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Abstract

I investigate numerically the performance of
random and guided strategies to discover the
topology of a network. I find that simple guided
methods can exploit correlations in complex net-
works to increase the number of discovered edges
above the random methods. I then study esti-
mates of the global and local network structure.
Here I find that the more sophisticated tech-
niques introduce serious biases which severely
affect estimates of the local network topology. I
show that these incorrect estimates depend even
qualitatively on the structure of the network be-
ing discovered. I also briefly study the impact of
erroneously found edges on network discovery.
I argue why the large scale topology is gener-
ally easier to estimate than the local structure.
Finally I give recommendations for practical ap-
plications of the discovery techniques proposed
here.

1 Introduction

The interdisciplinary field of network science
has at least partially been driven by the increas-
ing availability of computational power that has
made it possible to work with large networks cre-
ated from real-world data. Prominent examples
of such networks are the world-wide web (WWW
- the network of websites joined by hyperlinks)
or the internet (which is the network of physical
connections between computers, usually studied
at the level of autonomous systems), protein in-
teraction networks (PINs) or social networks like
friendship networks [1, 2, 3|.

In many cases, these empirical networks are

not complete; for example, the WWW con-
sists of billions of websites [4] and grows and
changes continually. For PINs the detection of
interacting protein pairs is expensive and time-
consuming. Therefore an important question to
ask is whether the networks constructed from
incomplete data describe the properties of the
underlying real systems reliably. Surprisingly,
although this question has been raised often (for
a recent example, see the concluding section of
[5]), it has been addressed infrequently.

Apart from the question about the reliability
of incomplete data and potential biases, there is
another aspect of practical importance: Is there
an ‘optimal’ strategy to adopt when we want to
uncover a network?

The choice of methods that can be applied
to discover a network depends on the context.
For example, the topology of the internet is usu-
ally mapped by sending signals from a source to
a specified target and following the path of the
signal. This approach has been studied thor-
oughly by Dall’Asta et al. [6]. For the WWW,
the standard technique is to ‘crawl’ the web by
following hyperlinks from page to page. A simi-
lar method called ‘snowball’ sampling has been
studied in [7]. Another rather well-studied set-
ting is discovery by random walks [8]. All these
approaches have in common that the edges in
the network are easily accessible. Here the fo-
cus is on the opposite setting where the edges
have to be found individually. This setting is
commonly encountered in PINs; a recent paper
by Schwartz et al. [9] has addressed the pro-
cess of discovery on such networks. They have
found that it is possible to improve the finding of
interactions through prediction; a similar result



in a more general context has been obtained by
Clauset et al [10].

I extend these findings by considering simple
discovery strategies and by measuring the topol-
ogy of the so obtained networks. To achieve this,
I study numerically the behaviour of five meth-
ods on various example networks. In section 2.1
I provide a short background on networks in gen-
eral and on the networks studied here. Then I
describe our discovery strategies in section 2.2.
We shall start our study in section 3 with the
basic question of how many nodes and edges
each methods discovers. We find that the guided
methods are better than random techniques in
finding edges, but are slower to cover all nodes
of a network. After that, we direct our atten-
tion to topological quantities first at the large
scale of the entire network (section 4) and then
at the local level of individual nodes (section 5).
In general we find that whilst global structure is
captured well by all our methods, local proper-
ties are often estimated incorrectly. Finally in
section 6, we briefly address the problems that
arise through errors in the discovery process. In
agreement with [11] we find that the impact of
erroneously adding edges to the network is more
severe than the omission of edges. We end by
summarizing our key results and giving some di-
rections for extensions of our work.

2 Network models and discov-
ery methods

2.1 Networks

A network consists of nodes (sometimes also
called vertices in the literature) and edges (or
links) connecting them. In general, there could
be different types of nodes in a network (or
graph) - a famous example in the literature is the
network of actors with two types of nodes, actors
and movies, and edges between a movie and the
actors featuring in it. Edges could be directed or
weighted, for example in a road network weights
could be distance and there could be one-way
streets. Here we shall rule out all such compli-
cations and consider only undirected unweighted
networks with only one type of node.

We can represent a network in terms of its
adjacency matrix M [1, 2, 3]. For a network of

N nodes, M is an N x N matrix. If the nodes
¢ and j are connected, we have M;; = 1, and
M;; = 0 otherwise. For undirected networks, M
is symmetric. We only consider networks with
no self-connections, that is M;; = 0.

One of the most fundamental concepts of the
study of network topology is the number of edges
attached a node, which is called its degree and
commonly denoted by the letter k. A widely
studied summary statistic of networks is their
degree distribution p(k) which gives the proba-
bility that a node chosen uniformly at random
has degree k.

Here we shall not discuss our results con-
cerning the degree distribution of discovered net-
works; although this is certainly an important
issue, we cannot make justified claims in the lim-
ited space available to present our results.

A significant contribution to the study of net-
works has been made by Erdés and Rényi [12].
They introduced the ensemble of random (ER)
networks Gy p with N nodes where each edge is
present independently of any other with proba-
bility P. The notion of ensembles is the same
as in statistical mechanics: Whereas it is hardly
possible to make predictions about a single real-
ization of an ER network, we can infer the prop-
erties of an average over many networks'. As
we shall see, the uncorrelated nature of the ER
networks makes them special for discovery; this
makes them useful to contrast against the other
networks we study.

Most networks found in real systems have de-
gree distributions quite different from the ER
networks. A much-studied ensemble which ex-
tends the idea of the random graph to arbitrary
degree distributions is known as the configura-
tion model (CM) [13]. The ensemble is formed
by all networks for a given degree distribution,
appearing with equal probability. The real-
ization of configuration networks is non-trivial
[14, 15, 16]. I give a brief description of the tech-
nique I employed in Appendix A.l.

