methods of Karpinski and
Macintyre can also be adapted to give the correct density bounds for this and certain
other weakly o-minimal expansions of real closed fields [40]. Some interesting weakly
o-minimal theories to which these methods do not readily adapt may be found in [5, [54].
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Our approach to Theorem via definable types, was partly inspired by the use of
Puiseux series in [11], [8T].

Let ACVF denote the theory of (non-trivially) valued algebraically closed fields,
in the ring language expanded by a predicate for the valuation divisibility. This has
completions ACVF g o) (for residue characteristic 0), ACVF g, (field characteristic 0,
residue characteristic p), and ACVF, ,y (field characteristic p). Because ACVF g ¢ is
interpretable in RCVF, our methods give (non-optimal) density bounds for ACVF o
(Corollary . However, they give no information on density in the theories ACVF g ;)
and ACVF(, ). The problems arise essentially because a definable set in 1-space in
ACVF is a finite union of ‘Swiss cheeses’ but we have no way of choosing a particular
Swiss cheese. This means that the definable types technique in our main tool (Theo-
rem breaks down. On the other hand, our methods do yield:

Theorem 1.2. Suppose M = Q, is the field of p-adic numbers, construed as a first-
order structure in Macintyre’s language L,. Then the VC density of every L,-formula
o(xz;y) is at most 2|y| — 1.

The same result holds for the subanalytic expansions of Q,, considered by Denef and
van den Dries [22]. (Theorem and Remark [7.9]) Key tools available here, but
not in the case of ACVF, are cell decomposition and the existence of definable Skolem
functions. We do not know whether the bound in Theorem is optimal.

The investigation of the fine structure of type spaces over finite parameter sets in
NIP theories is only just beginning, and the present paper can be seen as a first step in
studying one particular measure (VC density) for their complexity. Applications of the
results in this paper to transversals of definable families in NIP theories will appear in
a separate manuscript, under preparation by the first- and last-named authors.

As remarked above, all stable theories are NIP, so it also makes sense to investigate
VC density in stable theories. In a sequel of the present paper [6] we obtain bounds
on VC density in certain finite U-rank theories (including all complete theories of finite
Morley rank expansions of infinite groups).

We close off this introduction by pointing out that besides being of intrinsic interest,
uniform bounds on VC density of first-order formulas (as obtained in this paper) often
also help to explain why certain well-known effective bounds on the complexity of geo-
metric arrangements, used in computational geometry, are polynomial in the number of
objects involved. For example, the bound on the number of semialgebraically connected
components of realizable sign conditions on polynomials over real closed fields from
[11l [’1] breaks up into a topological and a combinatorial part, where the polynomial
nature of the latter may be seen as a consequence of Theorem [1.1

Ezample. Let R be a real closed field, P = (Py, ..., Ps) be a tuple of polynomials from
R[X] = R[X4,...,Xk], each of degree at most d. A sign condition for P is an s-tuple
o € {—1,0,+1}*, and we say that o is realized in a subset V of R¥ if

ov :={a €V :(signPi(a),...,sign Ps(a)) =0}

is non-empty. Theorem in the semialgebraic case yields: if V' is an algebraic set
defined by polynomials of degree at most d, then the number of sign conditions for P
realized in V is at most Cs™, where m = dim(V') and the constant C = C(d, k) only
depends on d and k.
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To see this recall that by cell decomposition, V' is a finite union of semialgebraic
subsets of R* each of which is semialgebraically homeomorphic to some R™; moreover,
this decomposition (and the resulting homeomorphism) can be chosen uniformly in the
parameters: Every zero set of polynomials from R[X] of degree at most d is the zero set
of M such polynomials, where M = (k;d) is the dimension of the R-linear subspace of
R[X] consisting of the polynomials of degree at most d; thus we may take a semialgebraic
(in fact, algebraic) family (V}),cpn, where N = M2, whose fibers V; are the algebraic
subsets of R* defined by polynomials of degree at most d. Then there are finitely many
semialgebraic families (Vb(z)) sern of subsets of R¥ and for each i there is a semialgebraic
family (Fb(l))besz of maps such that for each b € RY we have V, = |, Vb(z), and Fb(z) is
a homeomorphism rmY Vb(i)7 for some m(?).

Fix some i and write m = m(). Let v = (vy,...,v,) range over N¥, with |v| =
v1+ -+ vk, and suppose y = (Y, )|y|<d, 50 ¥ has length M. Let P(X;y) be the general
polynomial in the indeterminates X of degree at most d with coefficient sequence y; so
every P; is of the form P; = P(X;b;) with b; € RM. Suppose also z = (z1,...,Zm),
and let z be a tuple of new variables of length N, let 2’ be a single new variable, and
let ¢ (z;y,2,2') be a formula in the language of ordered rings which expresses that
P(FZ(Z)(m);y) and 2’ have the same sign. So, e.g., for a € R™, b € RY we have R =
0D (a;b;,b,1) iff Pj(Fb(l)(a)) > 0. In this way we see that the number of sign conditions
for P realized in Vb(l) is bounded by 77 ;) (3s) and thus is O(s™) by Theorem where

the implicit constant only depends on (¥ and hence on d and k. This yields the claim
highlighted above. (Of course we have been very nonchalant with the constants. Indeed,
[11] shows the more precise result that the sum of the number of semialgebraically
connected components of the sets oy, where o ranges over all sign conditions for P
realized in V, is bounded by (O(d))*(?*).)

m
A simpler example is the number of non-empty sets definable by equalities and in-
equalities of a finite collection of polynomials over an algebraically closed field:

Ezample. Here we let v = (v1,...,vy,) range over N™, and suppose y = (¥, )|y|<q- Let
(x;y) be the partitioned formula
> a0

lv|<d

in the language £ of rings, and fix an algebraically closed field K. Then S, = Sff is the
collection of all zero sets (in K™) of polynomials in m indeterminates with coefficients in
K having degree at most d. Hence g _(t) is the maximum number of non-empty Boolean
combinations of ¢ such hypersurfaces. In the sequel of our paper (see [6, Theorem 1.1])
we will show that the shatter function of any partitioned £-formula with m parameter
variables (such as ¢*) is O(t™) in Th(K); hence 7 () = 7« (t) = O(t™). (In fact, [46]
proves that 7% (t) < 3" (})d* for every t, and this bound is asymptotically optimal.)
1.5. Organization of the paper. In the preliminary Section [2] we set the scene by
recalling the definitions and basic facts concerning VC dimension and VC density in
a general combinatorial setting. In Section [3| we then move to the model-theoretic
context; in particular we introduce the VC density function of a complete theory without
finite models, and the (dual) VC density of a finite set of formulas. In Section {4| we
give some interesting examples of formulas in NIP theories for which we can explicitly
compute their VC density or determine the asymptotic behavior of their shatter function.
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In Section [5| we introduce the VCd property (a refinement of Guingona’s notion of
uniform definability of types over finite sets) and get our main tool for counting types
(Theorem in place, which is then employed, in Section |§|, to prove Theorem
from above. A strengthening of the VCd property is defined and established for the
p-adics in Section [7] thus proving Theorem We refer to the introductions of each
section for a more detailed description of their contents.

1.6. Notations and conventions. In this paper, d, k, m, n range over the set N :=
{0,1,2,...} of natural numbers. We set [n] := {1,...,n}. Given a set X, we write 2%
for the power set of X, and we let (f ) denote the set of n-element subsets of X and

(an) = (%() U ()f) U---u (ff) the collection of subsets of X of cardinality at most n.

1.7. Acknowledgments. Part of the work on this paper was done while some of the
authors were participating in the thematic program on O-minimal Structures and Real
Analytic Geometry at the Fields Institute in Toronto (Spring 2009), and in the Durham
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the London Mathematical Society and funded by EPSRC grant EP/F068751/1. The
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Woginger for suggesting the example in Section and to Andreas Baudisch and
Humboldt-Universitat Berlin for their hospitality during Fall 2010. Haskell’s research
was supported by NSERC grant 238875. Macpherson acknowledges support by EPSRC
grant EP/F009712/1. Starchenko was partly supported by NSF grant DMS-0701364.

2. VC DENSITY

In this section we introduce various numerical parameters associated to abstract families
of sets: VC dimension, VC density, and independence dimension, and we recall the
well-known phenomenon of “VC duality” hinted at already in the introduction (which,
in particular, allows us to relate VC dimension with independence dimension). An
important role in later sections is played by a new parameter associated to a set system
defined here, which we call breadth, and which is the focus of the last part of this section.

2.1. VC dimension and VC density. A set system is a pair (X,S) consisting of a
set X and a collection S of subsets of X. We call X the base set of the set system (X, S),
and we sometimes also speak of a set system S on X. Given a set system (X,S) and a
set AC X, welet SNA:={SNA:S eS8} andcall (A4,SN A) the set system on A
induced by S. Let now S be a set system on an infinite set X. The function 7g: N — N

given by
X
ws(n) = maX{|SﬂA| t A€ (n)}

is called the shatter function of S. We have 0 < m5(n) < 2™ and 7s(n) < ws(n+ 1) for
all n. Note that if Y O X then 7s does not change if S is considered as a set system
on Y. (This justifies our choice of notation for the shatter function, suppressing the
base set X of our set system.)

