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tI investigate numeri
ally the performan
e ofrandom and guided strategies to dis
over thetopology of a network. I �nd that simple guidedmethods 
an exploit 
orrelations in 
omplex net-works to in
rease the number of dis
overed edgesabove the random methods. I then study esti-mates of the global and lo
al network stru
ture.Here I �nd that the more sophisti
ated te
h-niques introdu
e serious biases whi
h severelya�e
t estimates of the lo
al network topology. Ishow that these in
orre
t estimates depend evenqualitatively on the stru
ture of the network be-ing dis
overed. I also brie�y study the impa
t oferroneously found edges on network dis
overy.I argue why the large s
ale topology is gener-ally easier to estimate than the lo
al stru
ture.Finally I give re
ommendations for pra
ti
al ap-pli
ations of the dis
overy te
hniques proposedhere.1 Introdu
tionThe interdis
iplinary �eld of network s
ien
ehas at least partially been driven by the in
reas-ing availability of 
omputational power that hasmade it possible to work with large networks 
re-ated from real-world data. Prominent examplesof su
h networks are the world-wide web (WWW- the network of websites joined by hyperlinks)or the internet (whi
h is the network of physi
al
onne
tions between 
omputers, usually studiedat the level of autonomous systems), protein in-tera
tion networks (PINs) or so
ial networks likefriendship networks [1, 2, 3℄.In many 
ases, these empiri
al networks are

not 
omplete; for example, the WWW 
on-sists of billions of websites [4℄ and grows and
hanges 
ontinually. For PINs the dete
tion ofintera
ting protein pairs is expensive and time-
onsuming. Therefore an important question toask is whether the networks 
onstru
ted fromin
omplete data des
ribe the properties of theunderlying real systems reliably. Surprisingly,although this question has been raised often (fora re
ent example, see the 
on
luding se
tion of[5℄), it has been addressed infrequently.Apart from the question about the reliabilityof in
omplete data and potential biases, there isanother aspe
t of pra
ti
al importan
e: Is therean `optimal' strategy to adopt when we want toun
over a network?The 
hoi
e of methods that 
an be appliedto dis
over a network depends on the 
ontext.For example, the topology of the internet is usu-ally mapped by sending signals from a sour
e toa spe
i�ed target and following the path of thesignal. This approa
h has been studied thor-oughly by Dall'Asta et al. [6℄. For the WWW,the standard te
hnique is to `
rawl' the web byfollowing hyperlinks from page to page. A simi-lar method 
alled `snowball' sampling has beenstudied in [7℄. Another rather well-studied set-ting is dis
overy by random walks [8℄. All theseapproa
hes have in 
ommon that the edges inthe network are easily a

essible. Here the fo-
us is on the opposite setting where the edgeshave to be found individually. This setting is
ommonly en
ountered in PINs; a re
ent paperby S
hwartz et al. [9℄ has addressed the pro-
ess of dis
overy on su
h networks. They havefound that it is possible to improve the �nding ofintera
tions through predi
tion; a similar result
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in a more general 
ontext has been obtained byClauset et al [10℄.I extend these �ndings by 
onsidering simpledis
overy strategies and by measuring the topol-ogy of the so obtained networks. To a
hieve this,I study numeri
ally the behaviour of �ve meth-ods on various example networks. In se
tion 2.1I provide a short ba
kground on networks in gen-eral and on the networks studied here. Then Ides
ribe our dis
overy strategies in se
tion 2.2.We shall start our study in se
tion 3 with thebasi
 question of how many nodes and edgesea
h methods dis
overs. We �nd that the guidedmethods are better than random te
hniques in�nding edges, but are slower to 
over all nodesof a network. After that, we dire
t our atten-tion to topologi
al quantities �rst at the larges
ale of the entire network (se
tion 4) and thenat the lo
al level of individual nodes (se
tion 5).In general we �nd that whilst global stru
ture is
aptured well by all our methods, lo
al proper-ties are often estimated in
orre
tly. Finally inse
tion 6, we brie�y address the problems thatarise through errors in the dis
overy pro
ess. Inagreement with [11℄ we �nd that the impa
t oferroneously adding edges to the network is moresevere than the omission of edges. We end bysummarizing our key results and giving some di-re
tions for extensions of our work.2 Network models and dis
ov-ery methods2.1 NetworksA network 
onsists of nodes (sometimes also
alled verti
es in the literature) and edges (orlinks) 
onne
ting them. In general, there 
ouldbe di�erent types of nodes in a network (orgraph) - a famous example in the literature is thenetwork of a
tors with two types of nodes, a
torsand movies, and edges between a movie and thea
tors featuring in it. Edges 
ould be dire
ted orweighted, for example in a road network weights
ould be distan
e and there 
ould be one-waystreets. Here we shall rule out all su
h 
ompli-
ations and 
onsider only undire
ted unweightednetworks with only one type of node.We 
an represent a network in terms of itsadja
en
y matrix M [1, 2, 3℄. For a network of