The above ensembles deal with networks as

'Technically, the analogy also requires a counterpart
of the Boltzmann factor in statistical mechanics. In the
case of these random graphs, the networks in the en-
semble are weighted by PZ(1 — P)E~E) where E is the
number of edges in the network and K = N(N —1)/2 is
the total number of possible edges [1]



Network N E Ny N, (d) r C
Caltech 769 16656 762 4 2.33 -0.066 0.409
Reed 962 18812 962 1 2.46 0.023 0.318
Haverford | 1446 99589 1446 1 2.23 0.068 0.323
ER 769 | 16642(50) | 769(0) | 1(0) | 2.02(1) | -0.005(6) | 0.0564(4)
CM 769 | 16656(0) | 769(0) | 1(0) | 2.24(1) | -0.065(8) | 0.161(4)
BA 769 | 16778(40) | 769(0) | 1(0) | 2.06(1) | -0.035(8) | 0.099(2)
Power grid | 4941 6594 4941 1 18.99 0.004 0.080

Table 1:  Topological properties of the networks studied. In the case of the simulated networks,
averages over 10 realizations are given and uncertainties are one standard deviation. The numbers of
nodes and edges are N and F; N is the size of the largest component and N, is the total number of
components (section 4.1); (d) and dy,q, are the average and maximum geodesic lengths (section 4.2);

r and C are the assortativity (section 5.1) and clustering coefficient (section 5.2).

static objects and give no justification as to how
a network came to have its structure. The en-

. Caltech / CM
semble proposed by Barabési and Albert (BA) Reed
[17] is a widely studied attempt to answer this 10t havertord
K ower grid
question. They model the growth of network by ER

preferential attachment: Starting from a small
network, nodes are added one at a time. Each
node comes with m edges. The probability that
it connects to a node A in the network is propor-
tional to its degree k4. Results for the BA net-
works were generally similar to the other com-
plex networks; they are therefore not presented
in the main body of the text and can be found
in Appendix B.1.

Simulated ensembles do not generally cap-
ture all the varieties of network structures that
exist in real systems. We therefore also work
with empirically constructed networks. Three of
them are taken from the online social network-
ing site Facebook [18]: They were constructed
by completely sampling the ‘friendships’ of stu-
dents from the US universities Caltech, Reed and
Haverford. In order to show more clearly the
differences between these real networks and the
simulated ones, the parameters for the simula-
tions were chosen in such a way that the num-
ber of nodes N and edges F is similar to the
Caltech network. Finally we include a network
from a completely different field, the Western
Power Grid [19].

The properties of all these network are sum-
marised in Table 1. Fig. 1 shows the cumu-
lative degree distributions of the networks un-
der study. The cumulative distribution is given
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Figure 1: The cumulative degree distribu-
tions for the networks considered here on semi-
logarithmic axes. Notice that only for the ER
networks there are essentially no nodes with very
small degrees.

by P(k) = > .2, p(k) and gives the probabil-
ity that a randomly selected node has degree k
or larger. Notice that only ER networks have es-
sentially no nodes with degrees below 20 whereas
on all the other networks, there is a significant
fraction of nodes with very small degrees.

2.2 Discovery methods

Imagine a searcher who is given a list of the
nodes in a network and the task to find the edges
among them. We will assume that the searcher
remembers which node pairs he has already in-



vestigated and does not repeat a test on the
same pair. In some applications he could employ
specialized tests; for example, for the discovery
of interacting proteins, the technique of pooling
can be employed where one protein is first tested
against a large number of others and only if any
interaction is observed, one-to-one tests are per-
formed [9]. Such approaches are not necessarily
possible in all applications, so we exclude them
here.

A particularly important parameter is the
network coverage fraction ¢t. We define this to
be the fraction of node pairs that the searcher
has tested relative to all N(IN — 1)/2 pairs (we
focus on undirected networks and hence we take
all discovered edges as undirected). We can view
t as a time coordinate; the longer the discovery
goes on, the larger the discovered part of the
network. Alternatively we could imagine that
the searcher has limited resources and can only
partially discover the network. In that sense,
we associate a cost with each test of a pair of
nodes. I have taken data starting at ¢ = 0.1 up
to t = 0.95 in intervals of 0.05.

Mathematically, discovery strategies can be
described as follows. To reach the given cover-
age t, the searcher performs tN(N —1)/2 steps.
At the beginning of a step, the searcher is stand-
ing on a node A. He then chooses another node
B according to some strategy S. We can view S
as a probability distribution so that the proba-
bility of selecting B is

P(B|A) = S(A, B,G) (1)

Here G is the adjacency matrix of the par-
tially discovered network. After selecting B, the
searcher determines if A and B are connected
by some experiment. Finally he moves on to
another node C' which can be any node in the
searcher’s list, including A and B.

We can directly translate the requirements
of forbidding self-checks and double-checks into
this framework. We require

S(A,A,G) 0 forall A,G (2)
S(A,B,G) = S(B,A,G)=0 (3)
if A and B have been tested

Equipped with this formalism, we can define the
strategies which we will investigate in the follow-

ing sections. The above requirements are un-
derstood to take precedence over the different
strategies we define below.

The simplest approach is the wuniform
method. Here the searcher selects a pair of nodes
uniformly at random from the entire network for
each step. We can define the strategy in terms
of n4, the number of nodes which have not been
tested against A as

1
Su(4,B,G) = — (4)
nA
The next node C'is also chosen uniformly at ran-
dom from the entire network.
It is natural to ask if we can ‘do better’ than

Figure 2: Illustration of the node selection for
the degree and neighbour methods. The searcher
is standing on the black node A. The candidate
nodes (marked B,,) for the neighbour method are
in green; for the degree method, the most likely
nodes By are coloured blue.

this. To answer this question, I introduce three
methods in which the selection of node pairs is
not completely random. Therefore we shall refer
to these as the ‘guided’ strategies.

