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Abstract

This work concerns pattern formation in vertically driven granular
media. We generalize the work of Shankar C. Vankataramani and
Edward Ott to test notions about patterns found in vertically driven
granular media. A generalization of this model is present along with
some of the preliminary results.

1 Introduction

Discovered over 150 years ago, pattern formation in driven systems is a hal-
mark of non-equilibrium physics.2 Patterned states can be found in systems
as diverse as visual hallucianations, chemical reactions, and granular media.
Theoretical developments in mathematics have drastically affected under-
standing of pattern formation. Deterministic systems that exhibit pattern
formation are typically described by nonlinear partial differential equations
(PDEs) such as the Navier-Stokes equations for fluids, or reaction-diffusion
equations for chemical systems.4 However, not all systems with patterned
behavior have known deterministic equations. One example of such a system
is granular media. Which is consequently particularly interesting to study.

The motivation for Vankataramani and Ott’s8,9 work started with ex-
periments by Francisco Melo, Paul B. Umbanhowar, and Harry L. Swinney,6

who studied an apparatus consisting of two plates enclosing a layer of 0.15-
0.18 mm diameter bronze spheres. This layer was then periodicly forced.
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By varying the frequency and dimensionless acceleration, a wide variety
of patterns were obtained–including stripes, squares, and hexagons. These
patterns arose spontenously, not as a result of specific boundary conditions.
In other words, the patterned behavior was in the intrinsic dynamics of the
bronze spheres, where complete understanding is an important problem.

This situation motivated the work of Shankar C. Venkataramani and
Edward Ott to develop a simple framework to describe the experiments.8,9

Using a framework that they called continuum coupled maps (CCM) they
created a simulation with striking qualitative agreement with the experi-
ments of Melo et al.6 This framework forms the basis of this project.

The only direct approach available to model granular media involve par-
ticle simulation. While phenomenological models (such as CCMs) can be
used, their connection to the actual phenomena is not entirely clear.1

One can use a PDE model to provide a good description of the phe-
nomenon which remain simple enough to allow for analytic investigation.
Such methods often give insight that compliment numerical simulations.3

Vankataramani and Ott test Melo et. al6 hypothesis that the patterned
states they observed were a result temporal period doubling and a standing
wave instability. Modeling the dynamics of sand in discrete time, as done
in the CCM model, allows for period doubling to be include in a map the
exhibits period doubling. Discrete time also makes the length of orbits a
much more intuitive and testable phenomenon.

While there are apparant drawbacks with using phenomenological mod-
els and–in particular- models that discretize time or space, there are sub-
stantial computational gains offered of PDEs or simulations. Moreover, the
spatial operator in the CCM model can efficently implemented using the
fast Fourier transform techniques.

2 Continuum Coupled Map model

The CCM uses a continuous field while having discrete time. I will briefly
present the model used for the simulations, which is presented more thor-
oughly by Vankataramani and Ott.8,9

Let x ∈ R
2. At time n ∈ N, the height of the granular layer at position x

is ξn(x). To step ξn(x) forward in time a one dimensional map M is applied
to every x to obtain ξ

′

n
(x),

ξ
′

n
(x) = M [ξn(x), r] (1)
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where r is a parameter of the map. A linear spatial coupling operator is
then applied to the spatial field.

ξn+1(x) = L[ξ
′

n
(x)] (2)

Assuming translational invariance L, is of the form

L[ξ
′

n
(x)] = f(x) ⊗ ξ

′

n
(x) (3)

where ⊗ denotes convolution.
Let ξ̄

′

n
(k) and f̄(k) be the spatial Fourier transforms of ξ

′

n
(x) and f(x)

respectively. This yields

ξ̄n+1(k) = f̄(k)ξ̄
′

n
(k) (4)

The framework is then completely determined by the choices of M and f̄(k):

M(ξ, r) = r exp[−(ξ − 1)2/2] (5)

