
TP24: Unovering networksSte�en ShaperSupervisors: Dr N Jones, Dr E López, Dr M A PorterWord ount: 8708AbstratI investigate numerially the performane ofrandom and guided strategies to disover thetopology of a network. I �nd that simple guidedmethods an exploit orrelations in omplex net-works to inrease the number of disovered edgesabove the random methods. I then study esti-mates of the global and loal network struture.Here I �nd that the more sophistiated teh-niques introdue serious biases whih severelya�et estimates of the loal network topology. Ishow that these inorret estimates depend evenqualitatively on the struture of the network be-ing disovered. I also brie�y study the impat oferroneously found edges on network disovery.I argue why the large sale topology is gener-ally easier to estimate than the loal struture.Finally I give reommendations for pratial ap-pliations of the disovery tehniques proposedhere.1 IntrodutionThe interdisiplinary �eld of network sienehas at least partially been driven by the inreas-ing availability of omputational power that hasmade it possible to work with large networks re-ated from real-world data. Prominent examplesof suh networks are the world-wide web (WWW- the network of websites joined by hyperlinks)or the internet (whih is the network of physialonnetions between omputers, usually studiedat the level of autonomous systems), protein in-teration networks (PINs) or soial networks likefriendship networks [1, 2, 3℄.In many ases, these empirial networks are

not omplete; for example, the WWW on-sists of billions of websites [4℄ and grows andhanges ontinually. For PINs the detetion ofinterating protein pairs is expensive and time-onsuming. Therefore an important question toask is whether the networks onstruted frominomplete data desribe the properties of theunderlying real systems reliably. Surprisingly,although this question has been raised often (fora reent example, see the onluding setion of[5℄), it has been addressed infrequently.Apart from the question about the reliabilityof inomplete data and potential biases, there isanother aspet of pratial importane: Is therean `optimal' strategy to adopt when we want tounover a network?The hoie of methods that an be appliedto disover a network depends on the ontext.For example, the topology of the internet is usu-ally mapped by sending signals from a soure toa spei�ed target and following the path of thesignal. This approah has been studied thor-oughly by Dall'Asta et al. [6℄. For the WWW,the standard tehnique is to `rawl' the web byfollowing hyperlinks from page to page. A simi-lar method alled `snowball' sampling has beenstudied in [7℄. Another rather well-studied set-ting is disovery by random walks [8℄. All theseapproahes have in ommon that the edges inthe network are easily aessible. Here the fo-us is on the opposite setting where the edgeshave to be found individually. This setting isommonly enountered in PINs; a reent paperby Shwartz et al. [9℄ has addressed the pro-ess of disovery on suh networks. They havefound that it is possible to improve the �nding ofinterations through predition; a similar result
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in a more general ontext has been obtained byClauset et al [10℄.I extend these �ndings by onsidering simpledisovery strategies and by measuring the topol-ogy of the so obtained networks. To ahieve this,I study numerially the behaviour of �ve meth-ods on various example networks. In setion 2.1I provide a short bakground on networks in gen-eral and on the networks studied here. Then Idesribe our disovery strategies in setion 2.2.We shall start our study in setion 3 with thebasi question of how many nodes and edgeseah methods disovers. We �nd that the guidedmethods are better than random tehniques in�nding edges, but are slower to over all nodesof a network. After that, we diret our atten-tion to topologial quantities �rst at the largesale of the entire network (setion 4) and thenat the loal level of individual nodes (setion 5).In general we �nd that whilst global struture isaptured well by all our methods, loal proper-ties are often estimated inorretly. Finally insetion 6, we brie�y address the problems thatarise through errors in the disovery proess. Inagreement with [11℄ we �nd that the impat oferroneously adding edges to the network is moresevere than the omission of edges. We end bysummarizing our key results and giving some di-retions for extensions of our work.2 Network models and disov-ery methods2.1 NetworksA network onsists of nodes (sometimes alsoalled verties in the literature) and edges (orlinks) onneting them. In general, there ouldbe di�erent types of nodes in a network (orgraph) - a famous example in the literature is thenetwork of ators with two types of nodes, atorsand movies, and edges between a movie and theators featuring in it. Edges ould be direted orweighted, for example in a road network weightsould be distane and there ould be one-waystreets. Here we shall rule out all suh ompli-ations and onsider only undireted unweightednetworks with only one type of node.We an represent a network in terms of itsadjaeny matrix M [1, 2, 3℄. For a network of