The degree method selects B with a prefer-
ence to high degrees:

Sa(A,B,G) x kp (5)

where kp is the degree of B, calculated by sum-
ming all the elements of GG in the row correspond-
ing to the node B. This selection strategy is il-
lustrated in Fig. 2. If the searcher finds an edge,
he moves on to B; otherwise he remains at A. I
have also included a small probability p = 0.01



that both the selection of B and the transition
to C'is the same as in the uniform method. This
has the effect of preventing the searcher from
being ‘trapped’ on a node in some pathological
cases; also it ensures that nodes with degree zero
can be selected.

The neighbour strategy chooses B from the
nodes that have an edge to one of the neighbours
of A (for an illustration, see Fig. 2). If A has m
such nodes from which to choose B, the strategy
is given by

m~1 if B is a 2" neighb. of A

Sn(4, B, G) = { 0 otherwise
(6)
So the searcher chooses B uniformly at random
among the second neighbours of A. If m = 0,
and generally with probability p = 0.01, B is se-
lected according to the uniform strategy. If the
searcher finds an edge, he moves on to B; other-
wise he makes a uniform move with probability
p or remains at A, just as in the degree method.

There are plenty of other strategies to study.
Here I shall only present one important idea,
namely to combine the two above methods into
the hybrid strategy. Here the searcher alternates
between the degree and neighbour methods. For
simplicity, I only consider the case where the
number of steps per method is fixed from the
outset. Of course, there are many other pos-
sibilities where the more ‘successful’ strategy is
given more steps; I have obtained some prelim-
inary results for such adaptive approaches but
since they are quite similar to the simple split-
ting, I shall not discuss them any further. To
be precise, each strategy is applied 50 times in
total (that is, up to t = 0.95), and the number
of steps per application is constant.

It is clear that the guided methods cannot
work right from the start. If no edges have been
found, there are no nodes with non-zero degrees
and also no second neighbours. To circumvent
this problem, I start these methods by perform-
ing a uniform discovery with coverage t = 2.5%.

In all the above methods, the searcher works
with all the nodes in his list; if he only works up
to a limited coverage, he has to accept that he
cannot test the connection between all the node
pairs. I have also devised a complementary ap-
proach which is called the subnet method. Here
the searcher concentrates on a smaller number

of nodes

N, :%—k\/iﬁ—tN(N— 1)~ Nvt (7)
which are chosen uniformly at random from the
entire network. Then he tests all node pairs in
that list for edges. Eqn. (7) is derived in Ap-
pendix A.2.

An important difficulty in dealing with par-
tially discovered networks is to handle the undis-
covered part. In contrast to the actual net-
work, each pair of nodes can exist in three dif-
ferent configurations: connected, unconnected,
untested. The last term indicates simply that
the searcher has not yet investigated the respec-
tive pair of nodes. For all the results shown here,
the simplest method in dealing with the undis-
covered network has been adopted: All untested
pairs of nodes are treated as unconnected.

I have implemented and extensively tested
all the code that has been used to obtain the
data that is presented in the following sections.
The most severe limitations were those of mem-
ory and computational complexity and partic-
ularly the trade-off between memory and pro-
cessor usage. Most importantly, networks were
represented in terms of their adjacency matri-
ces. This means that memory usage increases
quadratically with N; whilst the Caltech-sized
networks with N = 769 occupy about 600kB of
memory, the power grid network has N = 4941
nodes and requires 24MB of storage. Since all
the networks to which the discovery strategies
were applied are quite sparse (meaning that the
average degree (k) = 2E/N < N), the memory
usage can be reduced by working with sparse
matrices which only store the non-zero entries.
The complication here is that for the discovered
network, the information to keep in the adja-
cency matrix is more than binary: We have to
discriminate not only between ‘edge found’ and
‘no edge found’ as usual but also between ‘not
yet tested’ (see above). As we go up to 95% cov-
erage, working with full matrices is necessary.

The problem of memory usage has limited
the size of networks to work with. Equally im-
portant is the time taken to perform the actual
computations. Since the number of node pairs to
check is N(NN —1)/2, the duration also increases
quadratically with V. In fact, the guided strate-
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Figure 3: The fraction of non-isolated nodes fx
against network coverage t for the Caltech, CM
and ER networks. Error bars are one standard
deviation.

gies are even more time consuming because the
time taken to select a node for testing also in-
creases with the network size. For all the sim-
ulations, I ran each strategy 50 times on each
network; for the simulated network, these runs
were split over 10 realizations. As an order of
magnitude, the duration for running each strat-
egy once (up to t = 0.95) on the Caltech network
is about 10 minutes on a standard desktop com-
puter.

3 Node and edge discovery

We begin our comparison of the discovery
methods described above by asking how many
nodes and edges they find for a given network
coverage. Whereas counting edges is straight-
forward, a node is only counted as ‘discovered’
if it has at least one edge attached to it. This
procedure of removing isolated nodes from
the network is common in the literature [1];
this is justified because such nodes have no im-
pact whatsoever on the structure of the network.

3.1 Finding nodes

From Fig. 3 we see that the uniform method
is the fastest to find at least one edge for
each node; unsurprisingly, the subnet strategy

is much slower. This of course is an artifact
of its construction. More interesting is the fact
that the guided methods perform nearly equally
on the complex networks. It is clear that they
should be slower than the uniform method be-
cause they only look for edges between nodes
that have already at least degree 1. On the ran-
dom graphs, the neighbour method is more suc-
cessful.