One says that A C X is shattered by S if SN A = 24. If S is non-empty, then we
define the VC' dimension of S, denoted by VC(S), as the supremum (in N U {co}) of
the sizes of all finite subsets of X shattered by S; so VC(S) = oo means that arbitrarily
large finite subsets of X can be shattered by §. Equivalently,

VC(S) = sup {n: ms(n) = 2"}. (2.1)
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One says that S is a VC class if VC(S) < oco. Note that some sources (e.g., [55])
alternatively define the VC dimension of § to be the minimum n such that no set of
size n is shattered by S (i.e., VC(S) + 1, with VC(S) as given by (2.1))).

We have the following fundamental fact about set systems:

Lemma 2.1 (Sauer-Shelah). If S has finite VC dimension d (so ns(n) < 2™ forn > d),

then
n n n
ms(n) < << d) = (0> +-+ (d) for every n.

If n > d, then () is bounded above by (en/d)? (where e is the base of the natural
logarithm). In particular, either ms(n) = 2" for every n (if S is not a VC class), or
7s(n) = O(n?). One may now define the VC density vc(S) of S as the infimum of all
real numbers r > 0 such that 7g(n) = O(n"), if there is such an r, and ve¢(S) := oo
otherwise. That is,

1
ve(S) = lim sup 2E7S ).
n—oo  logm
We also define VC() := vc(@) := —1. Then ve(S) < VC(S) by Lemma and

ve(S) < oo iff VC(S) < co. The VC density of S is also known as the real density [7] or
the VC exponent [I7] of S. It is related to the combinatorial dimension of § introduced
by Blei [8] and to compression schemes for S [47].

Ezample. Suppose S = ( 5 d). Then the inequality in the statement of Lemma is an

equality, and VC(S) = ve(S) = d.

Ezample. Suppose X = R¢, and S is the collection of all closed affine half-spaces in R?,
i.e., sets of the form {z € R? : (x,a) > B} where a € R¢, 3 € R, and ( , ) denotes the
usual inner product on RY. Then VC(S) = d + 1. (The proof of this fact is based on
Radon’s Theorem on convex sets; see [7, Corollaire 3.5].) Moreover, vc(S) = d; in fact,
ws(n) =230, (~1)4(2,) for every n; see [30, Theorem 3.1].

Ezample. Suppose X = R, k > 1, and let S be the collection whose members are
the unions of %k disjoint (open) intervals in R. Then VC(S) = vc(S) = 2k, in fact,

ms(n) = (Sgk) for each n. (See [28| Exercise 11, Chapter 4].)

In all three examples, ws is actually given by a polynomial of degree d = ve(S). It
is worth pointing out that for a VC class &, in general 7s is not even asymptotic to a
real power function; see Section [4.4] below.

Clearly, VC and vc are increasing: if S € 7 C 2%, then 75 < m7 and so VC(S) <
VC(T) and ve(S) < ve(T). If X' is an infinite subset of X then msnxs < ms; more
generally (see [7, Proposition 2.2]):

Lemma 2.2. Let X' be an infinite set and f: X' — X be a map, and let f~(S) :=
{f1(S) : S € 8}. Then w15y < s, with equality if f is surjective. In particular,
VC(f71(8)) < VC(S) and ve(f~1(S)) < ve(S), with equality if f is surjective.

It is easy to verify that VC(S) = 0 if and only if |[S| = 1, and ve(S) = 0 if S
is finite; in fact, the converse of the latter implication also holds: if ve(S) < 1, then
S is finite [7, Proposition 2.19] (and hence actually ve(S) = 0). It is also easy to
verify (cf. [7, Proposition 2.4]) that if S;, So are subsets of S with § = &1 U Ss, then
ve(S) = max{vc(S1),ve(S2)}. In particular, ve(S) does not change if we alter finitely
many sets from S.
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2.2. Independence dimension. Let X be a set. Given subsets Ap,..., A, of X,
we denote by S(Aj,...,A,) the set of atoms of the Boolean algebra of subsets of X
generated by Ai,..., A4, (the “non-empty fields in the Venn diagram of A;,..., A,”);
that is, S(Ay, ..., A,) is precisely the set of non-empty subsets of X of the form

ﬂAiﬂ m X\ 4; where I C [n] ={1,...,n}.
i€l ic[n)\I
Note that S(A1, ..., A,) does not depend on the particular order of the A;, so sometimes
we abuse notation and, e.g., write S(4; : ¢ = 1,...,n) instead of S(Ay,...,A4,). We
have 0 < |S(A1,...,A,)| <27, and we say that the sequence Ay, ..., A, is independent
(in X) if |S(A1,...,A4,)] =27, and call 4;,..., A, dependent (in X) otherwise.
Suppose now that S is a collection of subsets of X. We define 75: N — N by

75(n) :=max {|S(A1,..., An)| : A1,..., A, € S}.

Note that 0 < w5(n) < 2" for each n. We say that S is independent (in X) if 75 (n) = 27
for every n, that is, if for every n there is an independent sequence of elements of S of
length n. Otherwise, we say that S is dependent (in X). If S is dependent, we define
the independence dimension IN(S) of S as the largest n such that 75(n) = 2", and if S
is independent, we set IN(S) = co. If S is finite, then clearly IN(S) < |S].

Ezample 2.3. IN(S) < 1 iff for all S,5” € S one of the following relations holds: SNS" =
0,SCS,8CS,orSUS =X.

The function 7% is called the dual shatter function of S, since (for infinite S) one
has 75 = 7s~ for a certain set system S* on X* = S, called the dual of S (cf. [7,
2.7-2.11] or [60], Section 10.3]). For the same reason, the independence dimension of
S is sometimes also called the dual VC dimension of S, denoted by VC*(S). The
correspondence between S and S§* is explained in the following subsection.

2.3. VC duality. Let X and Y be infinite sets, and let ® C X x Y. For y € Y we put
¢, :={reX:(z,y) € D}
and we set
Sp = {®,:ycY}C2¥
We also write
P*CY x X :={(y,x) €Y x X : (z,y) € D}

for the dual of the binary relation ®. In this way we obtain two set systems (X, Sg)
and (Y,Sg+). To simplify notation, we denote the shatter function of S by 7e, and
its dual shatter function by 7% ; similarly for ®* in place of ®. One verifies easily that
given a finite set A C X, the assignment

Aw (Y ern () Y\@;
TEA TEA\A/
defines a bijection
SeNA— S(®;:xecA).
This implies:

Lemma 2.4. g = 7}..
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We set VC(®) := VC(Ss), and similarly with IN and ve in place of VC. By the pre-
vious lemma, VC(®) = IN(®*), hence Sy is a VC class iff Sg« is dependent. Reversing
the role of ® and ®* also yields mg- = 7}, hence VC(®*) = IN(®), and Sp~ is a VC
class iff Sg is dependent. The following is also well-known (see, e.g., [7, 2.13 b)]):

Lemma 2.5. VC(®) < 2'+VC(®)  (In particular Sp is a VC class iff Sp~ is a VC
class.)

Ezample 2.6. Suppose Sg is finite (i.e., ve(®) = 0). Then Sg- is also finite. (Take
Yi,...,yn € Y, where N = |Ss|, such that S = {®,,,..., Py, }. Let X; = ®,, and
Yi={yeY:9,=2,,} fori e [N]; thus ® = X; x Y1 U---UXy x Yy. Hence for each
r € X, ®} is a union of Y7, ..., Yy, and so there are only finitely many choices for ®.
Thus Sg- is also finite, of size at most 2V.)

Clearly every infinite set system S on X is of the form & = S for some infinite set Y’
and some binary relation ® C X x Y: just take Y =S, ® = {(z,5) : z € S, S € §}.
The resulting set system Sg+ on Y = S is called the dual §* of S in [66], Section 10.3].
By the above VC(S8*) = VC*(S). If S is a dependent infinite set system on X, then
by Lemmas and there is a real number r > 0 such that 75 = O(n"), and the
infimum of all such r is called the dual VC density of S, denoted by vc*(S); note that
ve(8*) = ve*(S) and ve*(S) < VC*(S).

Given ® C X xY we write —=® for the relative complement (X xY)\® of & in X xY.
We clearly have 7*4 = 73. It is also easy to show that given ®, ¥ C X x Y we have

Touw < T - my and hence (using complementation) 75~y < 73 - m5,. By passing to
duals and Lemma this yields:

Lemma 2.7. Let ®, 0 C X x Y. Then
ve(=®) = ve(P), ve(PUP) <ve(P)+ve(P), ve(PNT) < ve(P) + ve(P).

VC dimension does not satisfy a similar subadditivity property for unions and inter-
sections (cf. [27, Proposition 9.2.8]). In this way, VC density is better behaved than VC
dimension.

An important class of relations ® such that the associated set system Sg is dependent
are the stable ones. An n-ladder for ® is a 2n-tuple (ay,...,an,b1,...,b,) where each
a; € X and each b; € Y, such that for all ¢,j € [n],

(ai,bj) cd — 1< 7.

If there is an n such that there is no n-ladder for ®, then ® is called stable, and P is
said to be unstable otherwise. If ® is stable then the largest n such that an n-ladder
for @ exists is called the ladder dimension of ®; if ® is unstable then we say that the
ladder dimension of @ is infinite. Clearly if ® is stable then Sg is a VC class (with
VC dimension bounded by the ladder dimension). It is well-known that ® is stable iff
™ is stable (e.g, [88] Exercise I1.2.8]), and that Boolean combinations of stable relations
are stable.

2.4. Breadth. In many cases of interest complicated set systems are generated by sim-
pler collections of subsets, and then the following lemma (essentially due to Dudley)
can be used to show that the resulting set system is dependent. For this let X be a set
and B be a collection of subsets of X.
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Lemma 2.8. Let N > 0 and suppose S is a set system on X such that each set in S
is a Boolean combination of at most N sets in B. Then n5(t) < ms(Nt) for each t. (In
particular, if B is dependent then so is S.)