N nodes, M is an N × N matrix. If the nodes
i and j are onneted, we have Mij = 1, and
Mij = 0 otherwise. For undireted networks, Mis symmetri. We only onsider networks withno self-onnetions, that is Mii = 0.One of the most fundamental onepts of thestudy of network topology is the number of edgesattahed a node, whih is alled its degree andommonly denoted by the letter k. A widelystudied summary statisti of networks is theirdegree distribution p(k) whih gives the proba-bility that a node hosen uniformly at randomhas degree k.Here we shall not disuss our results on-erning the degree distribution of disovered net-works; although this is ertainly an importantissue, we annot make justi�ed laims in the lim-ited spae available to present our results.A signi�ant ontribution to the study of net-works has been made by Erdös and Rényi [12℄.They introdued the ensemble of random (ER)networks GN,P with N nodes where eah edge ispresent independently of any other with proba-bility P . The notion of ensembles is the sameas in statistial mehanis: Whereas it is hardlypossible to make preditions about a single real-ization of an ER network, we an infer the prop-erties of an average over many networks1. Aswe shall see, the unorrelated nature of the ERnetworks makes them speial for disovery; thismakes them useful to ontrast against the othernetworks we study.Most networks found in real systems have de-gree distributions quite di�erent from the ERnetworks. A muh-studied ensemble whih ex-tends the idea of the random graph to arbitrarydegree distributions is known as the on�gura-tion model (CM) [13℄. The ensemble is formedby all networks for a given degree distribution,appearing with equal probability. The real-ization of on�guration networks is non-trivial[14, 15, 16℄. I give a brief desription of the teh-nique I employed in Appendix A.1.The above ensembles deal with networks as1Tehnially, the analogy also requires a ounterpartof the Boltzmann fator in statistial mehanis. In thease of these random graphs, the networks in the en-semble are weighted by P E(1 − P )(K−E) where E is thenumber of edges in the network and K = N(N − 1)/2 isthe total number of possible edges [1℄
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Network N E N1 Nc 〈d〉 r CCalteh 769 16656 762 4 2.33 -0.066 0.409Reed 962 18812 962 1 2.46 0.023 0.318Haverford 1446 59589 1446 1 2.23 0.068 0.323ER 769 16642(50) 769(0) 1(0) 2.02(1) -0.005(6) 0.0564(4)CM 769 16656(0) 769(0) 1(0) 2.24(1) -0.065(8) 0.161(4)BA 769 16778(40) 769(0) 1(0) 2.06(1) -0.035(8) 0.099(2)Power grid 4941 6594 4941 1 18.99 0.004 0.080Table 1: Topologial properties of the networks studied. In the ase of the simulated networks,averages over 10 realizations are given and unertainties are one standard deviation. The numbers ofnodes and edges are N and E; N1 is the size of the largest omponent and Nc is the total number ofomponents (setion 4.1); 〈d〉 and dmax are the average and maximum geodesi lengths (setion 4.2);
r and C are the assortativity (setion 5.1) and lustering oe�ient (setion 5.2).stati objets and give no justi�ation as to howa network ame to have its struture. The en-semble proposed by Barabási and Albert (BA)[17℄ is a widely studied attempt to answer thisquestion. They model the growth of network bypreferential attahment: Starting from a smallnetwork, nodes are added one at a time. Eahnode omes with m edges. The probability thatit onnets to a node A in the network is propor-tional to its degree kA. Results for the BA net-works were generally similar to the other om-plex networks; they are therefore not presentedin the main body of the text and an be foundin Appendix B.1.Simulated ensembles do not generally ap-ture all the varieties of network strutures thatexist in real systems. We therefore also workwith empirially onstruted networks. Three ofthem are taken from the online soial network-ing site Faebook [18℄: They were onstrutedby ompletely sampling the `friendships' of stu-dents from the US universities Calteh, Reed andHaverford. In order to show more learly thedi�erenes between these real networks and thesimulated ones, the parameters for the simula-tions were hosen in suh a way that the num-ber of nodes N and edges E is similar to theCalteh network. Finally we inlude a networkfrom a ompletely di�erent �eld, the WesternPower Grid [19℄.The properties of all these network are sum-marised in Table 1. Fig. 1 shows the umu-lative degree distributions of the networks un-der study. The umulative distribution is given
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Figure 1: The umulative degree distribu-tions for the networks onsidered here on semi-logarithmi axes. Notie that only for the ERnetworks there are essentially no nodes with verysmall degrees.by P (k) =
∑∞

κ=k p(κ) and gives the probabil-ity that a randomly seleted node has degree kor larger. Notie that only ER networks have es-sentially no nodes with degrees below 20 whereason all the other networks, there is a signi�antfration of nodes with very small degrees.2.2 Disovery methodsImagine a searher who is given a list of thenodes in a network and the task to �nd the edgesamong them. We will assume that the searherremembers whih node pairs he has already in-
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vestigated and does not repeat a test on thesame pair. In some appliations he ould employspeialized tests; for example, for the disoveryof interating proteins, the tehnique of poolingan be employed where one protein is �rst testedagainst a large number of others and only if anyinteration is observed, one-to-one tests are per-formed [9℄. Suh approahes are not neessarilypossible in all appliations, so we exlude themhere.A partiularly important parameter is thenetwork overage fration t. We de�ne this tobe the fration of node pairs that the searherhas tested relative to all N(N − 1)/2 pairs (wefous on undireted networks and hene we takeall disovered edges as undireted). We an view
t as a time oordinate; the longer the disoverygoes on, the larger the disovered part of thenetwork. Alternatively we ould imagine thatthe searher has limited resoures and an onlypartially disover the network. In that sense,we assoiate a ost with eah test of a pair ofnodes. I have taken data starting at t = 0.1 upto t = 0.95 in intervals of 0.05.Mathematially, disovery strategies an bedesribed as follows. To reah the given over-age t, the searher performs tN(N − 1)/2 steps.At the beginning of a step, the searher is stand-ing on a node A. He then hooses another node
B aording to some strategy S. We an view Sas a probability distribution so that the proba-bility of seleting B is

P (B|A) = S(A,B,G) (1)Here G is the adjaeny matrix of the par-tially disovered network. After seleting B, thesearher determines if A and B are onnetedby some experiment. Finally he moves on toanother node C whih an be any node in thesearher's list, inluding A and B.We an diretly translate the requirementsof forbidding self-heks and double-heks intothis framework. We require
S(A,A,G) = 0 for all A,G (2)
S(A,B,G) = S(B,A,G) = 0 (3)if A and B have been testedEquipped with this formalism, we an de�ne thestrategies whih we will investigate in the follow-

ing setions. The above requirements are un-derstood to take preedene over the di�erentstrategies we de�ne below.The simplest approah is the uniformmethod. Here the searher selets a pair of nodesuniformly at random from the entire network foreah step. We an de�ne the strategy in termsof nA, the number of nodes whih have not beentested against A as
Su(A,B,G) =