Generally, we observe that finding the first
edge for each node is easier on the random
graphs. This is a direct consequence of the fact
that in the ER ensemble the number of nodes
with very small degree is much smaller than on
the other networks (cf. Fig. 1).

3.2 Edge discovery
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Figure 4: The fraction of discovered edges fg
against network coverage t for the Caltech, CM
and ER networks. Error bars are one standard
deviation.

When it comes to discovering edges, we see
that the guided methods clearly beat the ran-
dom techniques (see Fig. 4). However, this does
not apply to the ER networks where all methods
perform equally. Combining these two results,
we are lead to the important conclusion that the
guided methods can exploit correlations (if exist-
ing) to find more edges than a uniform search.
Taking into account also the results for the Reed
and Haverford networks (Figures B.4 and B.5 in
Appendix B.2), the neighbour method seems to
perform slightly better than the degree method.

From our study of the power grid (see Fig.



B.10 in Appendix B.3) we learn that there is a
caveat to these results: On that network, the
mean degree (k) = % ~ 3 is an order of magni-
tude smaller than for the above networks (which
have (k) ~ 43). This extreme sparseness com-
plicates the task for the guided methods: Many
nodes have only very small degrees and hence
it is hard to make use of any correlations. In-
deed we find that the degree method is the worst
method to find edges; the neighbour method is
slightly better than the random strategies.

We note at this stage a common feature that
we will find also in the following sections: Except
for the ER networks, the error bars for the sub-
net method are generally larger than those of the
uniform strategy. This is a consequence of inho-
mogeneity of the underlying networks. Concern-
ing the number of found edges, this is expressed
in the degree distribution (cf. Fig. 1): There are
quite a few nodes with very high degrees. If they
are included in the subnetwork, the number of
discovered edges will be much larger than if they
are missing. So the variance on the number of
edges is rather high. In contrast we see that the
uniform strategy is not sensitive to the underly-
ing degree distribution.

We now address some questions that fol-
low from this result: Naively, we should expect
that finding more edges improves our estimate
of the network topology (in particular as these
edges are spread among a smaller number of
nodes). We investigate if this intuition is cor-
rect by studying the structure of the discovered
networks first at large scales and then at the level
of individual nodes and edges.

4 Large scale structure

Here we focus on the global topology of the
networks discovered by our strategies. To this
end, we first study the components of the net-
works. A component is formed by all the nodes
that can be reached from each other only by fol-
lowing edges [1]. Then we look at the geodesic
distances (shortest path lengths) between nodes
in the largest connected component, measured
by the number of edges to cross in order to get
from one node to the other. Both of these prop-
erties are generally important for the function of
a network, in particular for transport processes.
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Figure 5: The number of components N, against
network coverage t for the Caltech, CM and ER
networks. Error bars are one standard deviation.

4.1 Component structure

In general we can deduce from Fig. 5 that the
guided methods take longer to establish just one
large component. The fact that the neighbour
method is slowest can be explained from its de-
sign: Since the searcher tests for edges between
nodes with a common neighbour, they are al-
ready parts of the same component. Thus edges
joining two components are only found when the
searcher performs a uniform test.

The presence of 3 tiny components (with 3,
2 and 2 nodes) makes the interpretation of the
Caltech graph more difficult: However we can
conclude that it is generally hard to find small
components. By analysing the fraction of nodes
in the largest component (see Fig. B.11 in Ap-
pendix B.4), we can establish that the degree
method has particular difficulties with the small
patches.

4.2 Geodesic lengths

When analysing path lengths, we need to bear
in mind that they generally depend on compo-
nent sizes. This at least partially accounts for
the large average path length found by the uni-
form method, as seen in Fig. 6. We also see that
the networks discovered by the neighbour strat-
egy in general tend to have longer path lengths
than those coming from the degree and hybrid
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against network coverage t for the Caltech, CM
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method. A possible explanation is illustrated by
Fig. 2: An edge found by the neighbour method
can only reduce a path length by one; the degree
method instead is able to find more significant
shortcuts.

In summary, we see that the global topology
is captured rather well by all the methods we
consider. In all cases, the hybrid method me-
diates between the degree and neighbour strate-
gies. We now turn to the questions concerning
the local structure of the discovered networks.

5 Microscopic correlations

Above we have shown that we can exploit cor-
relations in complex networks in the search for
edges. We now ask a reverse question: Given we
have found disproportionally many edges, how
does this affect our estimates of local correla-
tions? To answer this, we consider two different
measures of correlations: First we look at the de-
grees of a node’s neighbours, and after that we
turn to the edges connecting these neighbours.
Both of these questions are ‘of higher order’ than
the mere existence of edges but are still local
in the sense that they only consider the direct
neighbourhood of each node.

5.1 Assortativity
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Figure 7: The assortativity r against network
coverage ¢ for the Caltech, CM and ER networks.
Error bars are one standard deviation.

The assortativity r has been proposed as a
measure of degree-degree correlations [20]. It is
defined as an average over all edges:

E_l Zn]nkn - [E_l Zn(]n + kn)/Q]z

BT B R B, Ut m){g?
where E is the number of edges in the network,
the sums go over all edges and j,, k, are the de-
grees of the nodes at the ends of the n" edge. We
note that when correlations are positive (that is,
high-degree nodes prefer to be connected to each
other) then r > 0 and the network is said to be
assortatively mixed. In the opposite case when
high-degree nodes are mostly connected to low-
degree nodes, a network has r < 0 and displays
disassortative mixing. r is normalized such that
Ir| < 1.

We can see from Fig. 7 that the guided meth-
ods generally do not provide reliable estimates of
the assortativity. The degree method generally
finds disassortative mixing; this is even the case
for networks which are actually assortative such
as the Reed and Haverford networks (see Figs.
B.6 and B.7 Appendix B). The performance of
the neighbour method is less consistent across
the different networks, and the hybrid strategy
generally mediates between the two. This makes
it very hard (if not impossible) to extrapolate the



assortativity of the underlying network from the
discovered ones. In contrast, both the subnet
and the uniform method get the correct value
of the assortativity for essentially any coverage,
and all networks considered here.