N nodes, M is an N × N matrix. If the nodes
i and j are 
onne
ted, we have Mij = 1, and
Mij = 0 otherwise. For undire
ted networks, Mis symmetri
. We only 
onsider networks withno self-
onne
tions, that is Mii = 0.One of the most fundamental 
on
epts of thestudy of network topology is the number of edgesatta
hed a node, whi
h is 
alled its degree and
ommonly denoted by the letter k. A widelystudied summary statisti
 of networks is theirdegree distribution p(k) whi
h gives the proba-bility that a node 
hosen uniformly at randomhas degree k.Here we shall not dis
uss our results 
on-
erning the degree distribution of dis
overed net-works; although this is 
ertainly an importantissue, we 
annot make justi�ed 
laims in the lim-ited spa
e available to present our results.A signi�
ant 
ontribution to the study of net-works has been made by Erdös and Rényi [12℄.They introdu
ed the ensemble of random (ER)networks GN,P with N nodes where ea
h edge ispresent independently of any other with proba-bility P . The notion of ensembles is the sameas in statisti
al me
hani
s: Whereas it is hardlypossible to make predi
tions about a single real-ization of an ER network, we 
an infer the prop-erties of an average over many networks1. Aswe shall see, the un
orrelated nature of the ERnetworks makes them spe
ial for dis
overy; thismakes them useful to 
ontrast against the othernetworks we study.Most networks found in real systems have de-gree distributions quite di�erent from the ERnetworks. A mu
h-studied ensemble whi
h ex-tends the idea of the random graph to arbitrarydegree distributions is known as the 
on�gura-tion model (CM) [13℄. The ensemble is formedby all networks for a given degree distribution,appearing with equal probability. The real-ization of 
on�guration networks is non-trivial[14, 15, 16℄. I give a brief des
ription of the te
h-nique I employed in Appendix A.1.The above ensembles deal with networks as1Te
hni
ally, the analogy also requires a 
ounterpartof the Boltzmann fa
tor in statisti
al me
hani
s. In the
ase of these random graphs, the networks in the en-semble are weighted by P E(1 − P )(K−E) where E is thenumber of edges in the network and K = N(N − 1)/2 isthe total number of possible edges [1℄
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Network N E N1 Nc 〈d〉 r CCalte
h 769 16656 762 4 2.33 -0.066 0.409Reed 962 18812 962 1 2.46 0.023 0.318Haverford 1446 59589 1446 1 2.23 0.068 0.323ER 769 16642(50) 769(0) 1(0) 2.02(1) -0.005(6) 0.0564(4)CM 769 16656(0) 769(0) 1(0) 2.24(1) -0.065(8) 0.161(4)BA 769 16778(40) 769(0) 1(0) 2.06(1) -0.035(8) 0.099(2)Power grid 4941 6594 4941 1 18.99 0.004 0.080Table 1: Topologi
al properties of the networks studied. In the 
ase of the simulated networks,averages over 10 realizations are given and un
ertainties are one standard deviation. The numbers ofnodes and edges are N and E; N1 is the size of the largest 
omponent and Nc is the total number of
omponents (se
tion 4.1); 〈d〉 and dmax are the average and maximum geodesi
 lengths (se
tion 4.2);
r and C are the assortativity (se
tion 5.1) and 
lustering 
oe�
ient (se
tion 5.2).stati
 obje
ts and give no justi�
ation as to howa network 
ame to have its stru
ture. The en-semble proposed by Barabási and Albert (BA)[17℄ is a widely studied attempt to answer thisquestion. They model the growth of network bypreferential atta
hment: Starting from a smallnetwork, nodes are added one at a time. Ea
hnode 
omes with m edges. The probability thatit 
onne
ts to a node A in the network is propor-tional to its degree kA. Results for the BA net-works were generally similar to the other 
om-plex networks; they are therefore not presentedin the main body of the text and 
an be foundin Appendix B.1.Simulated ensembles do not generally 
ap-ture all the varieties of network stru
tures thatexist in real systems. We therefore also workwith empiri
ally 
onstru
ted networks. Three ofthem are taken from the online so
ial network-ing site Fa
ebook [18℄: They were 
onstru
tedby 
ompletely sampling the `friendships' of stu-dents from the US universities Calte
h, Reed andHaverford. In order to show more 
learly thedi�eren
es between these real networks and thesimulated ones, the parameters for the simula-tions were 
hosen in su
h a way that the num-ber of nodes N and edges E is similar to theCalte
h network. Finally we in
lude a networkfrom a 
ompletely di�erent �eld, the WesternPower Grid [19℄.The properties of all these network are sum-marised in Table 1. Fig. 1 shows the 
umu-lative degree distributions of the networks un-der study. The 
umulative distribution is given
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Figure 1: The 
umulative degree distribu-tions for the networks 
onsidered here on semi-logarithmi
 axes. Noti
e that only for the ERnetworks there are essentially no nodes with verysmall degrees.by P (k) =
∑∞

κ=k p(κ) and gives the probabil-ity that a randomly sele
ted node has degree kor larger. Noti
e that only ER networks have es-sentially no nodes with degrees below 20 whereason all the other networks, there is a signi�
antfra
tion of nodes with very small degrees.2.2 Dis
overy methodsImagine a sear
her who is given a list of thenodes in a network and the task to �nd the edgesamong them. We will assume that the sear
herremembers whi
h node pairs he has already in-
3



vestigated and does not repeat a test on thesame pair. In some appli
ations he 
ould employspe
ialized tests; for example, for the dis
overyof intera
ting proteins, the te
hnique of pooling
an be employed where one protein is �rst testedagainst a large number of others and only if anyintera
tion is observed, one-to-one tests are per-formed [9℄. Su
h approa
hes are not ne
essarilypossible in all appli
ations, so we ex
lude themhere.A parti
ularly important parameter is thenetwork 
overage fra
tion t. We de�ne this tobe the fra
tion of node pairs that the sear
herhas tested relative to all N(N − 1)/2 pairs (wefo
us on undire
ted networks and hen
e we takeall dis
overed edges as undire
ted). We 
an view
t as a time 
oordinate; the longer the dis
overygoes on, the larger the dis
overed part of thenetwork. Alternatively we 
ould imagine thatthe sear
her has limited resour
es and 
an onlypartially dis
over the network. In that sense,we asso
iate a 
ost with ea
h test of a pair ofnodes. I have taken data starting at t = 0.1 upto t = 0.95 in intervals of 0.05.Mathemati
ally, dis
overy strategies 
an bedes
ribed as follows. To rea
h the given 
over-age t, the sear
her performs tN(N − 1)/2 steps.At the beginning of a step, the sear
her is stand-ing on a node A. He then 
hooses another node
B a

ording to some strategy S. We 
an view Sas a probability distribution so that the proba-bility of sele
ting B is

P (B|A) = S(A,B,G) (1)Here G is the adja
en
y matrix of the par-tially dis
overed network. After sele
ting B, thesear
her determines if A and B are 
onne
tedby some experiment. Finally he moves on toanother node C whi
h 
an be any node in thesear
her's list, in
luding A and B.We 
an dire
tly translate the requirementsof forbidding self-
he
ks and double-
he
ks intothis framework. We require
S(A,A,G) = 0 for all A,G (2)
S(A,B,G) = S(B,A,G) = 0 (3)if A and B have been testedEquipped with this formalism, we 
an de�ne thestrategies whi
h we will investigate in the follow-

ing se
tions. The above requirements are un-derstood to take pre
eden
e over the di�erentstrategies we de�ne below.The simplest approa
h is the uniformmethod. Here the sear
her sele
ts a pair of nodesuniformly at random from the entire network forea
h step. We 
an de�ne the strategy in termsof nA, the number of nodes whi
h have not beentested against A as
Su(A,B,G) =

1

nA

(4)The next node C is also 
hosen uniformly at ran-dom from the entire network.It is natural to ask if we 
an `do better' than

Figure 2: Illustration of the node sele
tion forthe degree and neighbour methods. The sear
heris standing on the bla
k node A. The 
andidatenodes (marked Bn) for the neighbour method arein green; for the degree method, the most likelynodes Bd are 
oloured blue.this. To answer this question, I introdu
e threemethods in whi
h the sele
tion of node pairs isnot 
ompletely random. Therefore we shall referto these as the `guided' strategies.The degree method sele
ts B with a prefer-en
e to high degrees:
Sd(A,B,G) ∝ kB (5)where kB is the degree of B, 
al
ulated by sum-ming all the elements of G in the row 
orrespond-ing to the node B. This sele
tion strategy is il-lustrated in Fig. 2. If the sear
her �nds an edge,he moves on to B; otherwise he remains at A. Ihave also in
luded a small probability p = 0.01