1

nA

(4)The next node C is also hosen uniformly at ran-dom from the entire network.It is natural to ask if we an `do better' than

Figure 2: Illustration of the node seletion forthe degree and neighbour methods. The searheris standing on the blak node A. The andidatenodes (marked Bn) for the neighbour method arein green; for the degree method, the most likelynodes Bd are oloured blue.this. To answer this question, I introdue threemethods in whih the seletion of node pairs isnot ompletely random. Therefore we shall referto these as the `guided' strategies.The degree method selets B with a prefer-ene to high degrees:
Sd(A,B,G) ∝ kB (5)where kB is the degree of B, alulated by sum-ming all the elements of G in the row orrespond-ing to the node B. This seletion strategy is il-lustrated in Fig. 2. If the searher �nds an edge,he moves on to B; otherwise he remains at A. Ihave also inluded a small probability p = 0.01
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that both the seletion of B and the transitionto C is the same as in the uniform method. Thishas the e�et of preventing the searher frombeing `trapped' on a node in some pathologialases; also it ensures that nodes with degree zeroan be seleted.The neighbour strategy hooses B from thenodes that have an edge to one of the neighboursof A (for an illustration, see Fig. 2). If A has msuh nodes from whih to hoose B, the strategyis given by
Sn(A,B,G) =

{

m−1 if B is a 2nd neighb. of A
0 otherwise (6)So the searher hooses B uniformly at randomamong the seond neighbours of A. If m = 0,and generally with probability p = 0.01, B is se-leted aording to the uniform strategy. If thesearher �nds an edge, he moves on to B; other-wise he makes a uniform move with probability

p or remains at A, just as in the degree method.There are plenty of other strategies to study.Here I shall only present one important idea,namely to ombine the two above methods intothe hybrid strategy. Here the searher alternatesbetween the degree and neighbour methods. Forsimpliity, I only onsider the ase where thenumber of steps per method is �xed from theoutset. Of ourse, there are many other pos-sibilities where the more `suessful' strategy isgiven more steps; I have obtained some prelim-inary results for suh adaptive approahes butsine they are quite similar to the simple split-ting, I shall not disuss them any further. Tobe preise, eah strategy is applied 50 times intotal (that is, up to t = 0.95), and the numberof steps per appliation is onstant.It is lear that the guided methods annotwork right from the start. If no edges have beenfound, there are no nodes with non-zero degreesand also no seond neighbours. To irumventthis problem, I start these methods by perform-ing a uniform disovery with overage t = 2.5%.In all the above methods, the searher workswith all the nodes in his list; if he only works upto a limited overage, he has to aept that heannot test the onnetion between all the nodepairs. I have also devised a omplementary ap-proah whih is alled the subnet method. Herethe searher onentrates on a smaller number

of nodes
Ns =

1

2
+

√

1

4
+ tN(N − 1) ≈ N

√
t (7)whih are hosen uniformly at random from theentire network. Then he tests all node pairs inthat list for edges. Eqn. (7) is derived in Ap-pendix A.2.An important di�ulty in dealing with par-tially disovered networks is to handle the undis-overed part. In ontrast to the atual net-work, eah pair of nodes an exist in three dif-ferent on�gurations: onneted, unonneted,untested. The last term indiates simply thatthe searher has not yet investigated the respe-tive pair of nodes. For all the results shown here,the simplest method in dealing with the undis-overed network has been adopted: All untestedpairs of nodes are treated as unonneted.I have implemented and extensively testedall the ode that has been used to obtain thedata that is presented in the following setions.The most severe limitations were those of mem-ory and omputational omplexity and parti-ularly the trade-o� between memory and pro-essor usage. Most importantly, networks wererepresented in terms of their adjaeny matri-es. This means that memory usage inreasesquadratially with N ; whilst the Calteh-sizednetworks with N = 769 oupy about 600kB ofmemory, the power grid network has N = 4941nodes and requires 24MB of storage. Sine allthe networks to whih the disovery strategieswere applied are quite sparse (meaning that theaverage degree 〈k〉 = 2E/N ≪ N), the memoryusage an be redued by working with sparsematries whih only store the non-zero entries.The ompliation here is that for the disoverednetwork, the information to keep in the adja-eny matrix is more than binary: We have todisriminate not only between `edge found' and`no edge found' as usual but also between `notyet tested' (see above). As we go up to 95% ov-erage, working with full matries is neessary.The problem of memory usage has limitedthe size of networks to work with. Equally im-portant is the time taken to perform the atualomputations. Sine the number of node pairs tohek is N(N −1)/2, the duration also inreasesquadratially with N . In fat, the guided strate-
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ERCMFigure 3: The fration of non-isolated nodes fNagainst network overage t for the Calteh, CMand ER networks. Error bars are one standarddeviation.gies are even more time onsuming beause thetime taken to selet a node for testing also in-reases with the network size. For all the sim-ulations, I ran eah strategy 50 times on eahnetwork; for the simulated network, these runswere split over 10 realizations. As an order ofmagnitude, the duration for running eah strat-egy one (up to t = 0.95) on the Calteh networkis about 10 minutes on a standard desktop om-puter.3 Node and edge disoveryWe begin our omparison of the disoverymethods desribed above by asking how manynodes and edges they �nd for a given networkoverage. Whereas ounting edges is straight-forward, a node is only ounted as `disovered'if it has at least one edge attahed to it. Thisproedure of removing isolated nodes fromthe network is ommon in the literature [1℄;this is justi�ed beause suh nodes have no im-pat whatsoever on the struture of the network.3.1 Finding nodesFrom Fig. 3 we see that the uniform methodis the fastest to �nd at least one edge foreah node; unsurprisingly, the subnet strategy

is muh slower. This of ourse is an artifatof its onstrution. More interesting is the fatthat the guided methods perform nearly equallyon the omplex networks. It is lear that theyshould be slower than the uniform method be-ause they only look for edges between nodesthat have already at least degree 1. On the ran-dom graphs, the neighbour method is more su-essful.Generally, we observe that �nding the �rstedge for eah node is easier on the randomgraphs. This is a diret onsequene of the fatthat in the ER ensemble the number of nodeswith very small degree is muh smaller than onthe other networks (f. Fig. 1).3.2 Edge disovery
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Figure 4: The fration of disovered edges fEagainst network overage t for the Calteh, CMand ER networks. Error bars are one standarddeviation.When it omes to disovering edges, we seethat the guided methods learly beat the ran-dom tehniques (see Fig. 4). However, this doesnot apply to the ER networks where all methodsperform equally. Combining these two results,we are lead to the important onlusion that theguided methods an exploit orrelations (if exist-ing) to �nd more edges than a uniform searh.Taking into aount also the results for the Reedand Haverford networks (Figures B.4 and B.5 inAppendix B.2), the neighbour method seems toperform slightly better than the degree method.From our study of the power grid (see Fig.
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B.10 in Appendix B.3) we learn that there is aaveat to these results: On that network, themean degree 〈k〉 = 2E
N

≈ 3 is an order of magni-tude smaller than for the above networks (whihhave 〈k〉 ≈ 43). This extreme sparseness om-pliates the task for the guided methods: Manynodes have only very small degrees and heneit is hard to make use of any orrelations. In-deed we �nd that the degree method is the worstmethod to �nd edges; the neighbour method isslightly better than the random strategies.We note at this stage a ommon feature thatwe will �nd also in the following setions: Exeptfor the ER networks, the error bars for the sub-net method are generally larger than those of theuniform strategy. This is a onsequene of inho-mogeneity of the underlying networks. Conern-ing the number of found edges, this is expressedin the degree distribution (f. Fig. 1): There arequite a few nodes with very high degrees. If theyare inluded in the subnetwork, the number ofdisovered edges will be muh larger than if theyare missing. So the variane on the number ofedges is rather high. In ontrast we see that theuniform strategy is not sensitive to the underly-ing degree distribution.We now address some questions that fol-low from this result: Naively, we should expetthat �nding more edges improves our estimateof the network topology (in partiular as theseedges are spread among a smaller number ofnodes). We investigate if this intuition is or-ret by studying the struture of the disoverednetworks �rst at large sales and then at the levelof individual nodes and edges.4 Large sale strutureHere we fous on the global topology of thenetworks disovered by our strategies. To thisend, we �rst study the omponents of the net-works. A omponent is formed by all the nodesthat an be reahed from eah other only by fol-lowing edges [1℄. Then we look at the geodesidistanes (shortest path lengths) between nodesin the largest onneted omponent, measuredby the number of edges to ross in order to getfrom one node to the other. Both of these prop-erties are generally important for the funtion ofa network, in partiular for transport proesses.
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5.1 Assortativity
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Figure 7: The assortativity r against networkoverage t for the Calteh, CM and ER networks.Error bars are one standard deviation.The assortativity r has been proposed as ameasure of degree-degree orrelations [20℄. It isde�ned as an average over all edges:
r =

E−1
∑

n jnkn − [E−1
∑

n(jn + kn)/2]2

E−1
∑

n(j2
n + k2

n)/2 − [E−1
∑

n(jn + kn)/2]2(8)where E is the number of edges in the network,the sums go over all edges and jn, kn are the de-grees of the nodes at the ends of the nth edge. Wenote that when orrelations are positive (that is,high-degree nodes prefer to be onneted to eahother) then r > 0 and the network is said to beassortatively mixed. In the opposite ase whenhigh-degree nodes are mostly onneted to low-degree nodes, a network has r < 0 and displaysdisassortative mixing. r is normalized suh that
|r| ≤ 1.We an see from Fig. 7 that the guided meth-ods generally do not provide reliable estimates ofthe assortativity. The degree method generally�nds disassortative mixing; this is even the asefor networks whih are atually assortative suhas the Reed and Haverford networks (see Figs.B.6 and B.7 Appendix B). The performane ofthe neighbour method is less onsistent arossthe di�erent networks, and the hybrid strategygenerally mediates between the two. This makesit very hard (if not impossible) to extrapolate the
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assortativity of the underlying network from thedisovered ones. In ontrast, both the subnetand the uniform method get the orret valueof the assortativity for essentially any overage,and all networks onsidered here.5.2 Transitivity
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Figure 8: The average lustering oe�ient Cagainst network overage t for the Calteh, CMand ER networks. Error bars are one standarddeviation.Transitivity refers to the phenomenon thatnodes with a ommon neighbour tend themselvesto be onneted. This feature is partiularlyprominent in soial networks (f. Table 1): Of-ten people with a ommon friend are also friendsof eah other. This e�et an be quanti�ed bythe lustering oe�ient [19℄ whih for the node
A is de�ned to be