Proof. Let Ay,...,A; € S, and let each A; be a Boolean combination of the sets
Bi1,...,B;n € B. Then the Boolean algebra of subsets of X generated by the sets A;
(¢ € [t]) is contained in the Boolean algebra generated by the sets B;; (i € [t], j € [N]),
and every atom of the former Boolean algebra contains an atom of the latter. 0

Suppose there is a d > 0 such that every non-empty intersection By N --- N B,, of
n > d sets from B equals an intersection of a subset consisting of d of the B;. We call
the smallest such integer d > 0 the breadth of B. This choice of terminology is motivated
by lattice theory: Given a (meet-) semilattice (L, A), the smallest d > 0 (if it exists)
such that any meet by A --- A b, of n > d elements of L equals the meet of d of the
b; is called the breadth of L; if there is no such d we say that L has infinite breadth.
(See |16l Section II.5, Exercise 6, and Section IV.10].) So if B is closed under (finite)
intersection and only contains non-empty subsets of X, then the breadth of B, viewed
as a sub-semilattice of (2%,N), agrees with the breadth of B as defined above. Every
set system of finite breadth is dependent:

Lemma 2.9. breadth(B) > IN(B).

Proof. Suppose d := breadth(B8) < n := IN(B). Let Bj,...,B, € B such that
|S(B1,...,Bn)| = 2". Choose I C [n] with |I| = d and (\,c; Bi = ;g Bir and
take j € [n] \ 1. Then (;cp ;1 Bi = Niepny Bi and hence (X \ B;j) N (e 5y Bi = 0,
contradicting IN(B) = n. O

The previous two lemmas in combination with Lemma [2.1] immediately yield the
following useful fact (cf. [25] Chapter 5, Lemma 2.6]):

Corollary 2.10. Suppose B has breadth d, let N > 0, and let S be a set system on X
with the property that each set in S is a Boolean combination of at most N sets in B.
Then

d
Nt
me(t) < Z < ; > for every t.
i=0

In particular, 75(t) = O(t) and hence vc*(S) < d.

Example 2.11. Let < be a linear ordering on X. We first recall some terminology: A
subset S of X is said to be convex (with respect to <) if for all s,s" € S and = € X the
implication s < x < 8/ = z € S holds. So ) and singleton subsets are convex, as are
intervals in X. Here and in the rest of the paper, an interval in X is a subset of the
form

(a,b) ={x e X :a<z<b}

where a, b are elements of X U {#o0c0} with a < b. Other examples of a convex subset
of X are its initial segments: a subset S of X is an initial segment of X if for all s € .S
and x € X, the implication z < s = z € § holds. Now let § be the family of unions
of at most N convex subsets of X, for some given N € N, and let B be the collection
of all initial segments of X. Then B has breadth 1, and every set in S is a Boolean
combination of at most 2NV sets in B. Thus 7§(¢) = O(t) by Corollary
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Ezample 2.12. Let K be a field and v: K — ', := I'U {oc0} be a valuation on K. By
an open ball in K we mean any subset of K of the form {z € K : v(z — a) > v} where
a € K, veT'; similarly a set of the form {x € K : v(z —a) > v} is called a closed ball
in K. A ball in K is an open or a closed ball in K. Any two given balls in K are either
disjoint, or one contains the other. Hence the collection B of balls in a given valued field
has breadth 1. Thus if S is the family of all Boolean combinations of at most N balls
in K, for some N € N, then 7%(t) = O(t).

The preceding examples can be subsumed under the following general example (in-
spired by [2]):
Example 2.13. A family B of subsets of X is said to be directed if B has breadth 1; i.e.,
for all B, B’ € B with BN B’ # () one has B C B’ or B’ C B. If B C 2¥ is directed and
S is the family of Boolean combinations of at most N sets in B, for some N € N, then
m5(t) = O(t).

We also note:

Example 2.14. Let G be a group and let H be a collection of subgroups of G with
breadth d. Let B = {gH : g € G, H € H} be the set of all (left) cosets of subgroups
from H. Then B also has breadth d. This follows from the general fact that if Hy, ..., H,
are subgroups of G, g1, ...,g, € G, then the intersection ﬂie[n] g; H; is either empty or
a coset of ﬂie[n] H;. (Soif S is a family of Boolean combinations of at most N elements
of B, for some N € N, then 7%(t) = O(t%).)

In connection with the previous example it is worth recording:

Lemma 2.15 (Poizat). Let G be a group and let H be a collection of subgroups of G.
Then breadth(H) = IN(H).

Proof. By Lemma we already know that breadth(#) > IN(#). Suppose this in-
equality is strict. Then there are Hi,...,H,+1 € H, where n = IN(H), such that
Niemt1 # Niepip gy Hi for each j € [n+ 1]. So for each j € [n + 1] we may take

gj € (ﬂie[n+1]\{j} HZ-) \ H;. Then for every subset I of [n+1] the element g; := [],.; gi
(with gg = 1) is in (Vg1 7 Hi N ;er (G \ Hy). This contradicts IN(H) = n. O

Ezample. Let S be the collection of all subgroups of (Z,+). Then S has infinite breadth,
hence infinite independence dimension by the previous lemma, and thus is not a VC class
by Lemma In particular, the collection of arithmetic progressions a + bZ (a,b € Z)
in Z is also not a VC class.

If our family B has finite breadth d, then the Helly number of B is at most d. The
Helly number of B is defined as the smallest d > 0 such that every finite subfamily
{B1,...,Bp} of B with n > d which is d-consistent, is consistent, that is to say: if for
every I € ([Z]) we have (¢ Bi # 0, then (¢, Bi # 0. Note however that conversely,
the breadth may be infinite yet the Helly number finite, even in the case of cosets: the
collection of arithmetic progressions in Z is independent, but has Helly number 2. Also,
not every VC class has finite Helly number: the family whose members are the subsets of
R with two connected components, though a VC class (of VC dimension 4), has infinite
Helly number. (For each n the elements [0,7) U (i + 1,n], i =0,...,n — 1 of this family
form an n — 1-consistent subfamily which is inconsistent.)

The following example is a prototype for finite-breadth families when we have a
dimension function at our disposal:
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Ezample 2.16. Define the height of B to be the largest d (if it exists) such that there
are By,...,Bg € B with

Bi2BiNByD---2BiN---NByg #0.

So B has height 0 iff B does not contain a non-empty set, and B has height 1 iff B does
contain a non-empty set, but any two distinct elements of B are disjoint. Clearly if B
has height d > 0, then the breadth of B is at most d. If B has height d > 1 and in
addition B has a largest element (with respect to inclusion) then the breadth of B is
smaller than d: to see this let By,...,Bq € B with (\,¢(y Bi # () be given; if By is the
largest element B of B then clearly ¢y Bi = ;i (1} Bi> and otherwise we have a
chain

B2B2DBiNBy2---2B1N---NBy#0,
hence (;c() Bi = Nigpjq1) Bi and s0 Nigq Bi = Nicpap 5413 Bi» for some j € [d —1].

The following observation (the proof of which we leave to the reader) allows us to
produce new finite-breadth set systems from old ones:

Lemma 2.17. Let B, B’ be set systems on X and X', respectively, and consider the set
system

BXB :={Bx B :BeB, BeB}
on X x X'. Then
breadth(B X B') < breadth(B) + breadth(B'),

and this inequality is an equality if both B and B’ have breadth larger than 1 and contain
a largest element (with respect to inclusion).

This lemma immediately yields:
Corollary 2.18. Let B, B’ be set systems on X. Then the set system
BnB :={BNnB' :BeB, BehB'}
on X has breadth at most breadth(B) + breadth(B’).

Ezample. Suppose < is a linear ordering of X and B is the collection of convex subsets
of X. Every element of B can be expressed as an intersection of an initial segment of
(X, <) with a final segment of (X, <) (i.e., an initial segment of the linearly ordered set
(X,>)). Hence breadth(B) = 2.

If B is a sublattice of (2%, N, U) which does not contain () and X, then B and the set
system =B := {X \ B : B € B} have the same breadth; this is an immediate consequence
of the following lemma:

Lemma 2.19. Suppose B is closed under (finite) intersections and unions, and B does
not contain the empty set. Then for each d the following are equivalent:

(1) For all By,...,Bat1 € B there is some i € [d+ 1] such that (), B € B;;

(2) for all Bi,...,Byt1 € B there is some i € [d+ 1] such that B; C U, ,; B;.
Proof. To see (1) = (2) apply (1) to B; = J,; B; (i € [d+1]) in place of the B;, and
for the converse implication apply (2) to By’ =(;,; B; (i € [d+ 1]). O
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We finish our discussion of breadth by a surprising connection between breadth and
stability. We will not use this observation later in the paper, but we include it here
since it shows, under the assumption of stability, the ubiquity of set systems of infinite
breadth. The breadth of a relation between two sets is by definition the breadth of the
associated set system, cf. Section |2.3]

Proposition 2.20. Let X, Y be infinite sets and ® C X xY be a relation. If ve(P) > 0
then ® is unstable, or at least one of ® or =® has infinite breadth.

At the root of Proposition is a theorem of Balogh and Bollobds [10], which we
explain first. For this we need some additional terminology: Let (X,S) and (X’,S’) be
set systems. We say that (X,S) contains (X', S’) as a trace if there exists an injective
map f: X' — X such that f(S') C SN f(X’). For example, if (X,S) is a set system
and A C X then (X,S8) trivially contains (4,8 N A). Also, if (X,S) contains (X',S’),
and (X', 8’) contains (X", S”), then (X,S) contains (X", S").

For k > 2 consider now the following set systems on [k]:

Cr={li]:i€ K]} (the k-chain)
Se={{i}:ie[k]} (the k-star)
T = {[K]\ {i} : i € [k]} (the k-costar).

Balogh and Bollobds [10, Theorem 1] showed that these set systems are unavoidable
among sufficiently large set systems. More precisely: for all integers k,l,m > 2 there
is some N = N(k,l,m) such that every set system S on a finite base set with |S| > N
contains the k-chain, the l-star, or the m-costar. (Note that there is no condition on
the size of the base set in this statement.)

Proof of Proposition[2.20 Let S = Sgp. We first observe, for k > 2:

(1) S contains Cy, iff there is a k-ladder for ;

(2) if breadth(®*) > k then S contains Tg; and

(3) if S contains T;4+1 then breadth(®*) > k.
Part (1) is obvious. For (2) note that breadth(®*) > k iff there exist elements 1, ..., zk
of X such that ;¢ @3, # 0 and for each i € [#],

Yyver)n () @i #0,
JelkN {7}
and for such choice of x;, setting X’ = {z1,..., 25} we have X'\ {x;} € SN X’ for
each ¢. Similarly, for (3), if X' = {z1,..., 2511} € (kfl) such that X'\ {z;} e SN X’
for each i € [k + 1], then for each such i we have

Y\®)n () @5, A0
Jelk+1N{i}
in particular, taking i = k + 1 we see that ;. @3, # 0, and for each i € [k] we have
Y\ @3) N e iy o, # 0, hence breadth(®*) > k. Also note that (2) and (3) are
true with 7y, Tp+1 and ®* replaced by Sk, Sk4+1 and —®*, respectively.

Suppose now that ve(®) > 0, i.e., S is infinite. Then §* = Sg~+ is also infinite (see
Example. Then we have ve(S*) > 1, hence there are arbitrarily large n and B € (Z)
such that |S*N B| > n'/2. In particular, for each N there is a finite subset By of Y with
|S* N Bx| > N. Now suppose @ is stable; then ®* is also stable. Let ko > 2 be larger
than the ladder dimension of ®*. Then if ¥ > 2 and N > N (ko, k, k) then $* N By (and
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hence §*) contains the k-star or the k-costar. Thus by observation (3) above, at least
one of ® or ~® has infinite breadth. 0

Of course, the converse of the implication in this proposition also holds: if ve(®) =0
then Sg is finite, hence trivially ® is stable, and both & and —® have finite breadth,
since S—g is finite as well.

Ezample. Let < be a linear ordering of X. Suppose B is the collection of initial segments
of (X, <), as in Example Then =B = {X \ B : B € B} cousists of final segments of
(X, <). Hence B and —B both have finite breadth (indeed, breadth 1). Proposition [2.20]
shows that phenomena such as these are confined to unstable contexts (for infinite set
systems).

Using Lemma Proposition also implies:

Corollary 2.21. Suppose X and Y are infinite sets and ® C X XY such that Sg is an
infinite sublattice of (2X,N,U) of finite breadth, with O, X ¢ Sg. Then ® is unstable.

3. THE MODEL-THEORETIC CONTEXT

Throughout this section we fix a first-order language £, and we let ¢(x;y) be a parti-
tioned L-formula (as defined in the introduction), with object variables © = (x1,...,Zmn,)
and parameter variables y = (y1,...,yn). The formula ¢ gives rise, in a given £-
structure, to a set system. The associated parameters introduced in the previous sec-
tion (shatter function, VC density etc.) are elementary invariants of the structure in
question. In Section [3.2 below we also introduce the VC density function ve®' of a com-
plete first-order L-theory T with no finite models: if ve?(n) is finite then ve(n) is a
uniform bound on the VC density of all partitioned formulas in 7" having n parameter
variables. In Section we illustrate this concept by computing ve (1) for various 7.
In Section [3.4 we then extend the definition of dual VC density to finite sets of formulas;
this is convenient for later sections, but, as we see in Section does not add much
extra generality. There is some indication that computing VC density is easier when
only parameters coming from initial segments of indiscernible sequences are considered;
although we will not pursue these issues in the rest of the paper, we think that the
relationship between quantities like VC or vc and their “indiscernible” counterparts
deserves further investigation; we explore some connections in the last subsection.

3.1. VC density of definable families. Given an L-structure M and a tuple b € M",
we denote the subset of M™ defined by the L-formula ¢(x;b) with parameters b in M
by

eM(M™;b) == {a € M™ : M = p(a;b)}.
A subset of M™ is called definable (in M) if it is of the form ™ (M™;b), for some ¢
and b. We also denote by

S, = {eM (M™;b):be M™}
the family of subsets of M defined by ¢ in M, and we call (M™, Sé‘/[) the set system
associated with ¢ in M. More generally, to a given collection ®(z) = {wi(x;y;) bier

of partitioned L-formulas in the tuple of object variables x (and in various tuples of
parameter variables y;) we may associate the set system

SM .— (pM(M™:b):iel, be M¥1}
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on M™ defined by the instances of the formulas ;. If the L-structure M is understood
from the context, we drop the superscript M in our notation.

Suppose now M is an infinite L-structure. As usual, say that ¢ is invariant under
an extension M C N of L-structures if M |= ¢(a;b) <= N [ ¢(a;b) for all a € M™
and b € M". The following is obvious:

Lemma 3.1. Suppose N is an L-structure with M C N and @ is invariant under
M C N. Then SfPVI cCM™N Sg, hence 7T£4 < ﬂ'fav and therefore VC(S;VI) < VC(S;,V)
and ve(SM) < ve(SLY).

For each s,t € N, consider the L-sentence

w;’t = Ve oyz®Oyy )y s+

V 7\ D=2y A e y®) e pa®:y0)

1<i<j<t k=1 1<k<I<s+11<i<t
where z() = (xgi), . ,xg,i)) and yU) = (y%j), e ,yy(lj)) are tuples of new variables. Then,

with 7r£/1 := mgm denoting the shatter function of $£4 , we obviously have:
[

Lemma 3.2. For each s,t € N,

M = FZ’t — Wy(t) <s.

In particular, if N is an L-structure with M = N, then 71'3;/1 = ﬂ'fpv.
From now until the end of this section we fix a complete L-theory T with only infinite

models, and let M range over models of T'. By the previous lemma we may set

Ty 1= 7r£/1, VC(p) := VC(Sfpw)7 ve(p) = vc(Sy),
where M is an arbitrarily chosen model of T. We call m, the shatter function of ¢
(in T), and we call VC(p) and vc(p) the VC dimension of ¢ and VC density of ¢

(in T'), respectively. If we want to stress the dependence of 7, on T' we write 7rg7 and
similarly for VC and vc.

Note that the definition of 7w, only depends on the set system S, and not on the par-
ticular representing formula ¢. In particular, 7, remains unchanged under (-definable
reparameterizations:

Lemma 3.3. Let v(z;y) be an L-formula, where z = (z1,...,2;), which defines the
graph of a map g: M' — M™. Let o(z;2) := Jy(v(2;9) A p(z;y)), so

So = {M(M™;g(c)) 1 c€ M'}.
Then m, < 7y, with equality if g is surjective.

The dual of the partitioned L-formula ¢(z;y) is ¢*(y; x) := @(x;y); that is, ¢*(y; x)
is syntactically the same L-formula ¢, only with the role of the object and parameter
variables interchanged. We call VC*(¢) := VC(¢*) and vc*(p) := ve(¢*) the dual VO
dimension and dual VC density of ¢, respectively. By Lemma we have 77 = T+
and hence VC*(¢) = IN(p) and

ve* (o) = inf {r e R”% : 7} (n) = O(n")}.

If any of the quantities VC(yp), ve(yp), VC* (), vc* () is finite, then so are all the others,
and in this case we say that ¢ is dependent or that ¢ defines a VC class. Note that
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for every partitioned L-formula ¢(z;y) we have ve(p) > 0, with equality if S, is finite.
If S, is infinite then ve(p) > 1. (See the remarks following Lemma )

Letting ® := o(M™; M™) and X := M™, Y := M™, in the notation introduced in
the previous subsection we have Sp = S, and Sg+ = S,~. Hence Lemma yields:

Corollary 3.4. We have ve(—yp) = ve(p), and if ¥(x;z) is another partitioned L-
formala, then ve(p A1), ve(p V) < ve(p) + ve(v).

From Lemma [2.2] one also obtains the invariance of ve under inverse images of sur-
jective (-definable maps:

Corollary 3.5. Let 6(v;x) be an L-formula, where v = (v1,...,vx), which defines the
graph of a map f: M* — M™, and let p(v;y) == Fz(0 A p), s0 S, = f~1(S,). Then
T, < T, with equality if f is surjective.

The theory T is NIP iff every partitioned L-formula defines a VC class. The theorem
of Shelah [86] already mentioned in the introduction shows that in order for every
partitioned L-formula ¢(x;y) to define a VC class, it is enough that this holds for all
such p(z;y) with a single parameter variable (i.e., |y| = 1). Hence if for each partitioned
L-formula ¢p(x;y) with |z| = 1 the set system S, has finite breadth then T is NIP, by
Lemma The theory T is said to be stable if for every partitioned L-formula ¢(x;y)
the associated relation ® = @(M™;M™) is stable (in the sense of Section [2.3)); if T
is stable then for each ¢(z;y) with S, infinite, at least one of S, or S-, has infinite
breadth, by Proposition (Corollary of the same proposition also yields that if
T is stable then all finite-breadth sublattices S of the lattice of all subsets of M™ which
have the form S = S, for some L-formula ¢(z;y) with |z| = m are finite.)

