1. Do problems 11.1, 11.6 in the textbook.

2. Let (s_n) be a sequence. A real number s is called an accumulation point of (s_n) if for each $\varepsilon > 0$ there are infinitely many n such that $|s_n - s| < \varepsilon$. In class we proved that this is equivalent to the existence of a subsequence of (s_n) converging to s.

 (a) Prove that a bounded sequence with exactly one accumulation point must converge. Can the requirement that the sequence is bounded be dropped?

 (b) Suppose (s_n) is bounded. The Bolzano-Weierstrass Theorem states that (s_n) has at least one accumulation point. The limit superior of (s_n) is defined as

 \[\limsup s_n := \sup \{ s : s \text{ is an accumulation point of } (s_n) \} \]

 Show that if $\limsup s_n < a$ then there is some n_0 such that $s_n < a$ for all $n \geq n_0$.

4. Extra credit: 14.7 in the textbook.