FINAL EXAM

Math 31B, Fall Quarter 2008
Integration and Infinite Series

December 6, 2008

ANSWERS

Problem 1.
Determine the slope of the tangent line to the graph of the function

$$
y=e^{x^{x}}
$$

at $x=1$.

Answer:

$$
\frac{d}{d x} e^{x^{x}}=e^{x^{x}} \frac{d}{d x} x^{x}=e^{x^{x}} \frac{d}{d x} e^{x \ln x}=e^{x^{x}} x^{x} \frac{d}{d x}(x \ln x)=e^{x^{x}} x^{x}(\ln x+1)
$$

Substituting $x=1$ yields the answer: the slope is e.

Problem 2. Find

$$
\lim _{x \rightarrow 0} \frac{1-\cos 2 x}{2 x^{2}}
$$

Answer:
We use l'Hôpital's Rule twice:

$$
\lim _{x \rightarrow 0} \frac{1-\cos 2 x}{2 x^{2}}=\lim _{x \rightarrow 0} \frac{\sin 2 x}{2 x}=\lim _{x \rightarrow 0} \frac{2 \cos 2 x}{2}=1 .
$$

Problem 3.

1. Determine constants A and B such that

$$
\frac{1}{x^{2}+x-6}=\frac{A}{x-2}+\frac{B}{x+3} .
$$

2. Compute

$$
\int \frac{x}{x^{2}+x-6} d x
$$

($5+5$ points.)

Answer:

1. We have $x^{2}+x-6=(x-2)(x+3)$. Let $f(x)=\frac{1}{(x-2)(x+3)}$. We substitute $x=0$ and $x=1$ to get $f(0)=-\frac{1}{6}$ and $f(1)=-\frac{1}{4}$. This yields two equations for A, B :

$$
-\frac{1}{6}=-\frac{1}{2} A+\frac{1}{3} B, \quad-\frac{1}{4}=-A+\frac{1}{4} B
$$

From the second equation we obtain $A=\frac{1}{4}(B+1)$. Substituting this into the first equation we get $-\frac{1}{6}=-\frac{1}{8}(B+1)+\frac{1}{3} B$ and hence $B=-\frac{1}{5}$. Therefore $A=\frac{1}{5}$.
2. By part (1):

$$
\frac{x}{x^{2}+x-6}=\frac{1}{5}\left(\frac{x}{x-2}-\frac{x}{x+3}\right)
$$

and hence

$$
\int \frac{x}{x^{2}+x-6} d x=\frac{1}{5}\left(\int \frac{x}{x-2} d x-\int \frac{x}{x+3} d x\right) .
$$

By long division $\frac{x}{x-2}=1+2 \frac{1}{x-2}$ and $\frac{x}{x+3}=1-3 \frac{1}{x+3}$, hence

$$
\int \frac{x}{x-2} d x=x+2 \ln |x-2|+C_{1}, \quad \int \frac{x}{x+3} d x=x-3 \ln |x+3|+C_{2}
$$

and thus

$$
\int \frac{x}{x^{2}+x-6} d x=\frac{1}{5} \ln \left|(x-2)^{2}(x+3)^{3}\right|+C .
$$

(Alternatively, you could have applied partial fraction decomposition to $\frac{x}{x^{2}+x-6}$.)

Problem 4.

Give the definition of the improper integral

$$
\int_{1}^{\infty} \frac{1}{x^{3 / 2}} d x
$$

Then use your answer to evaluate the integral if it converges, or else show it diverges.

Answer:
The given integral is improper because of the upper limit being infinite. We define the improper integral as a limit of definite integrals:

$$
\int_{1}^{\infty} \frac{1}{x^{3 / 2}} d x=\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{1}{x^{3 / 2}} d x=\left.\lim _{b \rightarrow \infty} \frac{-2}{x^{1 / 2}}\right|_{1} ^{b}=-2 \lim _{b \rightarrow \infty} \frac{1}{b^{1 / 2}}+2=2 .
$$

Therefore the improper integral converges and has the value 2 .

Problem 5.