3.2. VC density of a theory. We define the VC density of T to be the function
ve =vel : N — R20U {o0}
given by
ve(n) == sup { ve(y) : p(x;y) is an L-formula with |y| =n}.
Note that we could have also defined vc! as
ve(m) = sup { ve* (@) : o(z;y) is an L-formula with |z] = m}.

In the introduction we already observed that ve(m) > m for every m. If £ is an
expansion of £ and T’ D T a complete £'-theory, then ve” < v, with equality if 7"
is an expansion of T' by definitions. Moreover, vc does not change under expansions by
constants:

Lemma 3.6. Let L' = LU {c¢; : i € I} where the ¢; are new constant symbols, and let
T DT be a complete L'-theory. Then veT = veT” .

Proof. Let M’ |= T’ and C := {¢M' :i e I} C M'. Let o(x;y,2) be an L-formula
with |z| = m, and let ¢ € CI*l. Then Ty (1) < Wz(z;%z)(t) for every t, hence
ver (p(z;y, ¢) < ver (ol y, 2)) < veT (m) and thus veT” (m) < veT (m). O

It is clear that ve(n) < ve(n 4+ 1) for every n, by viewing a formula with n parameter
variables as one with n + 1 parameters; perhaps less obviously:

Lemma 3.7. v¢(n) + 1 < ve(n+ 1) for every n.



18 ASCHENBRENNER, DOLICH, HASKELL, MACPHERSON, AND STARCHENKO

Proof. By the preceding lemma we may assume that £ contains a constant symbol 0.
Let ¢(z;y) be a partitioned L-formula with |z| = m, |y| = n. We construct a formula
V(&, Tmg15Y, Ynt1) With m,(¢) -t < my(2t) for every t (hence ve(p) + 1 < ve(e))), which
then shows the lemma. We set

Y= (Tms1 = 0A@(2;9)) V (Tms1 = Ynt1)-
Then for b € M™, ¢ € M we have
P(M™ b, ¢) = (p(M™;0) x {0}) U (M™ x {c}).

Let A C M™ with |A| =t and 7,(t) = |[ANS,|. Choose pairwise distinct elements
ay,...,a; € M\ {0} and an arbitrary element o’ € M™, and set

A= (A X {O}) U {(a’,al), e (a’,at)}.
Then |A’| = 2t, and for b€ M™ and j =1,...,t we have
AN p(M™ b, a5) = (AN e(M™;b)) x {0}) U{(d,a;)}.

Take by,...,bp € M", k = m,(t), such that the sets AN (M™;b;), i =1,...,k, are
pairwise distinct. Then the sets A’ N (M™ 1 b;,a;) (where i =1,...,k, j =1,...,t)
are also pairwise distinct. Hence my(2t) > [A'NSy| > k-t =7, (t) - t as claimed. O

In this paper we prove, for many (unstable) NIP theories T of interest, that vcT (m) <
o for every m, and in fact, in these cases we establish that vc?'(m) is bounded by a
linear function of m. Note, however, that T NIP does not imply that ve'(m) < oo for
all m: it is easy to see that for every T (whether NIP or not) we have ve’ " (1) = oo,
whereas T is NIP iff 7°¢ is NIP. (We thank Martin Ziegler for pointing this out.)

By Laskowski’s proof [55] of Shelah’s theorem [86], the VC dimension VC(p) of an
L-formula ¢(z;y) is bounded in terms of the VC dimensions of certain £-formulas with a
single parameter variable (which, however, are astronomical, involving iterated Ramsey
numbers). This together with the examples below raises the following question, the
answer to which we don’t know:

westion. If veT (1) < oo, is veT (m) < oo for every m?
Q ; y

Provided the answer to this question is positive, one may then also ask how ve(m)
depends on m and vc(1); e.g.: is there a function : N x RZ0 — R29 independent of
T, with the property that if ve™ (1) < oo, then vel (m) < 5(m,ch(1)) for every m? (In
all examples which we considered where ve” is known to be real-valued, ve? grows at
worst linearly.)

3.3. Computing ve?'(1). In concrete cases it is often easy to see that ve? (1) = 1:

M

Example 3.8. Suppose that M is strongly minimal. The collection B = (1

) of one-
element subsets of M has breadth 1; so veT (1) = 1. (Corollary [2.10})

Ezample 3.9. Suppose that £ contains a binary relation symbol “<”, M = (M, <,...)
is an expansion of a linearly ordered set (M, <), and T'= Th(M) is weakly o-minimal.
Then for every partitioned L£-formula ¢(x;y) with |z| = 1 there exists an integer N > 0
such that for every b € M™, the set @™ (M;b) is a finite union of at most N convex
subsets of M. Hence v’ (1) = 1 by Example
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Ezample 3.10. Suppose that Lg;y is the expansion of the language {0, 1,4+, —, X} of rings
by a binary relation symbol “|”. In a field K equipped with a valuation v: K — I'U{co},
we interpret | by putting a|b :<= v(a) < v(b), for all a,b € K. Suppose T is a complete
theory of valued fields in an expansion of Lg;y, and T is C-minimal, i.e., for every
K =T, every definable subset of K is a finite Boolean combination of balls in K. Then
for every partitioned L-formula ¢(z;y) with |z| = 1 there exists an integer N > 0 such
that for every b € K™, the set ¥ (K;b) is a Boolean combination of at most N balls
in K. Thus ve? (1) = 1 by Example

The definition of C-minimality used in the previous example agrees (for expansions
of valued fields) with the one in [44]; this definition is slightly more restrictive than
the original one, introduced in [38 [62]. Every completion of the Lg;y-theory ACVF of
non-trivially valued algebraically closed fields is C-minimal (essentially by A. Robinson’s
quantifier elimination in ACVF; see [43]). Conversely, every valued field with C-minimal
elementary theory is algebraically closed [38]. Moreover, the rigid analytic expansions
of ACVF introduced by Lipshitz [57] are C-minimal [58].

Ezample 3.11. Let R be a ring and suppose L = Lp is the language of R-modules. (In
this paper, “R-module” always means “left R-module.”) Suppose M is an R-module,
construed as an Lg-structure in the natural way. By the Baur-Monk Theorem, every
L p-formula is equivalent in 7= Th(M) to a Boolean combination of positive primitive
(p.p.) Lr-formulas; given a p.p. Lz-formula ¢(x;y) and b € M| the set o(MI*!;b) is
a coset of o(M!*!;0). Suppose M is p.p.-uniserial, i.e., the subgroups of M definable
by p.p. Lr-formulas form a chain. By Example if M is infinite, then we have
vel' (1) = 1. (In [6] this will be extended to ve’'(m) = m for every m.) Examples for

p.p.-uniserial abelian groups (viewed as Z-modules) include Q(®), ZE;‘)), Z(p™)(®) and

Z(p>=)(®) | where p is a prime and « is a cardinal, possibly infinite. Here

Ly = {a/b:a,bEZ7 b#0, pJ[b},

viewed as a subgroup of the additive group of Q, Z(p™) denotes the cyclic group Z/p"7Z
of order p", and Z(p>°) denotes the Priifer p-group (the group of p™th roots of unity,
for varying n, written additively). Given an R-module M and an index set I, M ()
denotes, as usual, the R-submodule of the direct product M7 consisting of all sequences
with cofinitely many zero entries.

Examples [3.8H3.11) may be generalized as follows:

Ezample 3.12. A family ®(z) = {@i(z;y:)}icr of L-formulas in the object variables x
(and in various tuples of parameter variables y;) is said to have dual VC dimension d
if the set system S = Sg defined by the instances of the formulas ¢; has dual VC di-
mension d. If & has dual VC dimension at most 1, then we say that ® is VC-minimal;
cf. Example We also say that & is directed if S is directed in the sense of Exam-
ple

The L-theory T is VC-minimal if there is a VC-minimal family of £-formulas ®(x)
with |z| = 1 such that in every M = T every definable (possibly with parameters)
subset of M is a Boolean combination of finitely many sets in Sg. (This definition was
introduced in [2].) If T is a VC-minimal L-theory, then for every L-formula ¢(z;y)
with |x| = 1 there exists some N € N such that in every M = T every instance (z;b)
(b € M) of ¢ defines a subset of M which is a Boolean combination of at most N sets
in Sg, by compactness.
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One says that the VC-minimal theory T is directed if one can additionally choose ®(x)
to be directed; in that case we have v (1) =1 by Example By [2 Proposition 6],
if ®(z) is VC-minimal and Sg contains some (-definable set other than () or M!%l, then
there is a directed set ¥(z) of L-formulas such that S¢ = Sy and S—¢ = S-y. By
Lemma [3.6{ this yields in fact vcT (1) = 1 for every complete VC-minimal T (directed or
not) without finite models.

Example can also be generalized in a different direction:

Ezample 3.13. Suppose L is a language expanding the language {1, -} of groups, and T is
a complete L-theory containing the theory of infinite groups. Suppose for every G = T,
every definable subset of G is a Boolean combination of cosets of acl®()-definable
subgroups of G. (This condition holds, in particular, if 7" satisfies the model-theoretic
condition known as 1-basedness, cf. [45].) By Example if the collection of acl®d(f)-
definable subgroups of G has breadth at most d (in particular, by Example [2.16] if it
has height at most d), then we have ve”' (1) < d.

