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Abstract

Since the seminal research by Fermi, Pasta, and Ulam in the 1950s, chains

of nonlinear oscillators have been studied in numerous areas of physics. In

this essay, we examine one-dimensional granular lattices, which consist of a

chain of beads. Upon striking one end of the chain, a highly nonlinear wave

propagates through it. Using experimental and numerical methods, we study

the relation between the propagated wave and the properties of the beads

used.

Previously, regular arrangements of heterogeneous chains have been stud-

ied. One of these arrangements involved chains of 1:1 dimers, where each

dimer is a pair of two beads of different materials. We follow on from this

work by randomising the orientation of these dimers. Because each dimer has

two different orientations, we can consider it as a "spin", and hence consider

the lattice as a spin chain.

The main result presented here is the discovery of two different regimes

of behaviour of the propagated wave: when many dimers are oriented in

the same direction, we obtain "clean" wave propagation where a distinct

solitary wave pulse passes through the chain; when many dimers are oriented

in different directions, we obtain "delocalisation" where the energy of the

wave spreads out across all the beads.
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1 INTRODUCTION

1 Introduction

Since the Fermi-Pasta-Ulam (FPU) problem was investigated more than fifty

years ago, lattices with nonlinear interactions between particles have at-

tracted significant scientific interest [4]. In the last few years especially, they

have been studied in various contexts, such as biophysics [21], optics [14],

solid-state physics [26], and atomic physics [17].

One area of particular recent interest is the study of one-dimensional

granular chains, which consist of spherical particles colliding elastically with

each other. The behaviour of these chains has been scrutinised by the scien-

tific community [23, 27]. The beads in the chain can be made from a wide

range of materials, hence allowing the customization of their properties –

mass, radius, elastic modulus, Poisson’s ratio, etc. Due to this tunability,

we can study in great detail the relationship between various aspects of the

chain and the response obtained. It also promises a plethora of potential

applications in energy absorbing materials [7], sound focusing devices [6] and

other such engineering and physical devices.

Recently, heterogenous chains have begun to receive significant atten-

tion [23, 27]. In [23] regular arrangements of heterogeneous lattices, such as

"dimers" and "trimers", were investigated. In this essay, I describe the sub-

sequent work carried out (by myself, under the supervision of Dr. Porter,

and with collaborators) to build on these insights. By randomising the het-

erogeneities in the chain, we treated the randomised chain as an analogue

of a spin system. By doing so, we were able to study the changes in the

behaviour of the system as we varied the order of the system.

While this is ostensibly about chains of particles, it is also part of a
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1 INTRODUCTION

broader thrust of research into nonlinear systems. In a 1958 paper [2] An-

derson introduced the idea "Anderson Localization" in electromagnetism,

and it has since been studied in various areas of phyics. It occurs in linear

and weakly nonlinear systems, so here in this strongly nonlinear system we

look for an analogous phenomenon, related to recent studies linking Ander-

son localization and the FPU problem [16]. Learning more about the nature

of "nonlinear localisation" would be an important step in understanding dis-

ordered systems.

Before plunging into the nature of the research we carried out, I first

outline a few key concepts. In the rest of this section, I will discuss solitary

waves and the Fermi-Pasta-Ulam problem. I will then present my method-

ology, results, and conclusions.

1.1 Solitary Waves

In 1834, Scottish naval engineer John Scott Russell observed what he termed

a "Wave of Translation" in a barge canal [25]. The theory behind this was

initiated in 1895 by Didierik Korteweg and Gustav de Vries in [15] where

they investigated an equation modelling shallow water waves, now known as

the Korteweg-de Vries (KdV) equation. Much later in 1965, Zabusky and

Kruskal discovered solitary wave solutions to the KdV equation [28]. Since

then, solitary waves have been used to explain phenomena in many areas

of physics, as solutions to various celebrated partial differential equations.

A few examples are the nonlinear Schrödinger equation [1], Landau-Lifshitz

equation [11], and the sine-Gordon equation [22].

A solitary wave is essentially a packet of energy; however, unlike normal

2



1 INTRODUCTION

waves, it does not disperse or suffer attenuation of its amplitude, but remains

the same shape. Loosely speaking, this occurs due to the "balancing" of the

nonlinearity and dispersion effects in the system. (Dispersion, where waves

of different wavelengths travel at different speeds, would normally cause a

wave to separate into different components.)

Solitons, a type of solitary wave, have the additional property that a col-

lision with another soliton leaves it unscathed but for a change in phase [10].

Solitons have been one of the main foci of research into solitary waves, and

in fact the terms "soliton" and "solitary wave" are often used interchange-

ably. The study of solitary waves and related objects remains a very active

research area.

To construct an example of a solitary wave consider the KdV equation:

φt + φxxx + µ2φφx = 0, (1)

where µ is a constant. Because a solitary wave maintains its shape, it must

be of the form φ(x, t) = f(x± ct). Consider waves travelling to the right, so

φ = f(x − ct). (The derivation is identical for waves travelling to the left.)

Let y := x− ct, then Eq. (1) becomes:

−c df
dy

+
d3f

dy3
+ µ2f

df

dy
= 0

−cf +
d2f

dy2
+
µ2

2
f 2 = A (2)

which can be solved exactly to give

f(y) =
3c

µ2
sech2

√
c

2
(y − a), (3)

where a is a constant. This gives (see Fig. 1):

φ(x, t) = f(x− ct) =
3c

µ2
sech2

√
c

2
(x− ct− a). (4)
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Figure 1: A soliton solution of Eq. (1) – it is described by (4) with µ =
√

6,

c = 4, a = 0. As time increases it travels to the right and maintains its

shape.

In a granular chain, upon striking one end of the chain, a solitary wave is

formed which propagates through the chain. These waves have a support of

just a few particle sites – an analytical derivation in [23] of solution widths in

the continuum limit indicates that for a homogeneous chain, the mean pulse

width is only about 5 particles. As such, this system provides one of the

most experimentally realisable ways for us to study "compactons", which

are solitary waves with compact support [24]. More conventional solitons

have infinite, often exponential "tails".
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1 INTRODUCTION

1.2 The Fermi-Pasta-Ulam Problem

While working at Los Alamos National Laboratory under the auspices of the

U.S. Atomic Energy Commission, Enrico Fermi, John Pasta, and Stanislaw

Ulam, and Mary Tsingou [9] conducted some ground-breaking research on

nonlinear systems [12]. Their 1955 report described one of the earliest forays

into scientific computation, where they simulated a chain of 64 particles

connected by nonlinear springs. In addition to the normal linear spring

forces, they added a small nonlinear perturbation – either quadratic, cubic

or a piecewise linear approximation of a cubic. A typical equation of motion

for the systems they were studying would be:

m
d2xj
dt2

= k(xj+1 + xj−1 − 2xj)[1 + α(xj+1 − xj−1)], (5)

where xj is the displacement of the jth particle from equilibrium, k is the

spring constant in Hooke’s law, and α is a nonlinear term added [20].

The results were surprising. They had predicted that thermalization

would occur, where the energy would eventually distribute itself between

all the modes. However, this was not observed – the systems displayed a

complex behaviour instead, where a few specific modes would repeatedly

"exchange" energy with each other. This apparent paradox has to do with

phenomena such as exactly integrable soliton solutions to nonlinear prob-

lems, "deterministic chaos" [8], etc; and the study of the FPU problem has

prompted much progress in these and related fields.

For one, when we let the number of particles go to infinity, and consider

the continuum limit, we can obtain the KdV equation. This was discovered

by Zabusky and Kruskal when they were studying the aforementioned soliton
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solutions of the KdV equation [28]. I reproduce below a derivation presented

in [20]:

We treat the chain of particles as a string. Since a particle of diameter h

and mass m corresponds to a segment of string of length h, we let the density

of the string ρ = m
h
. Similarly the elastic modulus E = kh. Then we can

rewrite the above equation as:

d2xj
dt2

=
c2

h2
(xj+1 + xj−1 − 2xj)[1 + α(xj+1 − xj−1)] (6)

Now we define u(x, t) the displacement of the string at position x and time

t. The equation then becomes a PDE:

utt(x, t) =
c2

h2
(u(x+ h, t) + u(x− h, t)− 2u(x, t))

× [1 + α(u(x+ h, t)− u(x− h, t))] (7)

Now we expand u(x± h, t) about x to get:

u(x+ h, t) + u(x− h, t)− 2u(x, t) = h2uxx(x, t) +
h4

12
uxxxx(x, t) +O(h6) (8)

and

1+α(u(x+h, t)−u(x−h, t)) = 1+α(2hux(x, t)+
h3

3
uxxx(x, t)+O(h5)). (9)

Substitute (8) and (9) into (7):

utt = c2(uxx +
h2

12
uxxxx)[1 + α(2hux +

h3

3
uxxx)] +O(h4)

1

c2
utt − uxx =

h2

12
uxxxx + 2αhuxuxx +O(h3) (10)