A hard-boiled egg at $98^{\circ} \mathrm{C}$ is put in a sink filled with $18^{\circ} \mathrm{C}$ cold water. After 5 minutes, the temperature of the egg is $38^{\circ} \mathrm{C}$. Assume that the water has not warmed appreciably and that the temperature of the egg changes at a rate proportional to the difference between its temperature and that of the water. (Newton's Law of Cooling.)

1. Write the differential equation and initial condition which model the temperature $E(t)$ of the egg t minutes after being placed in the water.
2. Find an explicit formula for $E(t)$.
3. How long does it take for the temperature $E(t)$ of the egg to reach $20^{\circ} \mathrm{C}$?
(5+3+2 points.)

Answer:
1.

$$
\frac{d E}{d t}=-k(E-18), \quad E(0)=98
$$

where k is a positive constant of proportionality.
2. The function $y=E(t)-18$ satisfies the differential equation $y^{\prime}=-k y$, hence $y=C e^{-k t}$ for some constant C. This means that

$$
E(t)=C e^{-k t}+18 .
$$

Since $E(0)=98$ we must have $C=80$. Also, $E(5)=38$, hence $38=18+80 e^{-5 k}$ or $k=\frac{\ln 4}{5}$. Therefore

$$
E(t)=18+80 e^{-(\ln 4) t / 5}
$$

3. Set $E=20$ and solve for t. The result is $t=\frac{5 \ln 40}{\ln 4} \approx 13.3048$ minutes.

Problem 6.

Suppose $f(x)=\sin \left(x^{2}\right)$, and M_{N} denotes the value of the approximation of the integral

$$
I=\int_{0}^{1} f(x) d x
$$

using the midpoint rule with N subintervals of $[a, b]=[0,1]$. Recall the error bound

$$
\left|M_{N}-I\right| \leq \frac{K_{2}(b-a)^{3}}{24 N^{2}}
$$

where $K_{2} \geq\left|f^{\prime \prime}(x)\right|$ for all $x \in[a, b]$.

1. Show that $\left|M_{N}-I\right| \leq \frac{1}{4 N^{2}}$. (Use the triangle inequality $|c+d| \leq$ $|c|+|d|$.
2. Find an N such that $\left|M_{N}-I\right| \leq \frac{1}{100}$.

Answer:

1. We have

$$
f^{\prime}(x)=2 x \cos \left(x^{2}\right), \quad f^{\prime \prime}(x)=2\left(\cos \left(x^{2}\right)+x\left(-\sin \left(x^{2}\right)\right) 2 x\right) .
$$

Hence, using the triangle inequality:

$$
\left|f^{\prime \prime}(x)\right| \leq 2(1+2)=6
$$

This yields

$$
\left|M_{N}-I\right| \leq \frac{6}{24 N^{2}}=\frac{1}{4 N^{2}} .
$$

2. It is enough to have $\frac{1}{4 N^{2}} \leq \frac{1}{100}$, or equivalently, $N^{2} \geq \frac{100}{4}=25$, that is, $N \geq 5$.

Problem 7. Use a trigonometric substitution to evaluate the integral

$$
\int_{0}^{1} \frac{x^{2}}{\sqrt{1-x^{2}}} d x
$$

(10 points.)

Answer:
We use the substitution $x=\sin \theta$, where θ is in $[0, \pi / 2]$. Then $\frac{d x}{d \theta}=\cos \theta$, and

$$
\sqrt{1-x^{2}}=\sqrt{1-\sin ^{2} \theta}=\sqrt{\cos ^{2} \theta}=\cos \theta
$$

and therefore

$$
\int \frac{x^{2}}{\sqrt{1-x^{2}}} d x=\int \sin ^{2} \theta d \theta
$$

The latter integral can be found, e.g., using the reduction formula for sine:

$$
\int \sin ^{2} \theta d \theta=\frac{\theta}{2}-\frac{1}{2} \sin \theta \cos \theta+C
$$

Note that $\theta=\sin ^{-1} x$. Moreover $\cos \theta=\sqrt{1-x^{2}}$. Hence

$$
\int \frac{x^{2}}{\sqrt{1-x^{2}}} d x=\frac{\sin ^{-1} x}{2}-\frac{x \sqrt{1-x^{2}}}{2}+C
$$

and therefore

$$
\int_{0}^{1} \frac{x^{2}}{\sqrt{1-x^{2}}} d x=\left.\frac{1}{2}\left(\sin ^{-1} x-x \sqrt{1-x^{2}}\right)\right|_{0} ^{1}=\frac{\pi}{4}
$$

Problem 8.