Here is a particular instantiation of the previous example:

Ezample 3.14. Let R be a ring, M an R-module, and 7= Th(M) in the language Lg,
as in Example We have M®0 = M®0) (sce, e.g., [42, Lemma A.1.6] or [82
Corollary 2.24]). Set TR0 := Th(M¥0) = Th(M®0)). Tt is well-known that T = T™0
iff the class of models of T is closed under direct products, iff for all p.p. Lr-formulas
o(x), ¥(x), either p(M!*) C 4p(M!*!) or the index

Inv(M, p, ) := [‘P(Mlxl) : (‘P/\w)(M‘xlﬂ

is infinite. (See, e.g., [42, Lemma A.1.7].) So if T'= T™° and the Morley rank MR(T)
of T is finite then the length n of every sequence

M 2 pi1(M) 2 1(M)Npa(M) 2 2 pi1(M)N---Npn(M),

where each ¢;(x) is a p.p. Lr-formula with |z| = 1, is bounded by d = MR(T); so
by Examples and we see that ve?' (1) < d. (Note that this bound is far from
optimal: e.g., for R = Z, M = Z(p?)®o) we have MR(T) = d, yet vcT(1) = 1 by
Example ) In [6] we will extend this to vcT (m) < md for every m.

3.4. Dual VC density of sets of formulas. It is convenient to extend the definition of
dual VC density to finite sets of formulas. Let A = A(z;y) be a finite set of partitioned
L-formulas ¢ = p(x;y) with the object variables # and parameter variables y. We set
-A = {-¢: ¢ € A}, and for B C MY we let

A(z; B) := {p(z;b) : p € A, be B}.

Given a finite set B C MY, we call a consistent subset of A(z; B)U—-A(x; B) a A(z; B)-
type. Note that our parameter sets are subsets of M1l and not of M, as is more common
in model theory. (This is simply a matter of convenience, in order to be compatible with
VC duality.) Given a A(z; B)-type p we denote by p™ C M!*l its set of realizations
in M. Since we are only dealing with finite sets A and finite parameter sets B C Ml
all A(z; B)-types have realizations in M itself (rather than in an elementary extension).
Given another finite set A’(z;y’) of partitioned £-formulas and a finite B’ C M vl we
say that a A(x; B)-type p is equivalent to a A’(z; B')-type q if p™ = ¢™.
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Let now B C M| be finite. Given a € M!*l we denote the A(z; B)-type of a by
tp®(a/B) :={ p(x;b):be B, p € A, M |= p(a;b)} U
{—o(@;b) :be B, g€ A, M~ p(ash)}.

We write S2(B) for the set of complete A(z; B)-types (in M), that is, the set of (in M)
maximally consistent subsets of A(x; B) U —~A(z; B); equivalently,

S2(B) = {tp*(a/B) :a € Mlxl}.

If A = {p} is a singleton, we also write S¥(B) instead of S®(B). The elements of
S2(B) are syntactical objects (sets of formulas), but associating to a type p € S*(B)
its set pM of realizations in M gives a bijection from S2(B) onto the set

S(@M(M‘“”‘;b):beB,@eA)

of atoms of the Boolean algebra generated by the subsets @™ (M®l;b) of MI*l. (See
Section [2.2]) Hence for every partitioned £-formula ¢(z;y) we have

w5 (t) = max {|S?(B)| : BC MW |B| =t}.

In the general case, for every ¢t € N we also set
mA(t) == max {|S?(B)|: BC MW, |B| =t},

s00 < mi(t) < 21Alt, Similarly as in Lemmaone shows that if we pass from M to an
elementarily equivalent C-structure then 7w does not change (justifying our notation,
which suppresses M).

Let Ag(x;y) be a finite set of partitioned L-formulas with Ag C A, and B C MYl be
finite. Then there is a natural restriction map S*(B) — S20(B), written as p — p[ Ao.
This map is onto: given p € S2°(B) let a € p™ be arbitrary; then ¢ := tp”(a/B) €
SA(B) satisfies ¢ | Ag = p. In particular, |S2(B)| < |S?(B)|. Note also that if
A # (), then the restriction maps p — p [, where ¢ € A, combine to an injective map
SA2(B) — [I,ea S?(B); in particular, |S2(B)| < [1,ealS?(B)]. This shows:

Lemma 3.15. If all ¢ € A are dependent, then there exists a real number r with
0<r< Z@EA ve* () and

|SA(B)| = O(|B|")  for all finite B C MY (3.1)

We define the dual VC density of A as the infimum vc*(A) of all real numbers r > 0
such that (3.1) holds; that is,

ve*(A) =inf {r >0:7A(t) = O(t")}.
We have
max ve (p) <ve*(A) < %VC ().

Clearly vc*(A) agrees with ve*(¢) as defined previously if A = {¢} is a singleton.
Moreover, ve*(A) = 0 iff ve*(p) = 0 for every ¢ € A, and if ve*(A) < 1 then ve*(A) = 0.
(See the remarks following Lemma [2.2}) Note that in computing vc*(A) there is no
harm in assuming that A is closed under negation, i.e., with every ¢ € A the set A
also contains a formula equivalent (in M) to —p. (Passing from A to A U—-A does not
change S2(B).)

Ezample. Suppose A(z;y) = {x1 = y,...,2m = y} where || = m and |y| = 1. Then
for finite B C M we have |S2(B)| = (|B| +1)™, hence vc*(A) = D pea Ve (p) = m.
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We finish this subsection with an easy result about interpretations (related to Lem-

ma and Corollary .

Lemma 3.16. Let M’ be an infinite structure in a language L' and w: X — M’ an
interpretation of M' in M without parameters, where X C M" is O-definable. Then
for any finite set A'(xz;y) of L'-formulas there exists a finite set A(T;y) of L-formulas
such that |A| = |A/|, [Z] = r|z|, and 7k, < 7K.

Proof. Let m := |z| and n := |y|. Let B’ C (M’)"™ be finite. Choose B C X™ with
|B| = |B’| such that each b = (by,...,b,) € B’ has the form (n(b1),...,n(b,)) for
some (by,...,b,) € B. For each £'-formula ¢(z;y) choose an L-formula 1, (T; ), where
T= (T, s Tm), Y= U1, Yp,) and [T1| = -+ = [Tp| = [y4| = --- = [7,,| = 7, such
that 1, (M ™+™r) C X™+" and for any @, . . .,am, b1, ... by € X,

M = y(ar,...am;b,...,by) <= M’ ':QD(’/T(El),...,W(ﬁm);’ﬂ'(gl),...,ﬂ'(gn)).

Let a finite set A’(z;y) of £'-formulas be given. Set A := {1, : ¢ € A’}. Then S*(B) C
X", and (a@y,...ap) — (7(@1),...,7(@n)) yields a surjective map S2(B) — S2'(B’),
hence |[S2(B')| < |S2(B)| as required. O

By Lemmas and

Corollary 3.17. Let M’ be an infinite structure in a language L', interpretable in M
(possibly with parameters) on a definable subset of M". Then, writing T = Th(M) and
T' = Th(M'), we have veT (m) < veT (rm) for every m.

So for example if G is a group (considered as a structure in the usual first-order
language of group theory) and H is a definable normal subgroup of G, then vcTG/H) <
veT™(G) if H has infinite index in G, and ve™ ) < ve™ () if H is infinite.

3.5. Coding finite sets of formulas. We let £, M and A be as in the previous
subsection, and T' = Th(M). The following useful lemma, essentially due to Shelah
[88, Lemma II.2.1], shows that counting A(x; B)-types where |A| > 1 is not really more
general than counting A(x; B)-types where A is a singleton:

Lemma 3.18. Let d = |A| and ¢ = (y1,-..,Y2d, 2, 21, - - -, 224) With |y| = |y;| = |zi] =
|z| for everyi =1,...,2d. There is an L-formula Y (z;y") with the following properties:
(1) for every finite B C MW with |B| > 2 there is some B C M| with |B'| =
2d| B| such that every p € S®(B) is equivalent to some q € S¥2(B');
(2) for every finite B' C M| there is some B C MW with |B| < 2d|B’'| such that
every q € SY2(B') is equivalent to some (possibly incomplete) A(x; B)-type po.
In particular, we have A (t) < m (2dt) fort > 1 and m;, (t) < wA(2dt) for t > 0.
Thus ve* (A) = ve* () < vel' (m) where m = |z|.