If the h2 term is dropped along with the other higher order terms, we get a

system that exhibits behaviour qualitatively different from that seen in the

FPU chain – see Appendix 2 for more details.
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To look for solitary wave solutions of this, we change variables:

ξ = x− ct, τ = αhct, y(ξ, τ) = u(x, t). The equation then becomes:

yξτ −
αh

2
yττ = −yξyξξ −

h

24α
yξξξξ (11)

In the continuum limit, as the length of the chain goes to infinity, the

particles become infinitesmal elements so h→ 0. We assume α scales with h

and let µ = limh→0

√
h

24α
, giving:

yξτ + yξyξξ + µ2yξξξξ = 0 (12)

Now substituting v = yξ gives us the KdV equation (1):

vτ + vvξ + µ2vξξξ = 0

The discovery of this relationship by Zabusky and Kruskal has been in-

strumental in attempting to unravel the mysteries of the FPU problem – the

key point being that the solitons in the KdV equation provide part of the

explanation for phenomena observed in the FPU system which cause the lack

of thermalization. (See [8] for further discussion.)

7
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2 Methodology

The studies described in this essay were concurrently carried out numerically

by me in Oxford and experimentally by collaborators in the California In-

stitute of Technology. In the following subsections, I describe the Hertzian

contact model we used, the principles used to measure the "order" in a sys-

tem, the experimental apparatus, and the numerical simulations.

In this essay I often refer to "weakly nonlinear" or "strongly nonlinear"

systems. As a short aside, let me attempt to clarify the differences be-

tween the two terms. "Weakly nonlinear" systems are those in which the

displacement caused by the nonlinear terms is only a small proportion of the

displacement caused by the linear terms. For example, in the FPU chain,

the nonlinear terms account for less than a tenth of the displacement [12].

On the other hand, in "strongly nonlinear" systems, most of the displace-

ment is caused by the nonlinear term. In this system of particles presented

below (13), there is no linear term at all due to the assumption that the

particles interact according to the Hertzian contact model. In fact, without

a linear term from gravity or precompression, we cannot usefully linearise

the system. Precompression refers to having a constant initial compressive

force between the particles; chains of particles with significant precompres-

sion have been studied [18, 27]. In [23] there was a linear term due to the

presence of gravity which was unavoidable because of the vertical alignment

of the beads, but in this essay we use a horizontal setup for the experiments

(see section 2.3). Gravity and precompression are methods of introducing a

linear term to systems like these, and theoretically by adjusting them one

would be able to adjust the strength of the nonlinearity in the system [27].

8



2 METHODOLOGY

2.1 Hertzian Contact Model

The chain of beads is modelled as a conservative one-dimensional lattice with

Hertzian interactions between particles [18, 23, 27]. The Hertz contact law

relates the compression of two adjacent beads to the repelling force between

them. Using this model, [23] reported good agreement between the numerical

simulations and experimental data, and we obtained similar agreement in this

study (see section 3). For our N -particle chain, this Hertzian contact law,

together with Newton’s Second Law, gives us a set of N coupled 2nd order

ordinary differential equations (ODEs):

d2yj
dt2

=
Aj−1,j

mj

δ
3/2
j −

Aj,j+1

mj

δ
3/2
j+1,

Aj,j+1 =
4EjEj+1

√
RjRj+1

Rj+Rj+1

3[Ej+1(1− ν2
j ) + Ej(1− ν2

j+1)]
, (13)

where j ∈ {1, . . . , N}, yj is the coordinate of the centre of the jth particle

measured from its rest position, δj ≡ max{yj+1 − yj, 0} for j ∈ {2, . . . , N},

δ1 ≡ 0, δN+1 ≡ max{yN , 0}, Ej is the elastic modulus of the jth particle, νj

is its Poisson’s ratio, mj is its mass, and Rj is its radius. The 0th particle

represents the striker, and the (N + 1)st particle represents the wall.

Very loosely, the elastic modulus and Poisson’s ratio of an object are

measures of how stiff it is. When a force is applied to an object, the elastic

modulus is a measure of how much it deforms in the direction of the force,

and the Poisson’s ratio is a measure of how much it deforms in the direction

perpendicular to the force applied [19].

I will explain Eq. (13) briefly. Newton’s Second Law gives us, for the jth

9



2 METHODOLOGY

bead:

mj
d2yj
dt2

= Fj−1 − Fj+1,

where Fj−1 is the force exerted on the jth bead by the (j − 1)st bead, and

Fj+1 the force exerted on the jth bead by the (j + 1)st bead. The Hertz

contact law then specifies the force between beads: Fj−1 = Aj−1,jδ
3/2
j and

Fj+1 = Aj,j+1δ
3/2
j+1. While a full derivation of the Hertz contact law is too

lengthy, I give here a brief justification of the 3/2 power law, as in [27]:

Consider two identical beads of radius R and elastic modulus E. They

have an approximately circular contact area with radius r̃, so the area is

proportional to r̃2. Then if we let δ be the overlap of the two beads as above,

and r a measure of the deformation of the beads, r ∼ δ
r̃
.

Then the pressure on each bead P = Er. But pressure is the force per

unit area, so P ∼ F
r̃2

also, where F is the (Hertzian) force between the beads.

So we get:

Er ∼ F

r̃2
.

Substituting in r ∼ δ
r̃
and rearranging gives:

F ∼ Eδr̃

Geometrically (see Fig. 2), r̃2 ≈ 2Rδ, so r̃ ∼
√
Rδ. Hence we get:

F ∼ ER
1
2 δ

3
2 . (14)

10



2 METHODOLOGY

Figure 2: Diagram of deformed bead showing the geometrical step. The grey

area is deformed. In the diagram d = δ, q = r̃. The right-angled triangle

gives us r̃2 + (R− δ)2 = R2, and hence r̃2 = 2Rδ −O(δ2).

2.2 Elastic Spin Systems

Spin, a concept originally associated with the literal spin of subatomic par-

ticles, is also used to describe systems in which particles can be in any of

several discrete states. It has been used successfully to characterise various

phenomena. For example, when studying the magnetic properties of a ma-

terial, a "spin" would be used to describe the tiny magnetic dipoles in the

material, which (in many materials) can be oriented in two directions.

Here it is a convenient quantity used to define the degree of "order" in our

chains. In [23] work was done on general classes of dimers and trimers, and a

"N1 : N2 A:B dimer cell" means a "cell" consisting of N1 particles of material

A followed by N2 particles of material B (see Fig. 3). A similar convention is

used for trimers. For most of this essay I will focus on 1:1 dimer cells, that is,

11
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pairs of particles of 2 different materials. As such, because the pair has two

possible orientations, we can describe one orientation as an "up" spin and

the other as a "down" spin. Now if many of the dimers are oriented in the

same way we describe the system as being more ordered, while conversely if

fewer dimers are oriented in the same way we decribe the system as being

less ordered. So we define an order parameter M as follows:

M =
|Nup −Ndown|
Nup +Ndown

(15)

and analogously call this "magnetism".(Henceforth we call "total number of

spins" Ntotal, Ntotal = Nup + Ndown.) This definition of the order parameter

is very simple, and also allows us to vary it easily by flipping any number

of dimers one way or another. Also, the definition ensures that M is al-

ways between 0 and 1. The crux of the study, therefore, is investigating the

behaviour of the propagated wave as this parameter M is varied.

This order parameter is not entirely infallible. For instance, a sequence

of spins "up down up down..." would have M = 0 but be a regular ordering

of tetramer cells. However, as the numerical results are averaged over a

large number of simulations, such statistically unlikely outliers do not have

consequential effects. A quick calculation reveals that for Ntotal as low as 30,

if M = 0, the chances of getting a perfect sequence of up spins and down

spins (mentioned above), are about 7.8× 107 to one against. As such, while

future work may involve the consideration of such longer-range correlations

in measuring order, the quantity M is well-suited for our purposes.

12



2 METHODOLOGY

Figure 3: A N1 : N2 Steel:PTFE dimer cell.

2.3 Experimental Setup

In this study, the experimentalists used 4 different types of beads – large and

small steel beads, teflon, and aluminium (see Table 1). They constructed a

guide out of two steel bars clamped on a sine plate, and aligned the setup

horizontally (see Fig. 4). (A slight tilt – 3.5 degrees – was applied to ensure

contact between adjacent particles.) To measure the force and velocity of the

propagated waves, specific beads had sensors placed inside them as in [23].

These piezo sensors were inserted into two small steel beads, which were then

placed into the chain, one after dimer 19 and one after dimer 23 (see Fig. 4).

These sensors measured the force amplitude of the propagated wave at any

time. The wave was generated by launching a striker, typically a large steel

bead, down a ramp. The initial velocity was then observed with a high-speed

camera.

2.4 Numerical Simulations

The method I used for the numerical simulations was to convert the equations

of motion into 2N coupled 1st order ODEs, which I then solved numerically

using the 4th order Runge-Kutta method. (The method is described in Ap-

pendix 1.) I then used the same configurations as the experimentalists (see

13
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Table 1: Material properties (mass, Elastic Modulus, Poisson’s Ratio, and

radius) of the various beads.

Material m(g) E (GPa) ν Radius (mm)

Large Steel 3.63 193 0.30 4.76

Small Steel 0.45 193 0.30 2.38

PTFE 0.123 1.46 0.46 2.38

Aluminium 1.26 72.4 0.33 4.76

Figure 4: A typical experimental setup. "Pairs" here refer to dimers. Figure

courtesy Nicholas Boechler.

14
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the results section below). After confirming that there was agreement be-

tween experimental and numerical data, I was able able to use the numerical

simulations to carry out various experiments which would have been too

difficult or time-consuming to be done in reality.

For one thing, the experimentalists were forced to work with only a few

sensors that they had to painstakingly construct themselves, and in this study

could only take measurements from two beads in the chain. Even if they had

been able to insert a sensor into each bead, doing that would have introduced

not insignificant inaccuracies in the material parameters in Table 1. On the

other hand, I was able to observe the propagated wave at any bead at any

time, and manipulate this data conveniently.

Furthermore, the experiments required large amounts of physical effort,

as the chain had to be rearranged manually and carefully set up each time.

Another issue was that if a particle is not aligned properly, it undergoes

motion in all three spatial dimensions and hence does not adhere to our one-

dimensional study. While in [23] the particles were all the same size, one can

see that this problem would be exacerbated by having particles of varying

radii. The experimentalists used "restraining plates" to combat this, which

again had to be reconfigured for each arrangement of dimers. In contrast

I was able to automatically conduct numerous simulations in all sorts of

different conditions.

In addition, since dissipative effects are not programmed, I was able to

observe the nonlinear effects without any obscuration. It turns out that in

physical experiments, dissipative effects are often large enough to come into

play, especially with "softer" materials such as teflon [23]. A recent paper [5]

15



2 METHODOLOGY

studied these effects quantitatively, using similar experimental apparatus.

However, this study focuses more on the nonlinear effects. As such, the

experimentalists used "harder" materials to minimise dissipation, and I did

not include dissipation in my numerical simulations, in order to be able to

maintain and examine the propagated wave for any length of chain.

Thus we see that using extensive numerical computations was critical

in this study. By its very nature, MATLAB with its vector computations

proves to be very useful for handling 2N coupled ODEs – it simply treats

y as the 2N -vector required. Essentially, MATLAB provided me with a

laboratory with enormous potential. In terms of length of the dimer chain, I

was limited only by the computational power of my machine (Intel R©CoreTM2

Duo 2.40GHz P8600 processor, 4GB RAM) – as a rough estimate, 2000

simulations of a chain with 500 particles took about 2 days to run. (This

was the maximum for this study.) One version of the MATLAB code I was

using is presented in Appendix 4.

16



3 RESULTS

3 Results

First, we look at the results from the experimentalists, and compare them

directly with the numerical simulations. They considered a chain of 68 beads

– 1 dimer in a fixed orientation, 18 dimers which could be flipped, 14 more

"fixed" dimers at the end, and 2 sensors as mentioned in section 2.3 (see

Fig. 3). When a wave propagates through a series of dimers with different

orientations, we observed that the wave structure can be "disrupted". Hence

by having several dimers of fixed orientation, we allow the wave to stabilise

somewhat, thus obtaining more accurate measurements.

By considering the first 20 dimers (so Ntotal = 20), and changing the ori-

entation of the middle 18 of those 20, they were able to conduct 3 experiments

for each value of M (except M = 1, which has only one fixed configuration).

Note that from the definition of M , for Ntotal even, M can only take the

values 2k
Ntotal

, k = 0, 1, · · · , Ntotal
2

. So in this case M = 0, 0.1, 0.2, · · · , 1. The

two piezo sensors gave two "channels" of data, which were then normalized

so that the maximum force in channel 1 was valued 1. Experiments were

carried out for both large steel:small steel dimers and large steel:aluminium

dimers, but the large steel:small steel results were badly affected by the diffi-

culties with the differing radii (mentioned in section 2.4), so we focus mainly

on the large steel:aluminium dimers from now on.

Figure 5 shows some of the experimental results, and the corresponding

numerical simulations I carried out. These plots of force against time demon-

strate clearly the agreement between the experiments and the numerics. The

diagram also shows the solitary wave propagating through the chain – the

two peaks are because the graphs from the two sensors are superimposed.