1. Find the sum of the infinite series

$$
2+\left(\frac{2}{3}\right)^{2}+\left(\frac{2}{3}\right)^{3}+\cdots+\left(\frac{2}{3}\right)^{n}+\cdots
$$

2. Does the infinite series

$$
\sum_{n=1}^{\infty} \frac{n^{3}}{n^{5}+1}
$$

converge? Explain why or why not.

Answer:
1.

$$
\begin{aligned}
2+\left(\frac{2}{3}\right)^{2}+\cdots+\left(\frac{2}{3}\right)^{n}+\cdots & =2+\left(\frac{2}{3}\right)^{2}\left[1+\left(\frac{2}{3}\right)^{2}+\left(\frac{2}{3}\right)^{3}+\cdots+\left(\frac{2}{3}\right)^{n}+\cdots\right] \\
& =2+\left(\frac{2}{3}\right)^{2}\left[\frac{1}{1-\frac{2}{3}}\right]=2+\frac{4}{3}=\frac{10}{3}
\end{aligned}
$$

2. The infinite series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges and

$$
0<\frac{n^{3}}{n^{5}+1} \leq \frac{n^{3}}{n^{5}}=\frac{1}{n^{2}}
$$

for all $n \geq 1$. Hence the given infinite series converges by the Comparison Test.

Problem 9.

1. Find the radius of convergence R of the power series

$$
\sum_{n=0}^{\infty} \frac{3^{n}}{n!} x^{n} .
$$

2. Use the Integral Test to show that

$$
\sum_{n=1}^{\infty} \frac{1}{n^{3}}
$$

converges.
3. The power series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{2^{n} n^{3}}(x-1)^{n}
$$

has radius of convergence $R=2$. Determine whether this power series converges for the endpoints of its interval of convergence.

$$
(5+5+5 \text { points.) }
$$

Answer:

1. We have

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\left|\frac{\frac{3^{n+1}}{(n+1)!}}{\frac{3^{n}}{n!}}\right|=\frac{3^{n+1}}{(n+1)!} \frac{n!}{3^{n}}=\frac{3}{n+1}
$$

and thus

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{3}{n+1}=0
$$

Hence $R=\infty$. That is, this series converges for all x.
2. We have $\int \frac{1}{x^{3}} d x=-\frac{1}{2 x^{2}}+C$, hence

$$
\int_{1}^{\infty} \frac{1}{x^{3}} d x=\lim _{b \rightarrow \infty}-\frac{1}{2 x^{2}}+\frac{1}{2}=\frac{1}{2}
$$

converges. So by the Integral Comparison Test, $\sum_{n=1}^{\infty} \frac{1}{n^{3}}$ converges.
3. The endpoints of the interval of convergence of this power series are $x=-1$ and $x=3$. We test for convergence:

$$
x=3: \quad \sum_{n=1}^{\infty} \frac{(-1)^{n}}{2^{n} n^{3}}(3-1)^{n}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{3}},
$$

which converges by the Leibniz alternating series test or by the fact that this series converges absolutely, namely $\sum_{n=1}^{\infty} \frac{1}{n^{3}}$ converges by part (2).

$$
x=-1: \quad \sum_{n=1}^{\infty} \frac{(-1)^{n}}{2^{n} n^{3}}(-1-1)^{n}=\sum_{n=1}^{\infty} \frac{1}{n^{3}},
$$

which converges by (2).

Problem 10. Evaluate

$$
\int x^{3} \sin \left(x^{2}\right) d x
$$

(10 points.)

Answer:
We use integration by parts:

$$
\int u(x) v^{\prime}(x) d x=u(x) v(x)-\int u^{\prime}(x) v(x) d x
$$

We take

$$
u(x)=x^{2}, \quad v^{\prime}(x)=x \sin \left(x^{2}\right),
$$

so

$$
u^{\prime}(x)=2 x, \quad v(x)=-\frac{1}{2} \cos \left(x^{2}\right)
$$

thus

$$
\int x^{3} \sin \left(x^{2}\right) d x=-\frac{1}{2} x^{2} \cos \left(x^{2}\right)+\int x \cos \left(x^{2}\right) d x
$$

Now

$$
\int x \cos \left(x^{2}\right) d x=\frac{1}{2} \sin \left(x^{2}\right)
$$

and therefore

$$
\int x^{3} \sin \left(x^{2}\right) d x=\frac{1}{2}\left(\sin \left(x^{2}\right)-x^{2} \cos \left(x^{2}\right)\right)+C .
$$

Problem 11. Consider the function $f(x)=30 x^{2} \cos (\sqrt{x})$.

1. Find the Maclaurin series $T(x)$ for $f(x)$ in the form $T(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$.
2. Use $T(x)$ to find $f^{(5)}(0)$.
3. Estimate

$$
|f(0.1)-0.3|
$$

(Hint: look at the alternating series $T(0.1)$.)

Answer:

1. The Maclaurin series for $\cos (x)$ is given by $\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}$, with radius of convergence ∞. Hence $\cos (\sqrt{x})$ has Maclaurin series

$$
\sum_{n=0}^{\infty}(-1)^{n} \frac{(\sqrt{x})^{2 n}}{(2 n)!}=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n}}{(2 n)!}
$$

Thus $f(x)=30 x^{2} \cos (\sqrt{x})$ has Maclaurin series

$$
T(x)=30 \sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n+2}}{(2 n)!}=\sum_{n=2}^{\infty} \frac{30(-1)^{n}}{(2 n-4)!} x^{n}
$$

2. By part (1),

$$
\frac{f^{(5)}(0)}{5!}=\frac{30(-1)^{5}}{(2 \cdot 5-4)!}=-\frac{1}{24}, \quad \text { so } f^{(5)}(0)=-5
$$

3. We note that $0.3=30 \cdot 0.1^{2}$ is the first term $(-1)^{2} b_{2}$ of the alternating series

$$
T(0.1)=\sum_{n=2}^{\infty}(-1)^{n} \underbrace{\frac{30 \cdot 0.1^{n}}{(2 n-4)!}}_{b_{n}}=\sum_{n=2}^{\infty}(-1)^{n} b_{n}
$$

which satisfies the hypotheses of the alternating series test. Thus, by the error bound in the alternating series test discussed in class,

$$
|f(0.1)-0.3| \leq b_{3}=\frac{30 \cdot 0.1^{3}}{(2 \cdot 3-4)!}=\frac{15}{1000}=0.015
$$

Problem 12. Consider the sequence $\left\{c_{n}\right\}$ given by

$$
c_{n}=\frac{1}{n^{2}+1}+\frac{1}{n^{2}+2}+\cdots+\frac{1}{n^{2}+n} .
$$

1. Show that

$$
c_{n} \leq \frac{n}{n^{2}+1} .
$$

2. Determine whether $\left\{c_{n}\right\}$ converges, and if so, compute its limit.
(3+2 points.)

Answer:

1. We have

$$
n^{2}+i \geq n^{2}+1 \quad \text { for } i=1, \ldots, n
$$

so

$$
\frac{1}{n^{2}+i} \leq \frac{1}{n^{2}+1} \quad \text { for } i=1, \ldots, n
$$

and hence

$$
c_{n}=\frac{1}{n^{2}+1}+\frac{1}{n^{2}+2}+\cdots+\frac{1}{n^{2}+n} \leq \frac{n}{n^{2}+1} .
$$

2. Both sequences $a_{n}=0$ and $b_{n}=\frac{n}{n^{2}+1}$ converge to 0 , since

$$
\lim _{x \rightarrow \infty} \frac{x}{x^{2}+1}=\lim _{x \rightarrow \infty} \frac{1}{2 x}=0
$$

by l'Hôpital, and

$$
a_{n} \leq c_{n} \leq b_{n}
$$

by part (1). Hence c_{n} also converges to 0 , by the Squeeze Theorem.