CA =
no. of edges between A's neighbours

kA(kA − 1)/2 (9)where kA is the degree of the node and the de-nominator e�etively is the maximum number ofedges that ould exist between the neighbours.If kA < 2, CA is onventionally set to zero. Insimple terms, the lustering oe�ient measuresthe probability that there is an edge between apair of neighbours of the node A.In Fig. 8 we show the lustering oe�ientaveraged over all non-isolated nodes in the net-work. The general piture is quite similar tothe assortativity: The guided strategies disover

subnetworks that have quite a di�erent loalstruture than the real network. Exept for theCalteh network, the subnet method providesvery good estimates for every overage. Its fail-ings on the Calteh (and also Reed and Haver-ford, see Figs. B.8 and B.9 in Appendix B.2)network tell us important information: It ap-pears that the triangles of mutually onnetednodes are not spread evenly throughout the net-work. This an be understood as a speial kindof inhomogeneity. In ontrast, the distributionof triangles in the simulated networks seems tobe homogeneous: There the subnet strategy isprodues muh better estimates of the lusteringoe�ient. We an view this distintion betweenthe real and simulated networks as a shortom-ing of the network models.The most remarkable feature of Fig. 8 how-ever is the result of the uniform method. Onall networks the urves appear very nearly lin-ear, although on loser inspetion the linearityturns out not to be exat2. A similar �ndinghas been reported in [7℄. We an understandthis behaviour by a simple rough argument: Theprobability that a given edge has been disoveredby the uniform method is equal to the overagefration t. The probability of �nding a losed tri-angle therefore sales with t3 and the two edgesrequired to establish a ommon neighbour is pro-portional to t2. The lustering oe�ient mea-sures the ratio of triangles to all ommon neigh-bours, and hene is linear in t. In Fig. B.12 inAppendix B we show that dividing out a fatorof t provides a reasonable yet not quite orretestimate of the atual lustering oe�ient, aswe should expet.It is important to note that there is no onsis-tent trend in the guided strategies: On the CMnetworks, all methods overestimate the luster-ing oe�ient. On the Calteh network, the de-gree method underestimates C while the neigh-bour strategy hanges to an overestimate atabout t = 0.6. As with the assortativity, thisdependene of the qualitative behaviour on theunderlying network makes it very di�ult to ex-2An exatly linear dependene an also be exluded bya simple theoretial argument: At t = 0, learly C = 0.However it requires at least 3 tests before the �rst trianglean be established; hene at t = 2/(N(N −1)), we alwayshave C = 0 and hene the exat relation annot be C ∝ t.
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trapolate a result from a partially disovered net-work to the entire underlying graph.In summary we have found that the estimatesof the loal network struture are estimated wellonly by the random methods. The guided meth-ods introdue severe biases. What is more, wehave seen that the behaviour is distint for eahmethod: Depending on the method, di�erentedges are disovered. Before summarizing ourresults, we brie�y disuss the in�uene of ran-dom errors in the determination of edges.6 Errors in the disovery
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Figure 9: The number of found edges when ran-dom errors our in the disovery, normalized bythe number of edges found without errors. Solidlines are for qn = 0, qp = 0.01 and dotted linesshow the ase qp = 0, qn = 0.05. The underlyingnetwork is Calteh.So far, we have assumed that the edgesof a network an be disovered without any er-rors. In many irumstanes, this assumption isde�nitely not valid and the onsequenes of er-roneous disoveries must be addressed.In priniple, we have to di�erentiate be-tween false-positive edges (i.e. those whih are`found' although not atually present) and false-negatives (i.e. erroneously omitted edges). Weallow for suh errors to our randomly withprobabilities qp and qn respetively. It is impor-tant to stress that these parameters are not theerror probabilities for a single experiment (whih

an be as high as qp ≈ 50% in protein inter-ation measurements [9℄). Rather these para-maters give the probabilities of making an erro-neoues assertion after repeated experiments.For the sparse networks under study here,most of the tests that the searher performs arebetween nodes that are unonneted in the realnetwork. Hene we should expet that the num-ber of erroneous test outomes is muh largerif qp = q, qn = 0 than if qn = q, qp = 0. InFig. 9 we on�rm that this is indeed the ase:With qn = 5%, we observe that only 95% of alledges are found, as expeted. In ontrast, with
qp = 1% the error rate is generally larger. Theguided strategies are initially produe less false-positives. This is a diret onsequene of thegreater number of disovered edges at low t (f.Fig. 4).Results for the other topologial measures areshown in Figs. B.13-B.16 in Appendix B.6: For
qp = 0, qn = 0.05 we see that the estimates arerelatively stable. However for qn = 0, qp = 0.01we observe large deviations from the error-freevalues. We only show the data for the Caltehnetwork; on the other networks, we have ob-tained similar results.It would however be premature to laim thatfalse-positives should be avoided at the ost ofinreasing the rate of false-negatives: We have tobear in mind that when the underlying networkis very sparse (like the power grid), too manyfalse-negatives an have dramati onsequenes,in partiular on the disovered omponent stru-ture.7 Conlusions and OutlookWe have studied the performane of di�erentdisovery strategies on a seletion of both sim-ulated and empirial networks. In partiular,we ompared the topologies of the disoverednetwork on both global and loal sales overthe omplete range of network overage. Ourmost fundamental result is that orrelationsan be exploited (provided they exist) bysimple guided methods in order to inrease thenumber of found edges signi�antly above theresults of a ompletely random strategy. Eventhough our guided strategies are quite di�erent,their performane in terms of edge �ndings
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Method N E Nc 〈d〉 r CSubnet 534(4) 8307(341) 3(2) 2.38(4) −0.065(18) 0.394(9)Uniform 740(4) 8314(61) 3(2) 2.63(2) −0.063(9) 0.390(12)†Degree 665(7) 13477(124) 2(1) 2.30(2) −0.145(6) 0.401(6)Neighbour 676(8) 13789(127) 5(2) 2.33(3) −0.065(6) 0.399(7)Hybrid 671(7) 13566(132) 4(2) 2.31(3) −0.108(7) 0.405(7)Real network 769 16656 4 2.33 -0.066 0.409Table 2: Overview of the disovery results of the Calteh network at overage t = 0.5. Unertaintiesare one standard deviation. The estimates that are losest to the atual values of the real Caltehnetwork are printed in bold fae. For the number of omponents Nc, the mean geodesi length 〈d〉,the assortativity r and the lustering oe�ient C, results are in bold fae if they are signi�antlydi�erent from the atual values. †: For the uniform method, the alulated lustering oe�ient hasbeen divided by t to give a better result.are surprisingly similar, given the network todisover is not too sparse.By the investigation of topologial propertieswe have shown that the suess of the guidedmethods omes at a ost: Due to their inherentbias towards a partiular kind of edges, theydisover a network that is not representativeof the underlying network. This ontrasts withthe behaviour of the uniform strategy whihin general gives results that are reliable arossdi�erent networks and whih appear onnetedto the network overage in simple ways. Forthe guided methods, we have found that whilethe omponent struture and path lengths areaptured rather well, the estimates of miro-sopi orrelations (in terms of assortativity andlustering) are generally far from the orretvalues. Furthermore we have seen that even thequalitative behaviour of the guided strategiesdepends on the underlying network. This makesis very di�ult if not impossible to extrapolatefrom a partially disovered network to the fullunderlying graph.The relative stability of the large sale mea-sures ompared to the mirosopi propertiesan be understood by the idea of `redundant'edges: The omponent struture often does notrely on a single edge. This result is prominentin the study of resiliene of networks against theremoval of edges [1, 2℄. Similarly, the path fromone node to another an in many ases followdi�erent routes, and the exlusion of a singleedge will not have a large impat on the averagepath length. Loally however every edge is

important: The assortativity is an averageover the degrees of the nodes at the ends ofeah edge, and hene depends not only on thenumber of edges that are found, but also onthe nodes to whih they are attahed. Clearlythe lustering oe�ient is also very sensitiveto the existene of eah individual edge: Toestablish a ommon neighbour requires twoedges, a losed triangle needs three. As we haveseen, the biased seletion of edges has severeonsequenes for these loal measures.In drawing together all our results, we wouldlike to answer the question with whih we haveset out: Can we reommend any single methodfor network disovery? To answer this question,we ompare the �ndings of the di�erent strate-gies. As an example, Table 2 shows the resultson the Calteh network at overage t = 0.5.Most importantly, we see that no single strategyis the best for all the properties onsidered here.So the �rst part of the answer to the abovequestion is no: There is no `best' strategy thatprodues orret estimates for every networkproperty. However, we an say that if one isonly interested in ertain speial quantities,some methods are better than others: If thetotal number of disovered edges is most impor-tant, it is advisable to adopt one of the guidedstrategies. In ontrast, the uniform methodgenerally outperforms the guided methods inestimating mirosopi orrelations suh asassortativity and lustering.We an sum up our results in the followingadvie: If the primary objetive in the disovery
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of a network is to �nd as many edges as possiblefor limited time or resoures, then a guidedstrategy should be employed. However if oneis interested in the detailed network struture,then the uniform method is generally preferable.The theory of network disovery is stillin its infany, and the present study opensmany further questions. Apart from oneivingother, more sophistiated disovery strategiesit is ertainly neessary to widen the range ofappliability by testing our methods on furthernetworks, both simulated and empirial.A possible extension of our methods ouldinlude the introdution of a ost not only fortesting a pair of nodes, but also for makingtransitions from one node to another. In manyappliations, this parameter is of interest: ForPINs, moving to another node at least requiresthe experimenter to obtain another hemial;in the ontext of soial networks, hanging thenode often means to interview another parti-ipant in a study. In that sense, moves in thenetwork are penalized; due to time onstraints,we ould not address this aspet here.From an appliational standpoint, it wouldbe very useful to look for `optimized' strategies.In view of our results, suh methods willpresumably be restrited to a subset networkproperties, and possibly also to a limited lassof networks. In onjuntion with suh results,another question would need to be addressed:Given a partially disovered network, how anwe assign it to a ertain lass? Without suhresults, optimal strategies for di�erent networkswould be of little use.It is also worthwhile to investigate the sizesof error bars further. In most ases a network isonly disovered one. So at the end of partialdisovery, one is only left with a single resultfor eah measurement, and an important taskis to estimate the unertainty of the obtainedvalue, or equivalently to determine on�deneintervals. This problem has been addressed forexample by Salganik [21℄; it would ertainlyinteresting to ompare his tehniques to reateon�dene intervals to the error bars that wehave found from our repeated disoveries.Finally, a very important problem is to dealwith the undisovered part of the network at