4



that both the sele
tion of B and the transitionto C is the same as in the uniform method. Thishas the e�e
t of preventing the sear
her frombeing `trapped' on a node in some pathologi
al
ases; also it ensures that nodes with degree zero
an be sele
ted.The neighbour strategy 
hooses B from thenodes that have an edge to one of the neighboursof A (for an illustration, see Fig. 2). If A has msu
h nodes from whi
h to 
hoose B, the strategyis given by
Sn(A,B,G) =

{

m−1 if B is a 2nd neighb. of A
0 otherwise (6)So the sear
her 
hooses B uniformly at randomamong the se
ond neighbours of A. If m = 0,and generally with probability p = 0.01, B is se-le
ted a

ording to the uniform strategy. If thesear
her �nds an edge, he moves on to B; other-wise he makes a uniform move with probability

p or remains at A, just as in the degree method.There are plenty of other strategies to study.Here I shall only present one important idea,namely to 
ombine the two above methods intothe hybrid strategy. Here the sear
her alternatesbetween the degree and neighbour methods. Forsimpli
ity, I only 
onsider the 
ase where thenumber of steps per method is �xed from theoutset. Of 
ourse, there are many other pos-sibilities where the more `su

essful' strategy isgiven more steps; I have obtained some prelim-inary results for su
h adaptive approa
hes butsin
e they are quite similar to the simple split-ting, I shall not dis
uss them any further. Tobe pre
ise, ea
h strategy is applied 50 times intotal (that is, up to t = 0.95), and the numberof steps per appli
ation is 
onstant.It is 
lear that the guided methods 
annotwork right from the start. If no edges have beenfound, there are no nodes with non-zero degreesand also no se
ond neighbours. To 
ir
umventthis problem, I start these methods by perform-ing a uniform dis
overy with 
overage t = 2.5%.In all the above methods, the sear
her workswith all the nodes in his list; if he only works upto a limited 
overage, he has to a

ept that he
annot test the 
onne
tion between all the nodepairs. I have also devised a 
omplementary ap-proa
h whi
h is 
alled the subnet method. Herethe sear
her 
on
entrates on a smaller number

of nodes
Ns =

1

2
+

√

1

4
+ tN(N − 1) ≈ N

√
t (7)whi
h are 
hosen uniformly at random from theentire network. Then he tests all node pairs inthat list for edges. Eqn. (7) is derived in Ap-pendix A.2.An important di�
ulty in dealing with par-tially dis
overed networks is to handle the undis-
overed part. In 
ontrast to the a
tual net-work, ea
h pair of nodes 
an exist in three dif-ferent 
on�gurations: 
onne
ted, un
onne
ted,untested. The last term indi
ates simply thatthe sear
her has not yet investigated the respe
-tive pair of nodes. For all the results shown here,the simplest method in dealing with the undis-
overed network has been adopted: All untestedpairs of nodes are treated as un
onne
ted.I have implemented and extensively testedall the 
ode that has been used to obtain thedata that is presented in the following se
tions.The most severe limitations were those of mem-ory and 
omputational 
omplexity and parti
-ularly the trade-o� between memory and pro-
essor usage. Most importantly, networks wererepresented in terms of their adja
en
y matri-
es. This means that memory usage in
reasesquadrati
ally with N ; whilst the Calte
h-sizednetworks with N = 769 o

upy about 600kB ofmemory, the power grid network has N = 4941nodes and requires 24MB of storage. Sin
e allthe networks to whi
h the dis
overy strategieswere applied are quite sparse (meaning that theaverage degree 〈k〉 = 2E/N ≪ N), the memoryusage 
an be redu
ed by working with sparsematri
es whi
h only store the non-zero entries.The 
ompli
ation here is that for the dis
overednetwork, the information to keep in the adja-
en
y matrix is more than binary: We have todis
riminate not only between `edge found' and`no edge found' as usual but also between `notyet tested' (see above). As we go up to 95% 
ov-erage, working with full matri
es is ne
essary.The problem of memory usage has limitedthe size of networks to work with. Equally im-portant is the time taken to perform the a
tual
omputations. Sin
e the number of node pairs to
he
k is N(N −1)/2, the duration also in
reasesquadrati
ally with N . In fa
t, the guided strate-
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ERCMFigure 3: The fra
tion of non-isolated nodes fNagainst network 
overage t for the Calte
h, CMand ER networks. Error bars are one standarddeviation.gies are even more time 
onsuming be
ause thetime taken to sele
t a node for testing also in-
reases with the network size. For all the sim-ulations, I ran ea
h strategy 50 times on ea
hnetwork; for the simulated network, these runswere split over 10 realizations. As an order ofmagnitude, the duration for running ea
h strat-egy on
e (up to t = 0.95) on the Calte
h networkis about 10 minutes on a standard desktop 
om-puter.3 Node and edge dis
overyWe begin our 
omparison of the dis
overymethods des
ribed above by asking how manynodes and edges they �nd for a given network
overage. Whereas 
ounting edges is straight-forward, a node is only 
ounted as `dis
overed'if it has at least one edge atta
hed to it. Thispro
edure of removing isolated nodes fromthe network is 
ommon in the literature [1℄;this is justi�ed be
ause su
h nodes have no im-pa
t whatsoever on the stru
ture of the network.3.1 Finding nodesFrom Fig. 3 we see that the uniform methodis the fastest to �nd at least one edge forea
h node; unsurprisingly, the subnet strategy

is mu
h slower. This of 
ourse is an artifa
tof its 
onstru
tion. More interesting is the fa
tthat the guided methods perform nearly equallyon the 
omplex networks. It is 
lear that theyshould be slower than the uniform method be-
ause they only look for edges between nodesthat have already at least degree 1. On the ran-dom graphs, the neighbour method is more su
-
essful.Generally, we observe that �nding the �rstedge for ea
h node is easier on the randomgraphs. This is a dire
t 
onsequen
e of the fa
tthat in the ER ensemble the number of nodeswith very small degree is mu
h smaller than onthe other networks (
f. Fig. 1).3.2 Edge dis
overy
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Figure 4: The fra
tion of dis
overed edges fEagainst network 
overage t for the Calte
h, CMand ER networks. Error bars are one standarddeviation.When it 
omes to dis
overing edges, we seethat the guided methods 
learly beat the ran-dom te
hniques (see Fig. 4). However, this doesnot apply to the ER networks where all methodsperform equally. Combining these two results,we are lead to the important 
on
lusion that theguided methods 
an exploit 
orrelations (if exist-ing) to �nd more edges than a uniform sear
h.Taking into a

ount also the results for the Reedand Haverford networks (Figures B.4 and B.5 inAppendix B.2), the neighbour method seems toperform slightly better than the degree method.From our study of the power grid (see Fig.
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B.10 in Appendix B.3) we learn that there is a
aveat to these results: On that network, themean degree 〈k〉 = 2E
N

