Problem Set 3
Due Friday, April 27.

Real Analysis
Math 131A, Spring Quarter 2018

1. Do problems 5.1, 5.3, 5.4 in the textbook.
2. Do problems 7.4, 8.1 (b), (d), 8.2 (e), 8.4, 8.5, 8.7 (b), 8.9 in the textbook.
3. A subset S of \mathbb{R} is said to be closed if whenever (s_n) is a sequence in S and (s_n) converges to a real number s, then $s \in S$.
 (a) Prove that for any $a, b \in \mathbb{R}$ with $a < b$, the interval $[a, b]$ is closed.
 (b) Give an example of an unbounded, closed set $S \subseteq \mathbb{R}$.
 (c) Suppose that $S \subseteq \mathbb{R}$ is nonempty, closed, and bounded from above. Prove that S has a largest element.
4. Let (s_n) be a sequence in \mathbb{R} with limit $s \in \mathbb{R}$. Show that then the sequence (σ_n) with $\sigma_n = \frac{1}{n}(s_1 + \cdots + s_n)$ also converges to s.