5.2 Transitivity
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Figure 8: The average clustering coefficient C'
against network coverage t for the Caltech, CM
and ER networks. Error bars are one standard
deviation.

Transitivity refers to the phenomenon that
nodes with a common neighbour tend themselves
to be connected. This feature is particularly
prominent in social networks (cf. Table 1): Of-
ten people with a common friend are also friends
of each other. This effect can be quantified by
the clustering coefficient [19] which for the node
A is defined to be

no. of edges between A’s neighbours

Ca = ka(ka —1)/2

(9)
where k4 is the degree of the node and the de-
nominator effectively is the maximum number of
edges that could exist between the neighbours.
If ka4 < 2, C4 is conventionally set to zero. In
simple terms, the clustering coefficient measures
the probability that there is an edge between a
pair of neighbours of the node A.

In Fig. 8 we show the clustering coefficient
averaged over all non-isolated nodes in the net-
work. The general picture is quite similar to
the assortativity: The guided strategies discover

subnetworks that have quite a different local
structure than the real network. Except for the
Caltech network, the subnet method provides
very good estimates for every coverage. Its fail-
ings on the Caltech (and also Reed and Haver-
ford, see Figs. B.8 and B.9 in Appendix B.2)
network tell us important information: It ap-
pears that the triangles of mutually connected
nodes are not spread evenly throughout the net-
work. This can be understood as a special kind
of inhomogeneity. In contrast, the distribution
of triangles in the simulated networks seems to
be homogeneous: There the subnet strategy is
produces much better estimates of the clustering
coefficient. We can view this distinction between
the real and simulated networks as a shortcom-
ing of the network models.

The most remarkable feature of Fig. 8 how-
ever is the result of the uniform method. On
all networks the curves appear very nearly lin-
ear, although on closer inspection the linearity
turns out not to be exact?. A similar finding
has been reported in [7]. We can understand
this behaviour by a simple rough argument: The
probability that a given edge has been discovered
by the uniform method is equal to the coverage
fraction t. The probability of finding a closed tri-
angle therefore scales with ¢3 and the two edges
required to establish a common neighbour is pro-
portional to t2. The clustering coefficient mea-
sures the ratio of triangles to all common neigh-
bours, and hence is linear in ¢. In Fig. B.12 in
Appendix B we show that dividing out a factor
of t provides a reasonable yet not quite correct
estimate of the actual clustering coefficient, as
we should expect.

It is important to note that there is no consis-
tent trend in the guided strategies: On the CM
networks, all methods overestimate the cluster-
ing coefficient. On the Caltech network, the de-
gree method underestimates C' while the neigh-
bour strategy changes to an overestimate at
about t = 0.6. As with the assortativity, this
dependence of the qualitative behaviour on the
underlying network makes it very difficult to ex-

% An exactly linear dependence can also be excluded by
a simple theoretical argument: At t = 0, clearly C' = 0.
However it requires at least 3 tests before the first triangle
can be established; hence at t = 2/(N (N —1)), we always
have C' = 0 and hence the exact relation cannot be C  t.



trapolate a result from a partially discovered net-
work to the entire underlying graph.

In summary we have found that the estimates
of the local network structure are estimated well
only by the random methods. The guided meth-
ods introduce severe biases. What is more, we
have seen that the behaviour is distinct for each
method: Depending on the method, different
edges are discovered. Before summarizing our
results, we briefly discuss the influence of ran-
dom errors in the determination of edges.

6 Errors in the discovery

Full lines are for qp:l%,dashed lines are qn:S%
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Figure 9: The number of found edges when ran-
dom errors occur in the discovery, normalized by
the number of edges found without errors. Solid
lines are for g, = 0,¢, = 0.01 and dotted lines
show the case ¢, = 0, ¢, = 0.05. The underlying
network is Caltech.

So far, we have assumed that the edges
of a network can be discovered without any er-
rors. In many circumstances, this assumption is
definitely not valid and the consequences of er-
roneous discoveries must be addressed.

In principle, we have to differentiate be-
tween false-positive edges (i.e. those which are
‘found’ although not actually present) and false-
negatives (i.e. erroneously omitted edges). We
allow for such errors to occur randomly with
probabilities g, and g, respectively. It is impor-
tant to stress that these parameters are not the
error probabilities for a single experiment (which
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can be as high as ¢, ~ 50% in protein inter-
action measurements [9]). Rather these para-
maters give the probabilities of making an erro-
neoues assertion after repeated experiments.

For the sparse networks under study here,
most of the tests that the searcher performs are
between nodes that are unconnected in the real
network. Hence we should expect that the num-
ber of erroneous test outcomes is much larger
if ¢p = ¢,¢n = 0 than if ¢, = ¢,qp = 0. In
Fig. 9 we confirm that this is indeed the case:
With ¢, = 5%, we observe that only 95% of all
edges are found, as expected. In contrast, with
¢p = 1% the error rate is generally larger. The
guided strategies are initially produce less false-
positives. This is a direct consequence of the
greater number of discovered edges at low ¢ (cf.
Fig. 4).

Results for the other topological measures are
shown in Figs. B.13-B.16 in Appendix B.6: For
gp = 0,q, = 0.05 we see that the estimates are
relatively stable. However for ¢, = 0,¢q, = 0.01
we observe large deviations from the error-free
values. We only show the data for the Caltech
network; on the other networks, we have ob-
tained similar results.