≈ 3 is an order of magni-tude smaller than for the above networks (whi
hhave 〈k〉 ≈ 43). This extreme sparseness 
om-pli
ates the task for the guided methods: Manynodes have only very small degrees and hen
eit is hard to make use of any 
orrelations. In-deed we �nd that the degree method is the worstmethod to �nd edges; the neighbour method isslightly better than the random strategies.We note at this stage a 
ommon feature thatwe will �nd also in the following se
tions: Ex
eptfor the ER networks, the error bars for the sub-net method are generally larger than those of theuniform strategy. This is a 
onsequen
e of inho-mogeneity of the underlying networks. Con
ern-ing the number of found edges, this is expressedin the degree distribution (
f. Fig. 1): There arequite a few nodes with very high degrees. If theyare in
luded in the subnetwork, the number ofdis
overed edges will be mu
h larger than if theyare missing. So the varian
e on the number ofedges is rather high. In 
ontrast we see that theuniform strategy is not sensitive to the underly-ing degree distribution.We now address some questions that fol-low from this result: Naively, we should expe
tthat �nding more edges improves our estimateof the network topology (in parti
ular as theseedges are spread among a smaller number ofnodes). We investigate if this intuition is 
or-re
t by studying the stru
ture of the dis
overednetworks �rst at large s
ales and then at the levelof individual nodes and edges.4 Large s
ale stru
tureHere we fo
us on the global topology of thenetworks dis
overed by our strategies. To thisend, we �rst study the 
omponents of the net-works. A 
omponent is formed by all the nodesthat 
an be rea
hed from ea
h other only by fol-lowing edges [1℄. Then we look at the geodesi
distan
es (shortest path lengths) between nodesin the largest 
onne
ted 
omponent, measuredby the number of edges to 
ross in order to getfrom one node to the other. Both of these prop-erties are generally important for the fun
tion ofa network, in parti
ular for transport pro
esses.
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Figure 5: The number of 
omponents Nc againstnetwork 
overage t for the Calte
h, CM and ERnetworks. Error bars are one standard deviation.4.1 Component stru
tureIn general we 
an dedu
e from Fig. 5 that theguided methods take longer to establish just onelarge 
omponent. The fa
t that the neighbourmethod is slowest 
an be explained from its de-sign: Sin
e the sear
her tests for edges betweennodes with a 
ommon neighbour, they are al-ready parts of the same 
omponent. Thus edgesjoining two 
omponents are only found when thesear
her performs a uniform test.The presen
e of 3 tiny 
omponents (with 3,2 and 2 nodes) makes the interpretation of theCalte
h graph more di�
ult: However we 
an
on
lude that it is generally hard to �nd small
omponents. By analysing the fra
tion of nodesin the largest 
omponent (see Fig. B.11 in Ap-pendix B.4), we 
an establish that the degreemethod has parti
ular di�
ulties with the smallpat
hes.4.2 Geodesi
 lengthsWhen analysing path lengths, we need to bearin mind that they generally depend on 
ompo-nent sizes. This at least partially a

ounts forthe large average path length found by the uni-form method, as seen in Fig. 6. We also see thatthe networks dis
overed by the neighbour strat-egy in general tend to have longer path lengthsthan those 
oming from the degree and hybrid
7
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Figure 6: The average geodesi
 length 〈d〉against network 
overage t for the Calte
h, CMand ER networks. Error bars are one standarddeviation.method. A possible explanation is illustrated byFig. 2: An edge found by the neighbour method
an only redu
e a path length by one; the degreemethod instead is able to �nd more signi�
antshort
uts.In summary, we see that the global topologyis 
aptured rather well by all the methods we
onsider. In all 
ases, the hybrid method me-diates between the degree and neighbour strate-gies. We now turn to the questions 
on
erningthe lo
al stru
ture of the dis
overed networks.5 Mi
ros
opi
 
orrelationsAbove we have shown that we 
an exploit 
or-relations in 
omplex networks in the sear
h foredges. We now ask a reverse question: Given wehave found disproportionally many edges, howdoes this a�e
t our estimates of lo
al 
orrela-tions? To answer this, we 
onsider two di�erentmeasures of 
orrelations: First we look at the de-grees of a node's neighbours, and after that weturn to the edges 
onne
ting these neighbours.Both of these questions are `of higher order' thanthe mere existen
e of edges but are still lo
alin the sense that they only 
onsider the dire
tneighbourhood of ea
h node.

5.1 Assortativity
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Figure 7: The assortativity r against network
overage t for the Calte
h, CM and ER networks.Error bars are one standard deviation.The assortativity r has been proposed as ameasure of degree-degree 
orrelations [20℄. It isde�ned as an average over all edges:
r =

E−1
∑

n jnkn − [E−1
∑

n(jn + kn)/2]2

E−1
∑

n(j2
n + k2

n)/2 − [E−1
∑

n(jn + kn)/2]2(8)where E is the number of edges in the network,the sums go over all edges and jn, kn are the de-grees of the nodes at the ends of the nth edge. Wenote that when 
orrelations are positive (that is,high-degree nodes prefer to be 
onne
ted to ea
hother) then r > 0 and the network is said to beassortatively mixed. In the opposite 
ase whenhigh-degree nodes are mostly 
onne
ted to low-degree nodes, a network has r < 0 and displaysdisassortative mixing. r is normalized su
h that
|r| ≤ 1.We 
an see from Fig. 7 that the guided meth-ods generally do not provide reliable estimates ofthe assortativity. The degree method generally�nds disassortative mixing; this is even the 
asefor networks whi
h are a
tually assortative su
has the Reed and Haverford networks (see Figs.B.6 and B.7 Appendix B). The performan
e ofthe neighbour method is less 
onsistent a
rossthe di�erent networks, and the hybrid strategygenerally mediates between the two. This makesit very hard (if not impossible) to extrapolate the
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assortativity of the underlying network from thedis
overed ones. In 
ontrast, both the subnetand the uniform method get the 
orre
t valueof the assortativity for essentially any 
overage,and all networks 
onsidered here.5.2 Transitivity
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Figure 8: The average 
lustering 
oe�
ient Cagainst network 
overage t for the Calte
h, CMand ER networks. Error bars are one standarddeviation.Transitivity refers to the phenomenon thatnodes with a 
ommon neighbour tend themselvesto be 
onne
ted. This feature is parti
ularlyprominent in so
ial networks (
f. Table 1): Of-ten people with a 
ommon friend are also friendsof ea
h other. This e�e
t 
an be quanti�ed bythe 
lustering 
oe�
ient [19℄ whi
h for the node
A is de�ned to be

