Course Announcement

Model Theory
Math 223M, Spring Quarter 2009
MWF 2:00 PM–2:50 PM, MS 7608

Instructor. Matthias Aschenbrenner
E-mail. matthias@math.ucla.edu
Office. Mathematical Sciences Building 5614
Office phone. (310) 206-8576
Office hours. MWF 1:00 PM–2:00 PM.

Description. Model theory is a branch of mathematical logic which applies the methods of logic to the study of mathematical structures, and thus has impact on other parts of mathematics (e.g., number theory, analytic geometry). Since its beginnings in the early decades of the last century, the perception of what the subject is about has gone through various incarnations. Because many of the mathematical structures studied in model theory have an algebraic origin, Chang and Keisler (1973) simply decreed that universal algebra + logic = model theory, whereas Hodges (1993) defined model theory more broadly as the study of the construction and classification of structures within specified classes of structures. A modern view holds that model theory is the geography of tame mathematics (Hrushovski). Here, the emphasis is on identifying those classes of structures whose first-order theories can be understood (in some well-defined technical sense), and exploiting such an understanding as a tool in other parts of mathematics.

Syllabus. Review of structures and theories. Quantifier elimination, model completeness. Types, saturation, omitting types. Totally transcendental theories, strong minimality, Morley’s Theorem. Some o-minimality (time permitting).

Prerequisites. Basic knowledge of first-order logic (Math 220), especially the completeness theorem and elementary set theory, and abstract algebra (Math 210), especially field theory.

Course text. I will follow my own notes, but the following book will be a good companion for this course:

Other standard textbooks in model theory are:
