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1. The countries are C1, C2, . . .. We can use A1 to say that C1 is red, A2 to
say that C1 is green, A3 to say that C1 is blue, and A4 to say that C1 is
yellow. And then we can use A5–A8 to describe similarly the color of C2,
and so forth.

Let’s change the notation to something easier to read. Write A4i−3 as Ri;
use it to say Ci is red. Write A4i−2 as Gi; use it to say Ci is green. Write
A4i−1 as Bi; use it to say Ci is blue. Write A4i as Yi; use it to say Ci is
yellow. For example, to say that country C7 is red, we use R7, which is
the same as A25. And the formula

(R7 ∧ ¬G7 ∧ ¬B7 ∧ ¬Y7)

says that C7 is red and nothing but red.

Then let Σ1 consist of the following sentences, for i = 1, 2, . . .:

(Ri ∧ ¬Gi ∧ ¬Bi ∧ ¬Yi) ∨ (¬Ri ∧ Gi ∧ ¬Bi ∧ ¬Yi) ∨
(¬Ri ∧ ¬Gi ∧ Bi ∧ ¬Yi) ∨ (¬Ri ∧ ¬Gi ∧ ¬Bi ∧ Yi)

These sentences say that each country Ci has exactly one color.

Next, for a pair Ci, Cj of adjacent countries, we use the formula

¬(Ri ∧ Rj) ∧ ¬(Bi ∧ Bj) ∧ ¬(Gi ∧ Gj) ∧ ¬(Yi ∧ Yj)

to say that Ci and Cj are not the same color. Let Σ2 be the set of all such
sentences, for each pair Ci, Cj of adjacent countries.

Together, the formulas in the union Σ1 ∪ Σ2 say that each country has
exactly one color, and adjacent countries have different colors. Any truth
assignment v that satisfies Σ1∪Σ2 gives us a proper coloring of the infinite
map; we just do what v tells us: if v(G7) = T , then we color C7 green.
But is there any such v? That is, is the set Σ1 ∪ Σ2 satisfiable?

To show this fact, we use compactness and the four-color theorem. By
compactness, it suffices to show that every finite subset of Σ1 ∪ Σ2 is
satisfiable. So consider an arbitrary finite subset. The sentence symbols
in that subset refer to only finitely many countries; say CM is mentioned
somewhere in the subset but not Ci for any i > M .

By the four-color theorem, there is a proper coloring of the finite map
consisting of countries C1, C2, . . . , CM . From that coloring, make a truth
assignment u. For example, if C7 is blue, then u(B7) = T and u(R7) =
u(G7) = u(Y7) = F . The truth assignment u satisfies the finite subset.



2. (Thanks to all the people who alerted me to the typo in the statement of
the problem!) We compute

free
(
(= v1v2 ∧ ∀v1(Pv1v2 → Pv2v3))

)
by following the recursive definition of free(· · · ). But first we convert the
given expression into a “legal” wff α by unwinding the abbreviations:

α = (¬(= v1v2 → (¬∀v1(Pv1v2 → Pv2v3)))).

Now

free(α) = free
(
(= v1v2 → (¬∀v1(Pv1v2 → Pv2v3)))

)
= free(= v1v2) ∪ free

(
(¬∀v1(Pv1v2 → Pv2v3))

)
= {v1, v2} ∪ free

(
∀v1(Pv1v2 → Pv2v3)

)
= {v1, v2} ∪ free

(
(Pv1v2 → Pv2v3)

)
\ {v1}

= {v1, v2} ∪
(
free(Pv1v2) ∪ free(Pv2v3)

)
\ {v1}

= {v1, v2} ∪
(
{v1, v2} ∪ {v2, v3}

)
\ {v1} = {v1, v2, v3}.

3. (a) “Zero is less than any number.” ∀ x(Nx→ <0x) But the translation
of “Zero is less than any other number” is different.