17



3 RESULTS

The small differences between the experimental results and the numerics,

most noticeably in the secondary waves trailing behind the peaks, is due

to dissipation and other inevitable inaccuracies associated with real-world

experiments.

We can also look at the maximum force for a specific configuration of M ,

and then plot a graph of force against M . Figure 6 shows the experimental

plot and the numerics, again demonstrating good agreement. Both exper-

iments and numerics indicate the existence of two different "regimes" – a

"plateau" where, at lowM , the propagated wave does not depend onM ; and

at higher M , the propagated wave increases with increasing M . From this

we postulate a threshold Mc between the two regimes. Having established

the agreement between our numerical model and the experimental data, we

then proceed to investigate this system more extensively numerically.

I conducted numerical simulations for many values of Ntotal. I would

consider a chain ofNtotal+15 dimers, where the last 15 are in fixed orientation.

For each value of M I would then run the simulation for 20 randomly chosen

configurations of the chain. The maximum force was measured between

three and five particles after the end of the flipped dimers. This was then

normalised, averaged and plotted – Figure 7 shows diagrams for 32, 64, 128

and 256 dimers. We can see much more clearly now the two regimes and the

threshold.

We also note that Mc increases with increasing Ntotal. Hence, for a very

long chain of dimers, one would expect that only very few dimers oriented in

the "wrong" direction would cause a propagated wave to be in the delocalized

regime, which could have possible industrial applications, for instance in
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Figure 5: (Left) Experimental plots for steel:aluminium dimers – for high M

(top), mediumM (middle) and lowM (bottom). (Right) The corresponding

numerical simulations. All the diagrams on the left are courtesy Nicholas

Boechler.
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Figure 6: (Left) Experimental plots for steel:aluminium dimers (diagram

courtesy Nicholas Boechler). Each colour/shape represents a different con-

figuration (with the same value ofM), and each point a separate experimental

run. (Right) The numerical simulations corresponding to these runs. There

are lines to guide the eye between the median values for each M .

defect detection.

Further research has been carried out on this by collaborators – by ap-

plying statistical physics methods to my numerical data, they were able to

discover further insights into the behaviour of the wave and the threshold

between the two regimes. See Appendix 3 for a brief discussion.
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Figure 7: (Top Left) The plot for 32 dimers. (Top Right) 64 dimers. (Bottom

Left) 128 dimers. (Bottom Right) 256 dimers.
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4 CONCLUSIONS AND FUTURE WORK

4 Conclusions and Future Work

In conclusion, we successfully extended previous work done on regular ar-

rangements of heterogenous chains to random arrangements of dimers. By

considering each dimer orientation to be either an "up" spin or a "down"

spin, we defined an elastic spin chain. My numerical simulations were in

good agreement with experiments, motivating us to use more numerical sim-

ulations of linear chains to study different aspects of the system in more

detail. We discovered a threshold dividing delocalised waves and clean prop-

agation of solitary waves.

From this springboard, much more theoretical work can be done on this

system (some of it is described in Appendix 3). This will hopefully allow

us to improve our understanding of these heterogeneous configurations. In

addition, we also hope to study other more complex systems, such as using

trimers for more complicated types of randomisation, and two-dimensional

granular crystals on which little work has been done before. Moreover, this

and subsequent studies are likely to be useful in certain areas of engineering.

It is hoped that this work will lead to further insights – not just in this

field of granular crystals, but also in the broader study of disorder in highly

nonlinear systems.
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Appendices

Appendix 1: The 4th-order Runge-Kutta Method

The 4th-order Runge-Kutta method is as follows: Given an initial-value prob-

lem of the form
dy

dx
= f(x, y), y(x0) = y0,

the method is given by:

yn+1 = yn +
j

6
(k1 + k2 + k3 + k4),

where j is the mesh size so that xn+1 = xn + j and the k’s are calculated at

each step, thusly:

k1 = f(xn, yn)

k2 = f(xn +
j

2
, yn +

j

2
k1)

k3 = f(xn +
j

2
, yn +

j

2
k2)

k4 = f(xn + j, yn + jk3).
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Appendix 2: A Brief Look at utt = c2uxx(1 + εux)

From Eq. (10), if we omit h2 and higher powers of h, we obtain:

1

c2
utt − uxx = 2αhuxuxx.

Because we let h→ 0 we can now write the equation as

utt = c2uxx(1 + εux),

where ε is small and positive. This can now be compared to a normal wave

equation, but with wave speed dependent on ux. Typically, this will result

in a propagated wave becoming more and more asymmetric until it develops

a shock front [13]. (A very rough diagram is shown in Fig. 8.) This type of

equation is of significant mathematical interest and has been studied since

the 19th century [3, 20].