It would however be premature to claim that
false-positives should be avoided at the cost of
increasing the rate of false-negatives: We have to
bear in mind that when the underlying network
is very sparse (like the power grid), too many
false-negatives can have dramatic consequences,
in particular on the discovered component struc-
ture.

7 Conclusions and Outlook

We have studied the performance of different
discovery strategies on a selection of both sim-
ulated and empirical networks. In particular,
we compared the topologies of the discovered
network on both global and local scales over
the complete range of network coverage. Our
most fundamental result is that correlations
can be exploited (provided they exist) by
simple guided methods in order to increase the
number of found edges significantly above the
results of a completely random strategy. Even
though our guided strategies are quite different,
their performance in terms of edge findings



Method N E N, (d) r C
Subnet 534(4) | 8307(341) | 3(2) | 2.33(4) | —0.065(18) | 0.394(9)
Uniform 740(4) | 8314(61) | 3(2) | 2.63(2) | —0.063(9) | 0.390(12)f
Degree 665(7) | 13477(124) | 2(1) | 2.30(2) | —0.145(6) | 0.401(6)
Neighbour | 676(8) | 13789(127) | 5(2) | 2.33(3) | —0.065(6) | 0.399(7)
Hybrid 671(7) | 13566(132) | 4(2) | 2.31(3) | —0.108(7) | 0.405(7)
Real network 769 16656 2.33 -0.066 0.409

Table 2: Overview of the discovery results of the Caltech network at coverage ¢t = 0.5. Uncertainties
are one standard deviation. The estimates that are closest to the actual values of the real Caltech
network are printed in bold face. For the number of components N, the mean geodesic length (d),
the assortativity r and the clustering coefficient C, results are in bold face if they are significantly
different from the actual values. f: For the uniform method, the calculated clustering coefficient has

been divided by ¢ to give a better result.

are surprisingly similar, given the network to
discover is not too sparse.

By the investigation of topological properties
we have shown that the success of the guided
methods comes at a cost: Due to their inherent
bias towards a particular kind of edges, they
discover a network that is not representative
of the underlying network. This contrasts with
the behaviour of the uniform strategy which
in general gives results that are reliable across
different networks and which appear connected
to the network coverage in simple ways. For
the guided methods, we have found that while
the component structure and path lengths are
captured rather well, the estimates of micro-
scopic correlations (in terms of assortativity and
clustering) are generally far from the correct
values. Furthermore we have seen that even the
qualitative behaviour of the guided strategies
depends on the underlying network. This makes
is very difficult if not impossible to extrapolate
from a partially discovered network to the full
underlying graph.

The relative stability of the large scale mea-
sures compared to the microscopic properties
can be understood by the idea of ‘redundant’
edges: The component structure often does not
rely on a single edge. This result is prominent
in the study of resilience of networks against the
removal of edges [1, 2|. Similarly, the path from
one node to another can in many cases follow
different routes, and the exclusion of a single
edge will not have a large impact on the average
path length. Locally however every edge is
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important: The assortativity is an average
over the degrees of the nodes at the ends of
each edge, and hence depends not only on the
number of edges that are found, but also on
the nodes to which they are attached. Clearly
the clustering coefficient is also very sensitive
to the existence of each individual edge: To
establish a common neighbour requires two
edges, a closed triangle needs three. As we have
seen, the biased selection of edges has severe
consequences for these local measures.

In drawing together all our results, we would
like to answer the question with which we have
set out: Can we recommend any single method
for network discovery? To answer this question,
we compare the findings of the different strate-
gies. As an example, Table 2 shows the results
on the Caltech network at coverage t = 0.5.
Most importantly, we see that no single strategy
is the best for all the properties considered here.
So the first part of the answer to the above
question is no: There is no ‘best’ strategy that
produces correct estimates for every network
property. However, we can say that if one is
only interested in certain special quantities,
some methods are better than others: If the
total number of discovered edges is most impor-
tant, it is advisable to adopt one of the guided
strategies. In contrast, the uniform method
generally outperforms the guided methods in
estimating microscopic correlations such as
assortativity and clustering.

We can sum up our results in the following
advice: If the primary objective in the discovery



of a network is to find as many edges as possible
for limited time or resources, then a guided
strategy should be employed. However if one
is interested in the detailed network structure,
then the uniform method is generally preferable.

The theory of network discovery is still
in its infancy, and the present study opens
many further questions. Apart from conceiving
other, more sophisticated discovery strategies
it is certainly necessary to widen the range of
applicability by testing our methods on further
networks, both simulated and empirical.

A possible extension of our methods could
include the introduction of a cost not only for
testing a pair of nodes, but also for making
transitions from one node to another. In many
applications, this parameter is of interest: For
PINs, moving to another node at least requires
the experimenter to obtain another chemical;
in the context of social networks, changing the
node often means to interview another partic-
ipant in a study. In that sense, moves in the
network are penalized; due to time constraints,
we could not address this aspect here.

From an applicational standpoint, it would
be very useful to look for ‘optimized’ strategies.
In view of our results, such methods will
presumably be restricted to a subset network
properties, and possibly also to a limited class
of networks. In conjunction with such results,
another question would need to be addressed:
Given a partially discovered network, how can
we assign it to a certain class? Without such
results, optimal strategies for different networks
would be of little use.

It is also worthwhile to investigate the sizes
of error bars further. In most cases a network is
only discovered once. So at the end of partial
discovery, one is only left with a single result
for each measurement, and an important task
is to estimate the uncertainty of the obtained
value, or equivalently to determine confidence
intervals. This problem has been addressed for
example by Salganik |[21]; it would certainly
interesting to compare his techniques to create
confidence intervals to the error bars that we
have found from our repeated discoveries.