This map is similar to the logistic map, but does not have any orbits that
escape to negative infinity.8,9

The assumption of isotropy implies f is function of k = |k|. The Fourier
transform of this function is given by

f̄(k) = φ(k) exp[γ(k)] (6)

where φ and γ satisfy

γ(k) =
1

2

(

k

k0

)2
[

1 −
1

2

(

k

k0

)2
]

,

φ(k) = sgn(k2
c
− k2), (7)

where sgn(y) = 1 for y ≥ 0 and sgn(y) = −1 for y < 0. The function γ
has the property that f(0) = 1 wit maximum at k = k−1

0 , where k−1
0 is

the characteristic length of the model. The function f̄(k) decays quickly for
k > k−1

0 to discourage interactions that are longer than the characteristic
length.

The system has two parameters: r and (kc/k0)
2. The former is roughly

analogous to the dimensionless acceleration, whereas the latter is analogous
to the forcing frequency. The patterns and bifurcation diagrams are similar
qualitatively to patterns produced by in the granular media experiments.6
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The first stage of the work this summer invovled duplicating the patterns
given in Vankataramani and Ott.8,9 The following four figures are sampling
of the patterns that I produced, along with what figure they correspond to
in Venkataramani and Ott.9

Figure 1: Period-2 stripes obtained with r = 1.9 and (kc/k0)
2 = 5. (Fig

3a)9

Figure 2: Period-2 squares obtained with r = 1.9 and (kc/k0)
2 = 1.5. (Fig

3b)9

3 Two-frequency Forcing

Amoung the most facinating patterns are quasi-patterns (patterns that are
not spatially periodic but have rotational symmetry, for an example see
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Figure 3: Period-2 hexagons obtained with r = 2.05 and (kc/k0)
2 = 2.6.

(Fig 3c)9

Gollub and Langer4), which can result from multiple frequency forcing,5 I
decided to adapt two-frequency forcing into the model.

To introduce these changes as simply as possible, it ws natural to make
f̄(k) a linear combination of two functions that could have different frequen-
cies.

Let γ0(k) := γ(k) and φ0(k) := φ(k) so that f̄0(k) := f̄(k). Define

γ1(k) =
1

2

(

k

k1

)2
[

1 −
1

2

(

k

k1

)2
]

φ1(k) = sgn(k2
c1
− k2)

f̄1(k) = φ1(k) exp[γ1(k)]. (8)

We then define f̄c(k) to be

f̄c(k) = cos2 θf̄0(k) + sin2 θf̄1(k) (9)

where θ represents the relative contribution of each frequency.
The function f̄c(k) can be used in place of f̄(k) 6 in the original CCM

framework as it preserves the quality that f̄(0) = 1
This modification (eq. 9) introduces a second forcing frequency.
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Figure 4: Period-2 ”hills” in stripe pattern obtained with r = 1.73 and
(kc/k0)

2 = 2.5 (Fig 8d)9

Figure 5: A three-dimensional look at ”hills” pattern

4 Initial Findings

The most interesting pattern found so for in the two-frequency model are
period-2 quadrilaterals.

Continuation of this work will begin by doing a stability analysis of this
pattern. Unfortunately, quasi-patterns have yet to be found in this model.

5 Future Work

There are many directions to take this project from here. The first thing
that I would like to accomplish is to find a quasi-pattern in the two fre-
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Figure 6: Period-2 quadrilaterals for at r = 1.9, (kc0
/k0)

2 = 5, (kc1
/k1)

2 =
1.5, and θ = π/4 + .1975

quency model. Mason Porter would like to see all the patterns form the
Venkataramani and Ott’s papers8,9subject to two-frequency forcing model.
Shankar Venkataramani has shown interest in the stability or instablity of
hexagons in the two-frequency model.7 After finding a few more patterns
and showing their stablility, through linear stablity analysis, I would like to
see if they can be reproduced experimentally.
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