CA =
no. of edges between A's neighbours

kA(kA − 1)/2 (9)where kA is the degree of the node and the de-nominator e�e
tively is the maximum number ofedges that 
ould exist between the neighbours.If kA < 2, CA is 
onventionally set to zero. Insimple terms, the 
lustering 
oe�
ient measuresthe probability that there is an edge between apair of neighbours of the node A.In Fig. 8 we show the 
lustering 
oe�
ientaveraged over all non-isolated nodes in the net-work. The general pi
ture is quite similar tothe assortativity: The guided strategies dis
over

subnetworks that have quite a di�erent lo
alstru
ture than the real network. Ex
ept for theCalte
h network, the subnet method providesvery good estimates for every 
overage. Its fail-ings on the Calte
h (and also Reed and Haver-ford, see Figs. B.8 and B.9 in Appendix B.2)network tell us important information: It ap-pears that the triangles of mutually 
onne
tednodes are not spread evenly throughout the net-work. This 
an be understood as a spe
ial kindof inhomogeneity. In 
ontrast, the distributionof triangles in the simulated networks seems tobe homogeneous: There the subnet strategy isprodu
es mu
h better estimates of the 
lustering
oe�
ient. We 
an view this distin
tion betweenthe real and simulated networks as a short
om-ing of the network models.The most remarkable feature of Fig. 8 how-ever is the result of the uniform method. Onall networks the 
urves appear very nearly lin-ear, although on 
loser inspe
tion the linearityturns out not to be exa
t2. A similar �ndinghas been reported in [7℄. We 
an understandthis behaviour by a simple rough argument: Theprobability that a given edge has been dis
overedby the uniform method is equal to the 
overagefra
tion t. The probability of �nding a 
losed tri-angle therefore s
ales with t3 and the two edgesrequired to establish a 
ommon neighbour is pro-portional to t2. The 
lustering 
oe�
ient mea-sures the ratio of triangles to all 
ommon neigh-bours, and hen
e is linear in t. In Fig. B.12 inAppendix B we show that dividing out a fa
torof t provides a reasonable yet not quite 
orre
testimate of the a
tual 
lustering 
oe�
ient, aswe should expe
t.It is important to note that there is no 
onsis-tent trend in the guided strategies: On the CMnetworks, all methods overestimate the 
luster-ing 
oe�
ient. On the Calte
h network, the de-gree method underestimates C while the neigh-bour strategy 
hanges to an overestimate atabout t = 0.6. As with the assortativity, thisdependen
e of the qualitative behaviour on theunderlying network makes it very di�
ult to ex-2An exa
tly linear dependen
e 
an also be ex
luded bya simple theoreti
al argument: At t = 0, 
learly C = 0.However it requires at least 3 tests before the �rst triangle
an be established; hen
e at t = 2/(N(N −1)), we alwayshave C = 0 and hen
e the exa
t relation 
annot be C ∝ t.
9



trapolate a result from a partially dis
overed net-work to the entire underlying graph.In summary we have found that the estimatesof the lo
al network stru
ture are estimated wellonly by the random methods. The guided meth-ods introdu
e severe biases. What is more, wehave seen that the behaviour is distin
t for ea
hmethod: Depending on the method, di�erentedges are dis
overed. Before summarizing ourresults, we brie�y dis
uss the in�uen
e of ran-dom errors in the determination of edges.6 Errors in the dis
overy
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Figure 9: The number of found edges when ran-dom errors o

ur in the dis
overy, normalized bythe number of edges found without errors. Solidlines are for qn = 0, qp = 0.01 and dotted linesshow the 
ase qp = 0, qn = 0.05. The underlyingnetwork is Calte
h.So far, we have assumed that the edgesof a network 
an be dis
overed without any er-rors. In many 
ir
umstan
es, this assumption isde�nitely not valid and the 
onsequen
es of er-roneous dis
overies must be addressed.In prin
iple, we have to di�erentiate be-tween false-positive edges (i.e. those whi
h are`found' although not a
tually present) and false-negatives (i.e. erroneously omitted edges). Weallow for su
h errors to o

ur randomly withprobabilities qp and qn respe
tively. It is impor-tant to stress that these parameters are not theerror probabilities for a single experiment (whi
h


an be as high as qp ≈ 50% in protein inter-a
tion measurements [9℄). Rather these para-maters give the probabilities of making an erro-neoues assertion after repeated experiments.For the sparse networks under study here,most of the tests that the sear
her performs arebetween nodes that are un
onne
ted in the realnetwork. Hen
e we should expe
t that the num-ber of erroneous test out
omes is mu
h largerif qp = q, qn = 0 than if qn = q, qp = 0. InFig. 9 we 
on�rm that this is indeed the 
ase:With qn = 5%, we observe that only 95% of alledges are found, as expe
ted. In 
ontrast, with
qp = 1% the error rate is generally larger. Theguided strategies are initially produ
e less false-positives. This is a dire
t 
onsequen
e of thegreater number of dis
overed edges at low t (
f.Fig. 4).Results for the other topologi
al measures areshown in Figs. B.13-B.16 in Appendix B.6: For
qp = 0, qn = 0.05 we see that the estimates arerelatively stable. However for qn = 0, qp = 0.01we observe large deviations from the error-freevalues. We only show the data for the Calte
hnetwork; on the other networks, we have ob-tained similar results.It would however be premature to 
laim thatfalse-positives should be avoided at the 
ost ofin
reasing the rate of false-negatives: We have tobear in mind that when the underlying networkis very sparse (like the power grid), too manyfalse-negatives 
an have dramati
 