Proof. Write A = {p1,...,pq} and define ¢a as follows:

d 2d
(N /\ (Z =Zk = @k(zayk)) A /\ (Z =2 — —mpk_d(x;yk))/\
k=1 k=d+1

2d

\/z:zk/\ /\ 2=z Az =2).

k=1 1<k<1<2d
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For (1), suppose B C MYl is finite, and by # by are distinct elements of B. For b € B
and k € [d] set

B = (bo, bo, ..oy b .oy bo, i, bo, ooy b, ., o)
Yi Y2 .- Ya+k .- Y2d < 21 .-+ Rd+k .- R2d
and
b = (b, bo, .o by ooy boy biy bos ey bi, .o, o)
Y1 Y2 ee- Yk -e- Y2d4 2 21 ... 2k ...  Zog
and put

B = {80 :be B, ked} C (Ml
Then |B’| = 2d|B|, and for every b € B, k € [d] we have

SaME6Y) = —pe(Mhb), a6 = (M),
Given p € S2(B) we set
q:={aeibf”), va@sb): ou(aib) € p} U
{ val@bf”), ~aesb) : ou(:d) ¢ p).
Then clearly ¢ € S¥4(B’), and q is equivalent to p. The map p +— q: S(B) — S¥2(B’)
is injective, hence |S2(B)| < [S¥2(B)| < ™, (2d|B]).
For (2) note that if by, ..., bsg, ¢, c1,...,caq € MY then the formula

wA(x;b17"'7b2d7c7cl7”~ 702d)

defines @ (M1=1;by), —~pp(M#1: by, 4), or @ (since the ¢;’s are not necessarily distinct).
Let B’ C MWl be finite, and ¢ € SA(B"). Set

B .= {beM‘yl : b =10, for some (by, ... b, c,c1,...,c2q) € B'}

and let py be the set of formulas which have the form ¢y (x;b) where k € [d], b = by,
for some ¥ (z;b1,...,b24,¢,¢1,...,C24) € q with ¢ = ¢, or the form —pg(z;b) with
k € [d], b = bgy for some Y (z;b1,...,b24,¢,¢1,...,C24) € ¢ with ¢ = ¢x1q. Then
|B| < 2d|B’|, and py is a A(z; B)-type equivalent to ¢q. For each g choose an extension p
of po to a complete A(z; B)-type. Then the map q ~ p: S¥2(B’) — S2(B) is injective,
s [S¥3 (B')] < |$8(B)[ < 4 (24| B'). .

In the rest of this subsection we give some applications of this lemma. We first note:

Corollary 3.19. Let ® be a set of L-formulas with the tuple of object variables x and
varying parameter variables such that every L-formula p(x;y) is equivalent in T to a
Boolean combination of formulas in ®. Then

ve'(m) = sup { ve*(A) : A C @ finite } where m = |z|.

Proof. The inequality “<” is a consequence of the hypothesis: for each £-formula ¢(z;y)
there is a finite subset A = A(z;y) of ® such that |S¥(B)| < |S2(B)| for each finite
B C MY, The reverse inequality follows from the previous lemma. 0

Let M* %= M be a monster model of T. Consider the expansion £5" of £ by a new
predicate symbol Ry, .(x) for every £L-formula ¢ (x; 2) and every ¢ € (M*)I#l. The Shelah
expansion of M is the expansion of M to an £P-structure MS? where each predicate
symbol Ry .(z) as before is interpreted by M®l 0 ™M™ ((M*)ll;¢). Shelah showed
[89] (with another proof given in [20]) that if T is NIP then TS" = Th(M5") admits
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quantifier elimination and is also NIP. This provides an interesting way of constructing
new NIP theories from old ones. The previous lemma and its Corollary allows us
to prove that 7" and T share the same VC density function:

TSR _ T

Corollary 3.20. vc vet .

Proof. Fix some m and assume |z| = m. The inequality ve™" (m) > veT'(m) being

obvious, we only need to show that vel™ (m) < vel'(m). Let A = A(x;y) be a finite
set of atomic £5P-formulas; by Corollary and Shelah’s theorem mentioned above,
it suffices to show that vc*(A) < veT'(m). Take a finite set ¥ = W(x;y, 2) of partitioned
L-formulas and some ¢ € M!? such that A = {Ry .(z;y) : ¢ € ¥}. Let B € M be
finite, B* := B x {c}, and let p € S®(B). Let a be an arbitrary realization of p (in
M®?), and define p* := tp¥(a/B*) (in M*). Then for ¢ € ¥ and b € B we have

Y(z;b,¢) €p* = M*E=y(a;b,c)
— M E Ry .(a;b)
<  Ryc(x;b) €p.

In particular, the map p + p*: S2(B) — SY(B*) is injective, so vc*(A) < ve*(¥) <

vel'(m) by Lemma O

It is well-known (see, e.g., [I00, Theorem 4.7]) that the direct product of two NIP
structures is again NIP. As a consequence of the last lemma we can also now estimate
the VC density of a direct product in terms of the VC densities of its factors. We refer
to [42] Section 9.1] for the definition of the product of two L-structures, and to [42]
Corollary 9.6.4] for the Feferman-Vaught Theorem used in the proof below.

Lemma 3.21. Let M’ be another infinite L-structure, T = Th(M'), and let T* =
Th(M x M') be the L-theory of the direct product of M and M'. Then
VCTX < vel + VCT/ .

Proof. Given n-tuples a = (a1,...,a,) € M™ and o’ = (a},...,a}) € (M')" we denote
by a x a’ the n-tuple ((a1,d}),..., (an,al)) of elements of M x M’; every element of
(M x M’")™ has the form a x o’ for some a € M™, o' € (M')™.

Let ¢(z;y) be an L-formula. By the Feferman-Vaught Theorem there exist finitely

many pairs of L-formulas (6;(z;y),0i(x;y)), ¢ € [n] = {1,...,n}, such that for all
aec M?® o e (M)* and b e MY ¥ e (M"Y,
MxM' = yp(axad;bxl) <= for somei € [n], M = 6;(a;b) and M’ |= 0;(a’;b").
Set © = {61,...,0,}, © = {601,...,0,}. Let C be a finite set of tuples from (M x
MWl Take B C MY, B" C (M")l¥l with |B|,|B’| < |C| such that each ¢ € C is of
the form ¢ = b x V' for a unique pair (b,d’') € B x B’. For every p € S?(C) choose a
realization a, x a;, € (M x M")l=l of pin M x M’, and put

q:=tp°(a,/B), ¢ :=1tp°(a},/B).
Then for all (b,0’) € B x B’ we have
plr;bxb)ep = MxM | plap xa,;bxb)
& M F0;(ay;b) and M’ |= 0;(a,,; V'), for some i € [n]
<  O;(x;b) € g and 0(z;V') € ¢/, for some i € [n].
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Hence the map p — (¢, ¢’) is an injection S?(C) — S©(B) x $®'(B’). In particular we
obtain 7} (t) < w§(t) - g, (t) for every t and hence vc*(p) < ve*(©) 4+ ve*(©'); here 7))

v @
is computed in M x M’ and 7§, 7§, in M and M, respectively, and similarly for vc*.
By Lemma therefore ve” ™ (m) < veT (m) + veT’ (m) where m = |z|. O

Remark. In a similar way one shows that if M’ is a finite L-structure and T* =
Th(M x M'), then veT™ < veT.

We finish this subsection by noting a further restriction on the growth of vc (cf. also
Lemma [3.7)):

Lemma 3.22. dvc(m) < ve(dm) for all d,m > 0.

Proof. Let A(z;y) be a finite set of L-formulas with |z| = m. Let x1,...,24 be new
m-~tuples of variables and set

Alzy, .. xasy) = {p(ziy) cp(zy) € A, i=1,...,d}.

Let B € MW |B| =t € N, such that r := 7i(t) = |[S?(B)|. Let ay,...,a, €
M™ be realizations of the types in S2(B). For each i = (iy,...,iq) € [r]¢ let a; :=

(aiys---,a;,) € (M™)% = M9™. Then the a; realize pairwise distinct A’(z, ..., x4; B)-
types. This yields (% (£))? = |S2(B)|? < |S2"(B)| < wk,(t). Since t was arbitrary, we
obtain dvc*(A) < ve*(A’). Hence dve(m) < ve(dm) by Lemma O

3.6. VC density and indiscernible sequences. In this subsection we assume that
M is sufficiently saturated. Recall that 7, () is the maximum size of S, N A as A ranges
over t-element subsets of M™, and 77, (t) is the maximum size of S¥(B) as B ranges
over all t-element subsets of M™; here, as above m = |z|, n = |y|. These definitions
may naturally be relativized to parameters coming from indiscernible sequences. More
precisely:

Definition 3.23. For every t let m, ina(t) be the maximum of |S, N A| as A ranges
over all sets of the form A = {ao,...,a;—1} for some indiscernible sequence (a;);cn in
M™, and let 77 ; ;(t) be the maximum of [S¥(B)| where B = {bo,...,b;—1} for some
indiscernible sequence (b;)ien in M™. We call 7y ing the indiscernible shatter function

of ¢ and 7 ;4 the dual indiscernible shatter function of .

The indiscernible shatter functions give rise to corresponding notions of indiscernible
VC dimension VCiza(p) and indiscernible VC' density veina(e) of ¢ (and their duals
VCia(p) and VCi 4(¢)) in a natural way; for example, vc, 4(¢) is the infimum of all
r > 0 having the property that there is some C > 0 such that for all ¢t and indiscernible
sequences (b;);en we have |S?(B)| < Ct", where B = {by, ..., b;_1}; if there is no such r
then vef 4 (¢) = 0.

As in the classical case (cf. Lemma i we see that w;)ind = T+ ind and hence
VCina(¢*) = VCi q(¢) and vcina(¢*) = vl 4(¢). Directly from the definition we have
Ty ind < T, and hence VCing(¢) < VC(y) and veind (@) < ve(y). In particular VCing ()
and vcing () are finite if ¢ defines a VC class. Conversely, if VCina(¢p) is finite, then so
is VC(¢p). (This follows by saturation of M and extraction of an indiscernible sequence;
see proof of Proposition 4 in [3].) Hence if one of the quantities VC(¢p), ve(gp), VCina (),
or vCinq () is finite, then so are all the others.

Another numerical parameter associated to ¢ and defined via indiscernible sequences
is the alternation number alt(p) of ¢ (in M). This is the largest d (if it exists) such
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that for some indiscernible sequence (a;);cn in M™ and some b € M™ we have
a; € o(M™;b) <= a;41 & o(M™;b) for all i < d — 1.