In any case, the FPU system we want to study here exhibits very different

behaviour, in particular near-recurrence to the initial state [12, 20], so this

model is not appropriate. In fact, it was a significant discovery for Zabusky

and Kruskal when they kept the h2 term, and subsequently linked the FPU

chain to the KdV equation.
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Figure 8: A shock wave occurring as described above. The arrow to the right

indicates increasing time.
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Appendix 3: Further Insights

Using numerical data I supplied, Laurent Ponson was able to study the be-

haviour of the propagated wave in greater detail. I present a few of his

conclusions below. (The following was based on numerical simulations of a

steel:aluminium chain with Ntotal = 50, for which Mc ≈ 0.60.)

In the low-disorder regime, where M � Mc, we observed a nonlinear

wave pulse with width and velocity similar to those observed in regular ar-

rangements of heterogeneous chains [23]. The amplitude of the wave decays

exponentially as the wave propagates through the chain:

F = e−
xs
γ ,

where F is the amplitude of the wave, xs the sth particle is where the peak

of the wave is, and γ a constant depending on the material properties of the

chain and the magnetisation M .

Since most of the dimers are oriented in the same way in this regime,

we can consider a dimer in the opposite direction to be a "defect". By

considering the effect of a single defect on the propagated wave, we can

deduce the observed exponential decay. Each defect removes a small fraction

of the energy of the wave by Eafter = TEbefore, where Eafter is the energy of

the wave after the defect, Ebefore the energy of the wave before the defect,

and T a transmission coefficient depending on the material properties of

the chain. This formula remains accurate in the regime even when multiple

defects are next to each other. Now for a chain with magnetisation M , the

expected number of defects after passing through xs particles is xs(1−M),
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which tells us that the energy of the pulse

E = E0T
xs(1−M),

where E0 is the initial energy. Now applying the relation E ∼ F
5
3 from [18],

which relates the energy of a wave to its amplitude, we regain from before

F = e−
xs
γ .

In the high-disorder regime (M � Mc), the delocalised wave does not have

an obvious "peak" – but by considering the energy at the front of the wave,

we were able to observe a similar exponential decay. However, unlike in the

low-disorder regime, this does not depend on M – the behaviour of the wave

remains qualitatively similar for all M in this regime.
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Appendix 4: Sample MATLAB Code

Below I append one version of the MATLAB code I used in this project. This

particular version allows one to input a specific configuration of dimers in 0’s

and 1’s, and will return a large matrix with all the values of the force of the

wave at any bead at any time.

flip=[0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1];

[M,N]=size(flip);

buffer=10;

% number of sites

%ns=6*nf+51; % bead 1 = striker, beads 2--(ns) are the actual beads,

%bead (ns+1) is the wall

ns=2*N+1+buffer;

% time increment

kkmax=30000;

%%%%%%%%%% masses (in kg) %%%%%%%%%%

mass = zeros(1,ns); % initialize mass vector

m1 = .00045; % steel

m2 = .000123; % ptfe (teflon)

m7 = .00360187; % big steel

m8 = .00126; %aluminium
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mass(1) = m7; % steel striker

mass(2:ns) = m7;

%%%%%%%%%% young moduli (in PA) %%%%%%%%%%

ee = zeros(1,ns);

e1 = 1.93*10^11;

e2 = 1.46*10^9;

e8 = 7.24*10^10;

e7 = e1;

ee(1) = e1;

ee(2:ns) = e1;

%%%%%%%%%% poisson ratios (0.1--1); %%%%%%%%%%

nunu = zeros(1,ns);

nu1=0.3;

nu2=0.46;

nu8 = 0.33;

nu7 = nu1;

nunu(1)=nu1;

nunu(2:ns)=nu1;

%%%%%%%%%% radii %%%%%%%%%%
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rr = zeros(1,ns);

r1=.00476/2;

r7=.00952/2;

rr(1:ns)=r7;

%%%%%%%%%% dimer flips %%%%%%%%%%

for i=1:N

if flip(1,i)==1

mass(2*i)=m7;

ee(2*i)=e7;

nunu(2*i)=nu7;

mass(2*i+1)=m8;

ee(2*i+1)=e8;

nunu(2*i+1)=nu8;

else mass(2*i)=m8;

ee(2*i)=e8;

nunu(2*i)=nu8;

mass(2*i+1)=m7;

ee(2*i+1)=e7;

nunu(2*i+1)=nu7;

end

end
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% force coefficients

alp = zeros(1,ns);