Finally, a very important problem is to deal
with the undiscovered part of the network at
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the end of a partial discovery. In this report,
we have chosen the simplest solution which is to
assume that no edges are present in the undis-
covered part. This is a clear oversimplification
and results in a number of false-negatives. We
have obtained some preliminary results for
another solution: We have placed further edges
randomly between edges, with the probability
for a node to receive more edges given by the
ratio of its degree to the tests performed on that
node. Yet, this simple approach has not proved
very fruitful. Work on this problem would be
particularly useful, and would complement the
search for an optimal strategy. Ultimately we
aim for an understanding of the network as a
whole so the ability to extrapolate from partial
information would be highly valuable.
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Appendices

A Some details on implementa-
tion

In general, I have tried to keep all code as
modular and reusable as possible while at the
same time keeping the computational complex-
ity low. For example, choosing nodes with selec-
tion probability proportional to their degree is
realized in the way proposed by Newman [1]: In-
stead of computing the list of degrees each time
a node is selected, I maintain a list in which the
index n of a node appears k,, times (k,, is the de-
gree of the node n as usual). Then the probabil-
ity that an element drawn uniformly at random
from the list is n is proportional to k.

A.1 Realizing arbitrary degree distri-

butions

In order to construct an uncorrelated network
with an arbitrary degree distribution, I employed
the algorithm described in [14, 15, 16].

I first build deterministically a network that
has the desired degree distribution. This is
achieved by first assigning the degree to each
node according to the given distribution. This
can be pictured as having k,, ‘half-edges’ sticking
out of the node n. Then I take the node with
the lowest number of free half-edges and con-
nect it to the node with the highest number of
free half-edges that is not connected to the first
node. Repeating this procedure, I create a net-
work without multiple edges between any pair of
nodes and with the desired degree distribution.
This of course will only work if the total number
of half-edges is even. If this is not the case, the
degree distribution cannot be realized.

In the ensemble of networks with arbitrary
degree distribution, all possible realizations oc-
cur with equal probability. The above procedure
does not reproduce this ensemble; the only rea-
son to follow it is that it works without any po-
tential deadlocks (except in a few pathological
cases which are not necessary to consider here).
In the second stage, I shuffle the edges in the
network in the following way: Two nodes A and
C are drawn uniformly at random from the net-
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S

Before rewiring After rewiring

Figure A.1: Illustration of the rewiring process
that randomizes the configuration model net-
works.

work, and for each of them one of their neigh-
bours is selected (again, uniformly at random).
Let the selected neighbour of A be the node B,
and that of C'be D. Then the edges are rewired
so that A and C, and B and D, are connected
(see Fig. A.1), unless this introduces a self-edge
connecting a node to itself, or a multi-edge, that
is an edge between nodes that are already neigh-
bours. This type of rewiring leaves the degree
distribution untouched while at the same time
randomizing the nodes at the ends of the edges.
After repeating these swaps sufficiently often (I
perform 50FE such steps, where E is the total
number of edges in the network), the network is
essentially completely randomized.

A.2 The number of nodes to check in
the subnet method

In order to take snapshots of the network
at any given coverage fraction ¢, I have imple-
mented the discovery strategies in such a way
that they take as input parameters (among oth-
ers) a partially discovered network and the num-
ber of steps to perform before the next snapshot.
This is straightforward for all methods except
the subnet method. Here the number of steps
cannot be any integer: Instead, it must be such
that it is possible to test a number of completely
new nodes among each other, but also with the
nodes that have been included in the subnet pre-
viously.

Let T be the number of steps to perform be-



fore the next snapshot, and let N, be the number
of nodes that are already included in the subnet.
Then the number of nodes to add to the subnet
N, is determined from

T = Nu(N, —1)/2+ N, - N, (A1)

The first term on the RHS of Eq. (A.1) rep-
resents the tests between the added nodes, and
the second term accounts for the tests between
added and old nodes. Solving the quadratic for
N, is straightforward:

1
0 = NZ?42N,(N, — ) = 2T

1 1\2
jNa — §_No+ No_§ +2T

(A.2)

Clearly we get an integer solution for IV, only for
certain values of T'. In general, these values do
not coincide with the coverage steps of 0.05 that
I used for the data collection. I have dealt with
this problem in the following way: Given the
number of steps to perform between two snap-
shots, I add as many nodes to the subnet as
possible without using more steps than allowed.
The remaining steps are carried over and added
to the steps for the next snapshot.

We can also use Eq. (A.2) to derive Eq.
(7): The number of steps to perform is 7" =
tN(N —1)/2, and the number of nodes initially
in the subnet is N, = 0. Thus we obtain

Na:%Jr\/ithN(N—l) (A.3)

as before.

15



B Supplementary results

B.1 The BA networks

The results for the discovery of the BA net-
works are quite similar to the Caltech and CM
networks. In Fig. B.1 we see that the guided
methods are again better at finding edges. How-
ever it appears that here the degree methods is
slightly better than the other two. Fig. B.2
shows that the guided strategies tend to find
a disassortative mixing which is not present in
the actual networks. Finally we observe from
Fig. B.3 that the clustering coefficient is overes-
timated by the guided strategies. Asin the other
cases, the subnet and uniform methods produce
useful estimates of the assortativity and cluster-
ing coefficient.

o
©
T

0.81

0.7r

0.61

0.5r

0.4r

—=— Subnet
—&— Uniform

Fraction of discovered edges fE

0.3f
—— Degree
0.2F Neighbour
—— Hybrid
0.1r
0 . . . .
0 0.2 0.4 0.6 0.8 1

Network coverage t

Figure B.1: The fraction of discovered edges fr
against network coverage t for the BA network.
Error bars are one standard deviation.
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Figure B.2: The assortativity r against network
coverage t for the BA network. Error bars are
one standard deviation.
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B.2 The Reed and Haverford net-
works