the end of a partial disovery. In this report,we have hosen the simplest solution whih is toassume that no edges are present in the undis-overed part. This is a lear oversimpli�ationand results in a number of false-negatives. Wehave obtained some preliminary results foranother solution: We have plaed further edgesrandomly between edges, with the probabilityfor a node to reeive more edges given by theratio of its degree to the tests performed on thatnode. Yet, this simple approah has not provedvery fruitful. Work on this problem would bepartiularly useful, and would omplement thesearh for an optimal strategy. Ultimately weaim for an understanding of the network as awhole so the ability to extrapolate from partialinformation would be highly valuable.AknowledgementsI thank my supervisors Nik Jones, EduardoLópez and Mason Porter for many interestingonversations and useful insights and omments.I am grateful to Peter Muha who providedme with aess to the Inventor Cluster at theUniversity of North Carolina at Chapel Hill.The luster is supported by the National Si-ene Foundation through award DMS-0645369and by start-up funds provided by the Institutefor Advaned Materials, Nanosiene and Teh-nology and the Department of Mathematis atthe UNC. All simulation results were obtainedon the luster.The data on the Faebook networks waskindly provided by Adam d'Angelo and Fae-book, and the power grid network was takenfrom Mark Newman's website. The original datawas ompiled and published by Dunan Watts.The basis for the ode used to onvert thatnetwork into matlab was provided by ThomasRihardson.Referenes[1℄ M.E.J. Newman. The struture and fun-tion of omplex networks. SIAM Review,45(2):167�256, 2003.
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AppendiesA Some details on implementa-tionIn general, I have tried to keep all ode asmodular and reusable as possible while at thesame time keeping the omputational omplex-ity low. For example, hoosing nodes with sele-tion probability proportional to their degree isrealized in the way proposed by Newman [1℄: In-stead of omputing the list of degrees eah timea node is seleted, I maintain a list in whih theindex n of a node appears kn times (kn is the de-gree of the node n as usual). Then the probabil-ity that an element drawn uniformly at randomfrom the list is n is proportional to kn.A.1 Realizing arbitrary degree distri-butionsIn order to onstrut an unorrelated networkwith an arbitrary degree distribution, I employedthe algorithm desribed in [14, 15, 16℄.I �rst build deterministially a network thathas the desired degree distribution. This isahieved by �rst assigning the degree to eahnode aording to the given distribution. Thisan be pitured as having kn `half-edges' stikingout of the node n. Then I take the node withthe lowest number of free half-edges and on-net it to the node with the highest number offree half-edges that is not onneted to the �rstnode. Repeating this proedure, I reate a net-work without multiple edges between any pair ofnodes and with the desired degree distribution.This of ourse will only work if the total numberof half-edges is even. If this is not the ase, thedegree distribution annot be realized.In the ensemble of networks with arbitrarydegree distribution, all possible realizations o-ur with equal probability. The above proeduredoes not reprodue this ensemble; the only rea-son to follow it is that it works without any po-tential deadloks (exept in a few pathologialases whih are not neessary to onsider here).In the seond stage, I shu�e the edges in thenetwork in the following way: Two nodes A and
C are drawn uniformly at random from the net-

Figure A.1: Illustration of the rewiring proessthat randomizes the on�guration model net-works.work, and for eah of them one of their neigh-bours is seleted (again, uniformly at random).Let the seleted neighbour of A be the node B,and that of C be D. Then the edges are rewiredso that A and C, and B and D, are onneted(see Fig. A.1), unless this introdues a self-edgeonneting a node to itself, or a multi-edge, thatis an edge between nodes that are already neigh-bours. This type of rewiring leaves the degreedistribution untouhed while at the same timerandomizing the nodes at the ends of the edges.After repeating these swaps su�iently often (Iperform 50E suh steps, where E is the totalnumber of edges in the network), the network isessentially ompletely randomized.A.2 The number of nodes to hek inthe subnet methodIn order to take snapshots of the networkat any given overage fration t, I have imple-mented the disovery strategies in suh a waythat they take as input parameters (among oth-ers) a partially disovered network and the num-ber of steps to perform before the next snapshot.This is straightforward for all methods exeptthe subnet method. Here the number of stepsannot be any integer: Instead, it must be suhthat it is possible to test a number of ompletelynew nodes among eah other, but also with thenodes that have been inluded in the subnet pre-viously.Let T be the number of steps to perform be-
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fore the next snapshot, and let No be the numberof nodes that are already inluded in the subnet.Then the number of nodes to add to the subnet
Na is determined from

T = Na(Na − 1)/2 + Na · No (A.1)The �rst term on the RHS of Eq. (A.1) rep-resents the tests between the added nodes, andthe seond term aounts for the tests betweenadded and old nodes. Solving the quadrati for
Na is straightforward:

0 = N2

a + 2Na(No −
1

2
) − 2T

⇒ Na =
1

2
− No +

√

(

No −
1

2

)2

+ 2T(A.2)Clearly we get an integer solution for Na only forertain values of T . In general, these values donot oinide with the overage steps of 0.05 thatI used for the data olletion. I have dealt withthis problem in the following way: Given thenumber of steps to perform between two snap-shots, I add as many nodes to the subnet aspossible without using more steps than allowed.The remaining steps are arried over and addedto the steps for the next snapshot.We an also use Eq. (A.2) to derive Eq.(7): The number of steps to perform is T =
tN(N − 1)/2, and the number of nodes initiallyin the subnet is No = 0. Thus we obtain