(b) “If any number is interesting, then zero is interesting.” Probably
this means “If every number is interesting, then zero is interest-
ing.” But conceivably it is like “If there’s any man alive who can
get the message through to Garcia, this man can do it.” In the for-
mer case, we get (∀x(Nx → Ix) → I0). In the latter case, we get as
a first approximation, ∃ x(Nx∧ Ix)→ I0. Cleaned up, this becomes
((¬∀ x(Nx → (¬ Ix))) → I0). This can be rewritten in a variety of
ways. But the two cases are not equivalent.

(c) “No number is less than zero.” As a first approximation we obtain
¬∃ x(Nx ∧ x < 0). A legal version of this is ∀x(Nx → (¬<x0)).

(d) “Any uninteresting number with the property that all smaller num-
bers are interesting certainly is interesting.”

∀x(Nx → ((¬ Ix) → (∀ y(Ny → (<yx → Iy)) → Ix)))

(e) “There is no number such all numbers are less than it.” (As in
(a), the speaker seems to have forgotten the word ‘other.’) A first
approximation: ¬∃ x(Nx ∧ ∀ y(Ny → y < x)). A legal version:

∀ x(Nx → (¬∀ y(Ny → <yx)))

(f) “There is no number such that no number is less than it.” A first
approximation is the sentence: ¬∃ x(Nx ∧ ¬∃ y(Ny ∧ y < x)). A
legal version of this: ∀ x(Nx → (¬∀ y(Ny → (¬<yx))))



4. “It is not the case that a is a member of every set, and it is also not the
case that b is a member of every set:” ¬(∀x(a ∈ x) ∨ ∀x(b ∈ x))

5. (a) “You can fool some of the people all of the time.” I take this to mean
that there is at least one person who is so gullible that he or she can
always be fooled (but other readings might be possible):

∃ x(Px ∧ ∀ y(Ty → Fxy))

(b) “You can fool all of the people some of the time.” Two inequivalent
translations are

∃ y(Ty ∧ ∀x(Px → Fxy)) and ∀x(Px → ∃ y(Ty ∧ Fxy)).

One of the advantages of a precise formal language is that it clarifies
the different possible readings of an English sentence.

(c) “You can’t fool all the people all of the time.”

¬∀ x∀ y(Px ∧ Ty → Fxy)

6. Slightly rewritten, the sentences are these:

(a) ∀x∀ y ∀ z(Pxy ∧ Pyz → Pxz) (transitivity)
(b) ∀x∀ y(Pxy ∧ Pyx → x = y) (antisymmetry)
(c) ∀x∃ yPxy → ∃ y ∀ xPxy

I will use finite structures; in this particular case it is possible to do so.

(a) Let A be the structure ({0, 1, 2}; {〈0, 1〉, 〈1, 2〉}). That is, |A| is
{0, 1, 2} and to P we assign the binary relation PA = {〈0, 1〉, 〈1, 2〉}.
(In the notation I used on the blackboard in class, we would denote
A by A, and |A| simply by A.) This structure can be pictured as the
directed graph:

0 → 1 → 2

Then (a) is false in A, (b) is vacuously true in A, and (c) is true
(because ∀x∃ yPxy is false) in A. Hence {(b), (c)} 6|= (a).

(b) Take B to be the two-element structure with |B| = {0, 1} and for the
binary relation PB take the entire Cartesian product {0, 1}×{0, 1} =
{〈0, 0〉, 〈0, 1〉, 〈1, 0〉, 〈1, 1〉}. Then (a) is true in B and (c) is true in
B (because ∃ y ∀ xPxy is true in B). But (b) is false in B.

(c) Take C to be the two-element structure ({0, 1}; =). That is, |C| =
{0, 1} and the binary relation is {〈0, 0〉, 〈1, 1〉}. Then (a) and (b) are
true in C but (c) is false in C. (Everything is equal to something, but
there is nothing that equals everything.)

7. One possibility for a first-order language appropriate for talking about
vector spaces over the rational numbers has a constant symbol 0 (for the
zero vector), a 2-place function symbol + (for vector addition), and for
each q ∈ Q a 1-place function symbol µq (for scalar multiplication by q).