onsequen
es,in parti
ular on the dis
overed 
omponent stru
-ture.7 Con
lusions and OutlookWe have studied the performan
e of di�erentdis
overy strategies on a sele
tion of both sim-ulated and empiri
al networks. In parti
ular,we 
ompared the topologies of the dis
overednetwork on both global and lo
al s
ales overthe 
omplete range of network 
overage. Ourmost fundamental result is that 
orrelations
an be exploited (provided they exist) bysimple guided methods in order to in
rease thenumber of found edges signi�
antly above theresults of a 
ompletely random strategy. Eventhough our guided strategies are quite di�erent,their performan
e in terms of edge �ndings
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Method N E Nc 〈d〉 r CSubnet 534(4) 8307(341) 3(2) 2.38(4) −0.065(18) 0.394(9)Uniform 740(4) 8314(61) 3(2) 2.63(2) −0.063(9) 0.390(12)†Degree 665(7) 13477(124) 2(1) 2.30(2) −0.145(6) 0.401(6)Neighbour 676(8) 13789(127) 5(2) 2.33(3) −0.065(6) 0.399(7)Hybrid 671(7) 13566(132) 4(2) 2.31(3) −0.108(7) 0.405(7)Real network 769 16656 4 2.33 -0.066 0.409Table 2: Overview of the dis
overy results of the Calte
h network at 
overage t = 0.5. Un
ertaintiesare one standard deviation. The estimates that are 
losest to the a
tual values of the real Calte
hnetwork are printed in bold fa
e. For the number of 
omponents Nc, the mean geodesi
 length 〈d〉,the assortativity r and the 
lustering 
oe�
ient C, results are in bold fa
e if they are signi�
antlydi�erent from the a
tual values. †: For the uniform method, the 
al
ulated 
lustering 
oe�
ient hasbeen divided by t to give a better result.are surprisingly similar, given the network todis
over is not too sparse.By the investigation of topologi
al propertieswe have shown that the su

ess of the guidedmethods 
omes at a 
ost: Due to their inherentbias towards a parti
ular kind of edges, theydis
over a network that is not representativeof the underlying network. This 
ontrasts withthe behaviour of the uniform strategy whi
hin general gives results that are reliable a
rossdi�erent networks and whi
h appear 
onne
tedto the network 
overage in simple ways. Forthe guided methods, we have found that whilethe 
omponent stru
ture and path lengths are
aptured rather well, the estimates of mi
ro-s
opi
 
orrelations (in terms of assortativity and
lustering) are generally far from the 
orre
tvalues. Furthermore we have seen that even thequalitative behaviour of the guided strategiesdepends on the underlying network. This makesis very di�
ult if not impossible to extrapolatefrom a partially dis
overed network to the fullunderlying graph.The relative stability of the large s
ale mea-sures 
ompared to the mi
ros
opi
 properties
an be understood by the idea of `redundant'edges: The 
omponent stru
ture often does notrely on a single edge. This result is prominentin the study of resilien
e of networks against theremoval of edges [1, 2℄. Similarly, the path fromone node to another 
an in many 
ases followdi�erent routes, and the ex
lusion of a singleedge will not have a large impa
t on the averagepath length. Lo
ally however every edge is

important: The assortativity is an averageover the degrees of the nodes at the ends ofea
h edge, and hen
e depends not only on thenumber of edges that are found, but also onthe nodes to whi
h they are atta
hed. Clearlythe 
lustering 
oe�
ient is also very sensitiveto the existen
e of ea
h individual edge: Toestablish a 
ommon neighbour requires twoedges, a 
losed triangle needs three. As we haveseen, the biased sele
tion of edges has severe
onsequen
es for these lo
al measures.In drawing together all our results, we wouldlike to answer the question with whi
h we haveset out: Can we re
ommend any single methodfor network dis
overy? To answer this question,we 
ompare the �ndings of the di�erent strate-gies. As an example, Table 2 shows the resultson the Calte
h network at 
overage t = 0.5.Most importantly, we see that no single strategyis the best for all the properties 
onsidered here.So the �rst part of the answer to the abovequestion is no: There is no `best' strategy thatprodu
es 
orre
t estimates for every networkproperty. However, we 
an say that if one isonly interested in 
ertain spe
ial quantities,some methods are better than others: If thetotal number of dis
overed edges is most impor-tant, it is advisable to adopt one of the guidedstrategies. In 
ontrast, the uniform methodgenerally outperforms the guided methods inestimating mi
ros
opi
 
orrelations su
h asassortativity and 
lustering.We 
an sum up our results in the followingadvi
e: If the primary obje
tive in the dis
overy
11



of a network is to �nd as many edges as possiblefor limited time or resour
es, then a guidedstrategy should be employed. However if oneis interested in the detailed network stru
ture,then the uniform method is generally preferable.The theory of network dis
overy is stillin its infan
y, and the present study opensmany further questions. Apart from 
on
eivingother, more sophisti
ated dis
overy strategiesit is 
ertainly ne
essary to widen the range ofappli
ability by testing our methods on furthernetworks, both simulated and empiri
al.A possible extension of our methods 
ouldin
lude the introdu
tion of a 
ost not only fortesting a pair of nodes, but also for makingtransitions from one node to another. In manyappli
ations, this parameter is of interest: ForPINs, moving to another node at least requiresthe experimenter to obtain another 
hemi
al;in the 
ontext of so
ial networks, 
hanging thenode often means to interview another parti
-ipant in a study. In that sense, moves in thenetwork are penalized; due to time 
onstraints,we 
ould not address this aspe
t here.From an appli
ational standpoint, it wouldbe very useful to look for `optimized' strategies.In view of our results, su
h methods willpresumably be restri
ted to a subset networkproperties, and possibly also to a limited 
lassof networks. In 
onjun
tion with su
h results,another question would need to be addressed:Given a partially dis
overed network, how 
anwe assign it to a 
ertain 
lass? Without su
hresults, optimal strategies for di�erent networkswould be of little use.It is also worthwhile to investigate the sizesof error bars further. In most 
ases a network isonly dis
overed on
e. So at the end of partialdis
overy, one is only left with a single resultfor ea
h measurement, and an important taskis to estimate the un
ertainty of the obtainedvalue, or equivalently to determine 
on�den
eintervals. This problem has been addressed forexample by Salganik [21℄; it would 
ertainlyinteresting to 
ompare his te
hniques to 
reate
on�den
e intervals to the error bars that wehave found from our repeated dis
overies.Finally, a very important problem is to dealwith the undis
overed part of the network at

the end of a partial dis
overy. In this report,we have 
hosen the simplest solution whi
h is toassume that no edges are present in the undis-
overed part. This is a 
lear oversimpli�
ationand results in a number of false-negatives. Wehave obtained some preliminary results foranother solution: We have pla
ed further edgesrandomly between edges, with the probabilityfor a node to re
eive more edges given by theratio of its degree to the tests performed on thatnode. Yet, this simple approa
h has not provedvery fruitful. Work on this problem would beparti
ularly useful, and would 
omplement thesear
h for an optimal strategy. Ultimately weaim for an understanding of the network as awhole so the ability to extrapolate from partialinformation would be highly valuable.A
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Appendi
esA Some details on implementa-tionIn general, I have tried to keep all 
ode asmodular and reusable as possible while at thesame time keeping the 
omputational 
omplex-ity low. For example, 
hoosing nodes with sele
-tion probability proportional to their degree isrealized in the way proposed by Newman [1℄: In-stead of 
omputing the list of degrees ea
h timea node is sele
ted, I maintain a list in whi
h theindex n of a node appears kn times (kn is the de-gree of the node n as usual). Then the probabil-ity that an element drawn uniformly at randomfrom the list is n is proportional to kn.A.1 Realizing arbitrary degree distri-butionsIn order to 
onstru
t an un
orrelated networkwith an arbitrary degree distribution, I employedthe algorithm des
ribed in [14, 15, 16℄.I �rst build deterministi
ally a network thathas the desired degree distribution. This isa
hieved by �rst assigning the degree to ea
hnode a