The Reed and Haverford networks show qual-
itatively similar discovery behaviour as the Cal-
tech network: The neighbour method is best at
finding edges (Figs. B.4 and B.5). Although
the networks are assortatively mixed, the de-
gree method discovers a dissassortatively mixed
network even for medium coverage. The neigh-
bour method captures the assortativitiy rather
well (see Figs. B.6 and B.7. In Figs. B.8 and
B.9 we again observe the sensitivity of the esti-
mated clustering coefficient on the detailed net-
work structure: The estimates are initially below
the real value for all guided methods. At later
stages, the hybrid method produces an overesti-
mate. On the Reed network, the same applies to
the neighbour method whilst the degree method
keeps underestimating the actual value. On the
Haverford network, this behaviour is reversed.
The estimates of the subnet and uniform strate-
gies are generally close to the actual values, with
the usual exception of the clustering coefficient’s
estimate by the uniform method.
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Figure B.4: The fraction of discovered edges fr
against network coverage t for the Reed network.
Error bars are one standard deviation.
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B.3 Edge discovery on the power grid

The power grid is different from the other net-
works considered here in that the average degree
is only about 3. This extreme sparseness has
important consequences for the discovery pro-
cess: In Fig. B.10 we can see that the degree
method is worst at finding edges above a cover-
age of about t =~ 0.4. The neighbour method still
outperforms the uniform and subnet method but
even here the difference is much smaller than on
the other networks (except the ER ones where
there is no difference at all).
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Figure B.10: The fraction of discovered edges
fE against network coverage t for the power grid
network. Error bars are one standard deviation.

B.4 Component discovery on the Cal-
tech network

The Caltech network features three very small
components. This makes the interpretation of
the number of discovered components (Fig. 5)
more complicated. From Fig. B.11 we can de-
duce that the degree method has particular dif-
ficulty in finding the small components: From
t = 0.3 until ¢ = 0.7 the degree method only
finds two components, and one of them is the gi-
ant component of the real network. Only around
t = 0.8 the other small components are estab-
lished. In contrast, the neighbour method finds
the small components earlier; on the other hand,
this strategy takes longer to find the edges that
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link all the nodes of the largest component to-
gether.
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network coverage ¢ for the Caltech, CM and ER
networks. Error bars are one standard deviation.

B.5 Improving the estimate of the
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Figure B.12: The normalized clustering coef-
ficient divided by t as found by the uniform
method against network coverage .

In Fig. 8 we have found that the cluster-
ing coefficient estimated by the uniform method
appears to increase nearly linearly with the net-
work coverage fraction ¢t. Fig. B.12 shows the



estimated clustering coefficient divided by ¢ and
the actual value Cjeq;. As already indicated in
section 5.2, the curves are distinctly non-linear
for small values of ¢. For higher coverage, divid-
ing out the factor of ¢ gets the estimated clus-
tering coefficient closer than 90% to the actual
value. The best result is obtained on the ER
networks where the estimate is essentially cor-
rect for ¢t > 0.3.

B.6 Discovery with errors

When we allow for errors to occur in the
network discovery, we have seen in Fig. 9 the
number of erroneously found edges is larger if
only false-positives are present than if only false-
negatives can occur. Here we study the influence
of the errors on the topological properties of the
Caltech network. Fig. B.13 shows that the exis-
tence of false-positive leads to the situation that
the distinct components of the real network get
connected by erroneously placed edges. On the
other hand, false-negatives have a less severe im-
pact. Only the neighbour method (and thus also
the hybrid strategy) are strongly influenced.

From Fig. B.14 we learn that false-negatives
have almost no impact on the average path
length. Even the consequences of including false-
positives is rather small.

The assortativity appears to change drasti-
cally (Fig. B.15): When looking at the diagram,
we have to bear in mind that the absolute value
of r is tiny, so even (absolutely) small devia-
tions appear large on the relative scale. Fur-
thermore the assortativity can be both positive
and negative. It is remarkable how little the esti-
mate of r changes with false-negatives; only for
the neighbour method changes slightly for low
coverage. The impact of false-positives is more
dramatic: For the subnet, uniform and neigh-
bour strategies, the assortativity changes sign for
small ¢, and only the neighbour method recovers
the original sign at higher .

The picture is similar for the clustering co-
efficient. Fig. B.16 indicates that the esti-
mate changes little under the inclusion of false-
negatives; when false-positives are added, the
variation is much larger.

Finally we note a surprising feature: With
false-positives, the guided methods appear gen-
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erally more stable in their estimates. Except for
the number of components, the relative change
in the estimates of the subnet and uniform
strategies is much larger. However before we can
make a justified claim here, further tests are cer-
tainly necessary.
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Figure B.13: The number of components when
random errors occur in the discovery, normalized
by the number of components found without er-
rors. Solid lines are for ¢, = 0,¢q, = 0.01 and
dotted lines show the case ¢, = 0,q, = 0.05.
The underlying network is Caltech.
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Figure B.14: The average geodesic length when
random errors occur in the discovery, normalized
by the average geodesic length without errors.
Solid lines are for ¢, = 0,¢q, = 0.01 and dot-
ted lines show the case g, = 0,¢, = 0.05. The
underlying network is Caltech.
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Figure B.15: Assortativity when random errors
occur in the discovery, normalized by the as-
sortativity without errors. Solid lines are for
gn = 0,gp, = 0.01 and dotted lines show the case
gp = 0,9, = 0.05. The underlying network is
Caltech.
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Figure B.16: The clustering coefficient when
random errors occur in the discovery, normal-
ized by the clustering coefficient without errors.
Solid lines are for ¢, = 0,¢q, = 0.01 and dot-
ted lines show the case g, = 0,¢, = 0.05. The
underlying network is Caltech.