Na =
1

2
+

√

1

4
+ tN(N − 1) (A.3)as before.
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B Supplementary resultsB.1 The BA networksThe results for the disovery of the BA net-works are quite similar to the Calteh and CMnetworks. In Fig. B.1 we see that the guidedmethods are again better at �nding edges. How-ever it appears that here the degree methods isslightly better than the other two. Fig. B.2shows that the guided strategies tend to �nda disassortative mixing whih is not present inthe atual networks. Finally we observe fromFig. B.3 that the lustering oe�ient is overes-timated by the guided strategies. As in the otherases, the subnet and uniform methods produeuseful estimates of the assortativity and luster-ing oe�ient.
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Figure B.1: The fration of disovered edges fEagainst network overage t for the BA network.Error bars are one standard deviation.
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Figure B.2: The assortativity r against networkoverage t for the BA network. Error bars areone standard deviation.
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B.2 The Reed and Haverford net-worksThe Reed and Haverford networks show qual-itatively similar disovery behaviour as the Cal-teh network: The neighbour method is best at�nding edges (Figs. B.4 and B.5). Althoughthe networks are assortatively mixed, the de-gree method disovers a dissassortatively mixednetwork even for medium overage. The neigh-bour method aptures the assortativitiy ratherwell (see Figs. B.6 and B.7. In Figs. B.8 andB.9 we again observe the sensitivity of the esti-mated lustering oe�ient on the detailed net-work struture: The estimates are initially belowthe real value for all guided methods. At laterstages, the hybrid method produes an overesti-mate. On the Reed network, the same applies tothe neighbour method whilst the degree methodkeeps underestimating the atual value. On theHaverford network, this behaviour is reversed.The estimates of the subnet and uniform strate-gies are generally lose to the atual values, withthe usual exeption of the lustering oe�ient'sestimate by the uniform method.
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B.3 Edge disovery on the power gridThe power grid is di�erent from the other net-works onsidered here in that the average degreeis only about 3. This extreme sparseness hasimportant onsequenes for the disovery pro-ess: In Fig. B.10 we an see that the degreemethod is worst at �nding edges above a over-age of about t ≈ 0.4. The neighbour method stilloutperforms the uniform and subnet method buteven here the di�erene is muh smaller than onthe other networks (exept the ER ones wherethere is no di�erene at all).
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Figure B.10: The fration of disovered edges
fE against network overage t for the power gridnetwork. Error bars are one standard deviation.B.4 Component disovery on the Cal-teh networkThe Calteh network features three very smallomponents. This makes the interpretation ofthe number of disovered omponents (Fig. 5)more ompliated. From Fig. B.11 we an de-due that the degree method has partiular dif-�ulty in �nding the small omponents: From
t = 0.3 until t = 0.7 the degree method only�nds two omponents, and one of them is the gi-ant omponent of the real network. Only around
t = 0.8 the other small omponents are estab-lished. In ontrast, the neighbour method �ndsthe small omponents earlier; on the other hand,this strategy takes longer to �nd the edges that

link all the nodes of the largest omponent to-gether.
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Figure B.11: The fration of non-isolated nodesthat are part of the largest omponent fc againstnetwork overage t for the Calteh, CM and ERnetworks. Error bars are one standard deviation.B.5 Improving the estimate of thelustering oe�ient

0 0.2 0.4 0.6 0.8 1
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Network coverage t

R
es

ca
le

d 
cl

us
te

rin
g 

co
ef

fic
ie

nt
 C

(t
)/

(t
 C

re
al

)

 

 

Caltech
Reed
Haverford
CM
ER
BA

Figure B.12: The normalized lustering oef-�ient divided by t as found by the uniformmethod against network overage t.In Fig. 8 we have found that the luster-ing oe�ient estimated by the uniform methodappears to inrease nearly linearly with the net-work overage fration t. Fig. B.12 shows the
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estimated lustering oe�ient divided by t andthe atual value Creal. As already indiated insetion 5.2, the urves are distintly non-linearfor small values of t. For higher overage, divid-ing out the fator of t gets the estimated lus-tering oe�ient loser than 90% to the atualvalue. The best result is obtained on the ERnetworks where the estimate is essentially or-ret for t ≥ 0.3.B.6 Disovery with errorsWhen we allow for errors to our in thenetwork disovery, we have seen in Fig. 9 thenumber of erroneously found edges is larger ifonly false-positives are present than if only false-negatives an our. Here we study the in�ueneof the errors on the topologial properties of theCalteh network. Fig. B.13 shows that the exis-tene of false-positive leads to the situation thatthe distint omponents of the real network getonneted by erroneously plaed edges. On theother hand, false-negatives have a less severe im-pat. Only the neighbour method (and thus alsothe hybrid strategy) are strongly in�uened.From Fig. B.14 we learn that false-negativeshave almost no impat on the average pathlength. Even the onsequenes of inluding false-positives is rather small.The assortativity appears to hange drasti-ally (Fig. B.15): When looking at the diagram,we have to bear in mind that the absolute valueof r is tiny, so even (absolutely) small devia-tions appear large on the relative sale. Fur-thermore the assortativity an be both positiveand negative. It is remarkable how little the esti-mate of r hanges with false-negatives; only forthe neighbour method hanges slightly for lowoverage. The impat of false-positives is moredramati: For the subnet, uniform and neigh-bour strategies, the assortativity hanges sign forsmall t, and only the neighbour method reoversthe original sign at higher t.The piture is similar for the lustering o-e�ient. Fig. B.16 indiates that the esti-mate hanges little under the inlusion of false-negatives; when false-positives are added, thevariation is muh larger.Finally we note a surprising feature: Withfalse-positives, the guided methods appear gen-

erally more stable in their estimates. Exept forthe number of omponents, the relative hangein the estimates of the subnet and uniformstrategies is muh larger. However before we anmake a justi�ed laim here, further tests are er-tainly neessary.
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Figure B.13: The number of omponents whenrandom errors our in the disovery, normalizedby the number of omponents found without er-rors. Solid lines are for qn = 0, qp = 0.01 anddotted lines show the ase qp = 0, qn = 0.05.The underlying network is Calteh.
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Figure B.14: The average geodesi length whenrandom errors our in the disovery, normalizedby the average geodesi length without errors.Solid lines are for qn = 0, qp = 0.01 and dot-ted lines show the ase qp = 0, qn = 0.05. Theunderlying network is Calteh.
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Figure B.15: Assortativity when random errorsour in the disovery, normalized by the as-sortativity without errors. Solid lines are for
qn = 0, qp = 0.01 and dotted lines show the ase
qp = 0, qn = 0.05. The underlying network isCalteh.
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Figure B.16: The lustering oe�ient whenrandom errors our in the disovery, normal-ized by the lustering oe�ient without errors.Solid lines are for qn = 0, qp = 0.01 and dot-ted lines show the ase qp = 0, qn = 0.05. Theunderlying network is Calteh.
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