ording to the given distribution. This
an be pi
tured as having kn `half-edges' sti
kingout of the node n. Then I take the node withthe lowest number of free half-edges and 
on-ne
t it to the node with the highest number offree half-edges that is not 
onne
ted to the �rstnode. Repeating this pro
edure, I 
reate a net-work without multiple edges between any pair ofnodes and with the desired degree distribution.This of 
ourse will only work if the total numberof half-edges is even. If this is not the 
ase, thedegree distribution 
annot be realized.In the ensemble of networks with arbitrarydegree distribution, all possible realizations o
-
ur with equal probability. The above pro
eduredoes not reprodu
e this ensemble; the only rea-son to follow it is that it works without any po-tential deadlo
ks (ex
ept in a few pathologi
al
ases whi
h are not ne
essary to 
onsider here).In the se
ond stage, I shu�e the edges in thenetwork in the following way: Two nodes A and
C are drawn uniformly at random from the net-

Figure A.1: Illustration of the rewiring pro
essthat randomizes the 
on�guration model net-works.work, and for ea
h of them one of their neigh-bours is sele
ted (again, uniformly at random).Let the sele
ted neighbour of A be the node B,and that of C be D. Then the edges are rewiredso that A and C, and B and D, are 
onne
ted(see Fig. A.1), unless this introdu
es a self-edge
onne
ting a node to itself, or a multi-edge, thatis an edge between nodes that are already neigh-bours. This type of rewiring leaves the degreedistribution untou
hed while at the same timerandomizing the nodes at the ends of the edges.After repeating these swaps su�
iently often (Iperform 50E su
h steps, where E is the totalnumber of edges in the network), the network isessentially 
ompletely randomized.A.2 The number of nodes to 
he
k inthe subnet methodIn order to take snapshots of the networkat any given 
overage fra
tion t, I have imple-mented the dis
overy strategies in su
h a waythat they take as input parameters (among oth-ers) a partially dis
overed network and the num-ber of steps to perform before the next snapshot.This is straightforward for all methods ex
eptthe subnet method. Here the number of steps
annot be any integer: Instead, it must be su
hthat it is possible to test a number of 
ompletelynew nodes among ea
h other, but also with thenodes that have been in
luded in the subnet pre-viously.Let T be the number of steps to perform be-
14



fore the next snapshot, and let No be the numberof nodes that are already in
luded in the subnet.Then the number of nodes to add to the subnet
Na is determined from

T = Na(Na − 1)/2 + Na · No (A.1)The �rst term on the RHS of Eq. (A.1) rep-resents the tests between the added nodes, andthe se
ond term a

ounts for the tests betweenadded and old nodes. Solving the quadrati
 for
Na is straightforward:

0 = N2

a + 2Na(No −
1

2
) − 2T

⇒ Na =
1

2
− No +

√

(

No −
1

2

)2

+ 2T(A.2)Clearly we get an integer solution for Na only for
ertain values of T . In general, these values donot 
oin
ide with the 
overage steps of 0.05 thatI used for the data 
olle
tion. I have dealt withthis problem in the following way: Given thenumber of steps to perform between two snap-shots, I add as many nodes to the subnet aspossible without using more steps than allowed.The remaining steps are 
arried over and addedto the steps for the next snapshot.We 
an also use Eq. (A.2) to derive Eq.(7): The number of steps to perform is T =
tN(N − 1)/2, and the number of nodes initiallyin the subnet is No = 0. Thus we obtain

Na =
1

2
+

√

1

4
+ tN(N − 1) (A.3)as before.
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B Supplementary resultsB.1 The BA networksThe results for the dis
overy of the BA net-works are quite similar to the Calte
h and CMnetworks. In Fig. B.1 we see that the guidedmethods are again better at �nding edges. How-ever it appears that here the degree methods isslightly better than the other two. Fig. B.2shows that the guided strategies tend to �nda disassortative mixing whi
h is not present inthe a
tual networks. Finally we observe fromFig. B.3 that the 
lustering 
oe�
ient is overes-timated by the guided strategies. As in the other
ases, the subnet and uniform methods produ
euseful estimates of the assortativity and 
luster-ing 
oe�
ient.
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Figure B.1: The fra
tion of dis
overed edges fEagainst network 
overage t for the BA network.Error bars are one standard deviation.

0 0.2 0.4 0.6 0.8 1

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Network coverage t

A
ss

or
ta

tiv
ity

 r

 

 
Real
Subnet
Uniform
Degree
Neighbour
Hybrid

Figure B.2: The assortativity r against network
overage t for the BA network. Error bars areone standard deviation.
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B.2 The Reed and Haverford net-worksThe Reed and Haverford networks show qual-itatively similar dis
overy behaviour as the Cal-te
h network: The neighbour method is best at�nding edges (Figs. B.4 and B.5). Althoughthe networks are assortatively mixed, the de-gree method dis
overs a dissassortatively mixednetwork even for medium 
overage. The neigh-bour method 
aptures the assortativitiy ratherwell (see Figs. B.6 and B.7. In Figs. B.8 andB.9 we again observe the sensitivity of the esti-mated 
lustering 
oe�
ient on the detailed net-work stru
ture: The estimates are initially belowthe real value for all guided methods. At laterstages, the hybrid method produ
es an overesti-mate. On the Reed network, the same applies tothe neighbour method whilst the degree methodkeeps underestimating the a
tual value. On theHaverford network, this behaviour is reversed.The estimates of the subnet and uniform strate-gies are generally 
lose to the a
tual values, withthe usual ex
eption of the 
lustering 
oe�
ient'sestimate by the uniform method.
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tion of dis
overed edges fEagainst network 
overage t for the Reed network.Error bars are one standard deviation.
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tion of dis
overed edges fEagainst network 
overage t for the Haverford net-work. Error bars are one standard deviation.

0 0.2 0.4 0.6 0.8 1

−0.15

−0.1

−0.05

0

0.05

Network coverage t

A
ss

or
ta

tiv
ity

 r

 

Real
Subnet
Uniform
Degree
Neighbour
HybridFigure B.6: The assortativity r against network
overage t for the Reed network. Error bars areone standard deviation.