If there is no such d we set alt(¢) = co. It is well-known (and essentially due to Poizat)
that alt(¢) < 2VCina(p) + 1 (see, e.g., [l Proposition 3]) and that if alt(y) is finite
then ¢ defines a VC class [3| Proposition 4]. Moreover:

Lemma 3.24. vecing(p) < alt(p) — 1.

Proof. Since this is trivial if ¢ has infinite alternation number, we assume that d :=
alt(¢) < co. Let (a;)ien be an indiscernible sequence in M™ and A = {ao,...,a;—1}.
Then for each b € M™, there are less than d indices i < t — 1 such that (a;;b)
and p(a;41;b) have different truth value in M, and the set A N @(M™;b) is uniquely
determined by knowledge of these indices 7. Thus |[ANS,| < 2 Z;.tol () =0o(t?1) and
hence veing (@) < d — 1 as required. O

Ezample. Suppose S, C (hg") where d > 0. Then alt(p) % 2d + 1 and vcina(p) <
ve(p) < d, and all these inequalities are equalities if S, = (]Vil )

The previous example shows that the inequality in Lemma [3.24] in general, is strict.
The inequality VCina(¢) < VC(p) may be strict if there are no non-trivial indiscernible
sequences:

Ezample. Suppose £ = {A, S, P} where A and S are unary relation symbols and P is
a binary relation symbol, and suppose M is an L-structure, with the interpretations of
A, S and P in M denoted by the same symbols, such that

(1) |A| =d and |S| = 2¢;

(2) for s € S, P(x,s) defines a subset of A so that when s runs through S we obtain

all subsets of A;

(3) for s ¢ S, P(z,s) defines the empty set.

Then VC(P) = d and VCinq(P) =1 (as well as ve(P) = veina(P) = 0).

The inequality vcing () < ve() may also be strict, as Lemmal[4.§]in the next section
shows. We do not know the answer to the following question:

Question. Is veing () always integral-valued?

(After a first version of this manuscript had been completed, Guingona and Hill [35]
showed that this question indeed has a positive answer.)

We finish this section with a connection between vci ; and the Helly number. We
already remarked (see Section that if M = (M, <) is a dense linearly ordered set
and @(z;91, 21, Y2, 22) = (11 < & < 21 VY2 < & < 22) then the set system S, has infinite
Helly number: that is, for each d there is a finite subfamily of S, which is d-consistent
yet inconsistent. In contrast to this, we have:

Lemma 3.25. Putd = |vci  (¢)] +1. Then for every indiscernible sequence (b;)ien in
MW the set system S = {p(M™;b;) : i € N} has Helly number at most d.

Proof. Suppose for a contradiction that (b;);en is an indiscernible sequence such that
S = {p(M™;b;) : i € N} has Helly number larger than d. Then some finite subfamily S
of § is d-consistent but not consistent. By indiscernibility of (b;), every finite subfamily
of S of size at least |Sp| has this property. In particular, we can take D € N maximal
such that the set {@(M™;b;) : i < D} is consistent. Obviously D > d. Since (b;) is
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indiscernible, we obtain that for any I € (1) the set {o(M™;b;) : i € Iy} is consistent,
but for any D’ > D and any I; € (g,) the set {o(M™;b;) : ¢ € I} is inconsistent. Let
t > D be arbitrary, and set B, = {b; : i < t}. For I € () let g;(z) be the unique
p-type over By with ¢(x;b;) € ¢ for i € I and —p(z;b;) € gy for i ¢ I. Since |I| = D
every g is consistent. Thus |S?(B,)| > () = ©(tP). Since D > d, this contradicts
Vciknd((p) <d. O

Remark. Note that in the context of the previous lemma, we cannot achieve the stronger
conclusion that S has breadth at most d: for the formula ¢(z;y) = x # y and any
indiscernible sequence (b;), the set system S always has infinite breadth.

By Lemma and extraction of an indiscernible sequence (using that M is as-
sumed to be sufficiently saturated) we obtain a consequence which does not mention
indiscernibles:

Corollary 3.26. Suppose the set system S, is d-consistent, where d = |[vc*(p)]| + 1.
Then there is an infinite subset of S, which is consistent.

This is a weak version of a theorem of Matousek [67], according to which, if S, is
d-consistent, where d > vc*(yp), then one may write S, = S;U---USy (for some N € N)
where each S; is consistent.

4. SOME VC DENSITY CALCULATIONS

In this section we give an example of a formula in the language of rings which, in
every infinite field, defines a set system with fractional VC density, depending on the
characteristic of the field. The construction of this formula (which is inspired by an
example by Assouad [7], who in turn credits Frankl) proceeds in two steps: we first
associate to a given partitioned formula ¢ a bigraph (= bipartite graph with a fixed
ordering of the bipartition of the vertex set), and then we realize the set of edges of
this bigraph as a definable family Sz. For our example we choose ¢ so as to encode
point-line incidences in the affine plane; the calculation of ve(®) in characteristic zero
uses an analogue of the Szémeredi-Trotter Theorem due to Toth. We also discuss
the question whether VC density in NIP theories can take irrational values, and give
examples of formulas in NIP theories whose shatter function is not asymptotic to a real
power function.
Throughout this section L is a first-order language and M is an L-structure.

4.1. Associating a bigraph to a partitioned formula. We follow [59] and make a
distinction between bipartite graphs and bigraphs. A bipartite graph is a graph (V, E)
whose set V' of vertices can be partitioned into two classes such that all edges connect
vertices in different classes. By a bigraph we mean a triple G = (X,Y, ®) where X and Y
are (not necessarily disjoint) sets and ® C X x Y. Thus a bipartite graph can be viewed
as a bigraph if we fix a partition and specify which bipartition class is first and second.
Conversely, if G = (X,Y, ®) is a bigraph then we obtain a bipartite graph (V(G), E(G))
(the bipartite graph associated to G) by letting V(G) be the disjoint union of the sets
X and Y, and E(G) = ®; by abuse of language we call V(G) the set of vertices of
G and E(G) the set of edges of G. We also say that G is a bigraph on V = V(G).
(What we call a bigraph G = (X,Y, ®) is sometimes called an incidence structure, and
(V(G), E(Q@)) is called its Levi graph or incidence graph.) A bigraph is said to be finite
if its set of vertices is finite. It is easy to see that a finite bigraph G can have at most
1V(G)|* edges.
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A bigraph G' = (X', Y, ®’) is a sub-bigraph of G = (X, Y,®) f X C X', Y C Y/,
and ®' C ®. We say that a bigraph G contains a given bigraph G’ (as a sub-bigraph) if
G’ is isomorphic to a sub-bigraph of G. Given a bigraph G = (X,Y, ®) and a subset V
of its vertex set V(G), we denote by

GIV:=(XnVv,ynv,on(VxV))
the sub-bigraph of G induced on V. The complement of a bigraph G = (X,Y, ®) is the
bigraph =G := (X,Y, -®), and its dual is G* := (Y, X, ®*) where =® and ®* are as in
Section 2.31
Let ¢(x;y) be a partitioned L-formula, where |z| = m, |y| = n. We may associate a
bigraph G, = (X,Y, ®) to ¢ and M, where X = M™,Y = M", and
D =M™ M")={(a,b) € M™ x M" : M = ¢(a;b)}.

Note that G-, = -G, and G+ = (G,)*. If we want to stress the dependence of G, on
M, then we write Gg[ instead of G. If ¢ is invariant under the extension M C NN of
L-structures, then GQ’ [V = Gg/[ where V = V(Gy).

From now on until the end of this subsection we assume that M is infinite and m = n.
The collection

E(Gy) = {(a,b) : (a,0) € p(M™; M™)} C M™ x M™
of edges of G, then maps naturally onto the definable family

S = {{a,b} : (a,b) € (p(Mm;Mm)} c <J\§47;>

of subsets of M™ by a map whose fibers have at most 2 elements; here @(v; x,y) is the
partitioned L-formula with object variables v = (v1,...,v,,) and parameter variables
(z,y) given by

P(vsz,y) = p(r;y) AN(v=a Vv =Uy).
Note that VC(p) < 2. Also, S5 = Sp and hence ©* and 3 have the same VC dimension

and VC density. A bound on the number of subsets of a given finite set which are cut
out by Sz may be computed as follows:

Lemma 4.1. Let A C M™ be finite. Then
[Ao| + 5B(G 1V) < |AN S| < 1+ |Ao| +E(G, V)

where

(1) Ay is the set of all a € A such that M = ¢(a;b) or M = p(b;a) for some
be M™, but there is no b € A with M = ¢(a;b) or M = ¢(b;a), and

(2) V C V(Gy) is the disjoint union of A considered as a subset of X and A
considered as a subset of Y.

Proof. Each set S € AN Sz is of one of the following types: S = 0; S = {a} where
a € Ag; or S = {a,b} where a,b € A with M |= ¢(a;b) or M = ¢(b;a). Each set of the
last two types actually occurs in A N S, whereas S = () only occurs iff there is some
edge (a,b) of G, with a,b ¢ A. O

Hence if we set

I, (t) :=max {|E(G, V)| : V CV(G,), |V| =t} €N,
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then the lemma shows that
L, (1) < mp(t) <1+t +11,(2t)  for every t. (4.1)

This observation opens up a road to computing (upper or lower) bounds on the VC
density of the formula @: find a bound on the number of edges of the subgraph of G,
induced on finite subsets of its verter set, in terms of the number of vert