%alp(1) = (4*ee(1)*ee(2)*sqrt(radius(2)))/(3*ee(2)*(1-nunu(1)^2)

+ 3*ee(1)*(1-nunu(2)^2));

alp(1:(ns-1)) = 4*sqrt(rr(1:(ns-1)).*rr(2:ns)

./(rr(1:(ns-1))+rr(2:ns))).*ee(1:(ns-1)).*ee(2:ns)

./(3*ee(2:ns).*(1-nunu(1:(ns-1)).^2)+3*ee(1:(ns-1))

.*(1-nunu(2:ns).^2));

ee(ns+1) = 9.02 * 10^10; nunu(ns+1) = 0.34; % brass

alp(ns) = (4*ee(ns)*ee(ns+1)*sqrt(rr(ns)))/(3*ee(ns+1)*(1-nunu(ns)^2)

+ 3*ee(ns)*(1-nunu(ns+1)^2)); % particle + brass wall

% particle (ns+1) is a brass wall; it has radius(ns+1) = infinity,

% E(ns+1) = 9.02 * 10^10 , and nu(ns+1) = .34

dt=10^-7;

kk=1;

it=1;

u1=zeros(1,ns); pu1=zeros(1,ns);

u=zeros(1,ns); pu=zeros(1,ns);
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apu=zeros(1,ns); k1pu=zeros(1,ns);

k2pu=zeros(1,ns); k3pu=zeros(1,ns);

k4pu=zeros(1,ns);

pu1(1) = 0.443;

timesteps = (kkmax/5)-1;

force = zeros(ns-1,timesteps);

%%%%%%%%%% the actual dynamical equations of motion %%%%%%%%%%

while (kk < kkmax)

u=u1; pu=pu1;

k1u=dt*pu;

delta(1) = 0;

delta(2:ns) = max(0,u(1:(ns-1)) - u(2:ns));

delta(ns+1) = max(0,u(ns) - 0);

delplot=delta;

k1pu(1) = dt*(-(alp(1))*delta(2)^(3/2)/mass(1));

k1pu(2:ns) = dt*((alp(1:(ns-1))).*delta(2:ns).^(3/2)./mass(2:ns)

- (alp(2:ns)).*delta(3:(ns+1)).^(3/2)./mass(2:ns));

au=u+k1u/2;

apu=pu+k1pu/2;
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k2u=dt*apu;

delta(1) = 0;

delta(2:ns) = max(0,au(1:(ns-1)) - au(2:ns));

delta(ns+1) = max(0,au(ns) - 0);

k2pu(1) = dt*(-(alp(1))*delta(2)^(3/2)/mass(1));

k2pu(2:ns) = dt*((alp(1:(ns-1))).*delta(2:ns).^(3/2)./mass(2:ns)

- (alp(2:ns)).*delta(3:(ns+1)).^(3/2)./mass(2:ns));

au=u+k2u/2;

apu=pu+k2pu/2;

k3u=dt*apu;

delta(1) = 0;

delta(2:ns) = max(0,au(1:(ns-1)) - au(2:ns));

delta(ns+1) = max(0,au(ns) - 0);

k3pu(1) = dt*(-(alp(1))*delta(2)^(3/2)/mass(1));

k3pu(2:ns) = dt*((alp(1:(ns-1))).*delta(2:ns).^(3/2)./mass(2:ns)

- (alp(2:ns)).*delta(3:(ns+1)).^(3/2)./mass(2:ns));

au=u+k3u;
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apu=pu+k3pu;

k4u=dt*apu;

delta(1) = 0;

delta(2:ns) = max(0,au(1:(ns-1)) - au(2:ns));

delta(ns+1) = max(0,au(ns) - 0);

k4pu(1) = dt*(-(alp(1))*delta(2)^(3/2)/mass(1));

k4pu(2:ns) = dt*((alp(1:(ns-1))).*delta(2:ns).^(3/2)./mass(2:ns)

- (alp(2:ns)).*delta(3:(ns+1)).^(3/2)./mass(2:ns));

u1=u+(k1u+2*k2u+2*k3u+k4u)/6;

pu1=pu+(k1pu+2*k2pu+2*k3pu+k4pu)/6;

if (mod(kk,5)==0)

force(1:ns-1,it) = .5*(alp(1:ns-1).*delplot(2:ns).^(3/2)

+ alp(2:ns).*delplot(3:ns+1).^(3/2));

it=it+1;

end;

kk=kk+1;

end;

imagesc(force)
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