17



0 0.2 0.4 0.6 0.8 1
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

Network coverage t

A
ss

or
ta

tiv
ity

 r

 

 

Real
Subnet
Uniform
Degree
Neighbour
HybridFigure B.7: The assortativity r against network
overage t for the Haverford network. Error barsare one standard deviation.

0 0.2 0.4 0.6 0.8 1

0.05

0.1

0.15

0.2

0.25

0.3

Network coverage t

C
lu

st
er

in
g 

co
ef

fic
ie

nt
 C

 

Real
Subnet
Uniform
Degree
Neighbour
HybridFigure B.8: The 
lustering 
oe�
ient C againstnetwork 
overage t for the Reed network. Errorbars are one standard deviation.

0 0.2 0.4 0.6 0.8 1

0.05

0.1

0.15

0.2

0.25

0.3

Network coverage t

C
lu

st
er

in
g 

co
ef

fic
ie

nt
 C

 

Real
Subnet
Uniform
Degree
Neighbour
HybridFigure B.9: The 
lustering 
oe�
ient C againstnetwork 
overage t for the Haverford network.Error bars are one standard deviation.

18



B.3 Edge dis
overy on the power gridThe power grid is di�erent from the other net-works 
onsidered here in that the average degreeis only about 3. This extreme sparseness hasimportant 
onsequen
es for the dis
overy pro-
ess: In Fig. B.10 we 
an see that the degreemethod is worst at �nding edges above a 
over-age of about t ≈ 0.4. The neighbour method stilloutperforms the uniform and subnet method buteven here the di�eren
e is mu
h smaller than onthe other networks (ex
ept the ER ones wherethere is no di�eren
e at all).
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Figure B.10: The fra
tion of dis
overed edges
fE against network 
overage t for the power gridnetwork. Error bars are one standard deviation.B.4 Component dis
overy on the Cal-te
h networkThe Calte
h network features three very small
omponents. This makes the interpretation ofthe number of dis
overed 
omponents (Fig. 5)more 
ompli
ated. From Fig. B.11 we 
an de-du
e that the degree method has parti
ular dif-�
ulty in �nding the small 
omponents: From
t = 0.3 until t = 0.7 the degree method only�nds two 
omponents, and one of them is the gi-ant 
omponent of the real network. Only around
t = 0.8 the other small 
omponents are estab-lished. In 
ontrast, the neighbour method �ndsthe small 
omponents earlier; on the other hand,this strategy takes longer to �nd the edges that

link all the nodes of the largest 
omponent to-gether.
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Figure B.11: The fra
tion of non-isolated nodesthat are part of the largest 
omponent fc againstnetwork 
overage t for the Calte
h, CM and ERnetworks. Error bars are one standard deviation.B.5 Improving the estimate of the
lustering 
oe�
ient
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Figure B.12: The normalized 
lustering 
oef-�
ient divided by t as found by the uniformmethod against network 
overage t.In Fig. 8 we have found that the 
luster-ing 
oe�
ient estimated by the uniform methodappears to in
rease nearly linearly with the net-work 
overage fra
tion t. Fig. B.12 shows the
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estimated 
lustering 
oe�
ient divided by t andthe a
tual value Creal. As already indi
ated inse
tion 5.2, the 
urves are distin
tly non-linearfor small values of t. For higher 
overage, divid-ing out the fa
tor of t gets the estimated 
lus-tering 
oe�
ient 
loser than 90% to the a
tualvalue. The best result is obtained on the ERnetworks where the estimate is essentially 
or-re
t for t ≥ 0.3.B.6 Dis
overy with errorsWhen we allow for errors to o

ur in thenetwork dis
overy, we have seen in Fig. 9 thenumber of erroneously found edges is larger ifonly false-positives are present than if only false-negatives 
an o

ur. Here we study the in�uen
eof the errors on the topologi
al properties of theCalte
h network. Fig. B.13 shows that the exis-ten
e of false-positive leads to the situation thatthe distin
t 
omponents of the real network get
onne
ted by erroneously pla
ed edges. On theother hand, false-negatives have a less severe im-pa
t. Only the neighbour method (and thus alsothe hybrid strategy) are strongly in�uen
ed.From Fig. B.14 we learn that false-negativeshave almost no impa
t on the average pathlength. Even the 
onsequen
es of in
luding false-positives is rather small.The assortativity appears to 
hange drasti-
ally (Fig. B.15): When looking at the diagram,we have to bear in mind that the absolute valueof r is tiny, so even (absolutely) small devia-tions appear large on the relative s
ale. Fur-thermore the assortativity 
an be both positiveand negative. It is remarkable how little the esti-mate of r 
hanges with false-negatives; only forthe neighbour method 
hanges slightly for low
overage. The impa
t of false-positives is moredramati
: For the subnet, uniform and neigh-bour strategies, the assortativity 
hanges sign forsmall t, and only the neighbour method re
oversthe original sign at higher t.The pi
ture is similar for the 
lustering 
o-e�
ient. Fig. B.16 indi
ates that the esti-mate 
hanges little under the in
lusion of false-negatives; when false-positives are added, thevariation is mu
h larger.Finally we note a surprising feature: Withfalse-positives, the guided methods appear gen-

erally more stable in their estimates. Ex
ept forthe number of 
omponents, the relative 
hangein the estimates of the subnet and uniformstrategies is mu
h larger. However before we 
anmake a justi�ed 
laim here, further tests are 
er-tainly ne
essary.
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Figure B.13: The number of 
omponents whenrandom errors o

ur in the dis
overy, normalizedby the number of 
omponents found without er-rors. Solid lines are for qn = 0, qp = 0.01 anddotted lines show the 
ase qp = 0, qn = 0.05.The underlying network is Calte
h.
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Figure B.14: The average geodesi
 length whenrandom errors o

ur in the dis
overy, normalizedby the average geodesi
 length without errors.Solid lines are for qn = 0, qp = 0.01 and dot-ted lines show the 
ase qp = 0, qn = 0.05. Theunderlying network is Calte
h.
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Figure B.15: Assortativity when random errorso

ur in the dis
overy, normalized by the as-sortativity without errors. Solid lines are for
qn = 0, qp = 0.01 and dotted lines show the 
ase
qp = 0, qn = 0.05. The underlying network isCalte
h.
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Figure B.16: The 
lustering 
oe�
ient whenrandom errors o

ur in the dis
overy, normal-ized by the 
lustering 
oe�
ient without errors.Solid lines are for qn = 0, qp = 0.01 and dot-ted lines show the 
ase qp = 0, qn = 0.05. Theunderlying network is Calte
h.

21


