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I develop several new models that attempt to reproduce the structure of two-dimensional granular materials,
and compare them with experiment using diagnostics from network science. I discuss one model that treats
granular networks as a perturbation of a close-packed hexagonal lattice, and two models that are modifications
of the random geometric graph (RGG). One of these modified RGGs simulates the forces that compressed
particles exert on each other and displaces them accordingly. This model is found to be a good model of
granular materials, in that its network properties appear to be very close to those of real granular networks;
however, its effectiveness does not seem to depend upon the form of the force law implemented. I then briefly
examine the three-dimensional analogues of two of the models.

1 Introduction

1.1 Granular materials

A granular material consists of a large number of
macroscopic particles (for example, grains of sand)
[1]. Understanding flows of granular materials is im-
portant in predicting geophysical hazards [2], as is
understanding the nature of the jamming transition
that occurs when a granular material becomes rigid
under increasing pressure [3]. Further important yet
poorly understood phenomena are the propagation
of sound and the distribution of forces in granular
packings. It has been proposed that the appearance
of force chains may be a barrier to our understand-
ing in this area [4]. The phrase ‘force chain’ refers to
the observation that stresses in granular materials are
transmitted through the system along chains of par-
ticles [5]. These distinctive chains only include a frac-
tion of all the particles, and they snake through the
material in an inhomogeneous and seemingly unpre-
dictable manner (see Fig. 1). In [6], the structure of
force chains was approached from a network-science
perspective. It was found that the mean force on a
particle is significantly correlated with its intracom-
munity strength z-score, which is a measure of the
particle’s connectivity within its local network com-
munity (see Sections 1.2 and 1.5 for descriptions of
network connectivity and communities). The results
in [6] indicate that a network-science perspective can
provide powerful tools with which to probe the struc-
ture of granular materials. Motivated by this, I use
diagnostics from network science as a means to as-

sess the effectiveness of different models of granular
materials.

This report is organised as follows. In the remain-
der of this section, I briefly describe some relevant
concepts from network science and describe the ori-
gin of the experimental data that I will be comparing
the models to. In Section 2, I describe each model in
detail and explain its motivation. I also discuss each
model’s performance when compared with experi-
ment using network diagnostics. In Section 3, I anal-
yse the force-modified RGG model in more detail,
comparing the distribution of forces and compres-
sions that it predicts with results from experiment,
and in Section 4 I investigate how the effectiveness

Figure 1: Force chains observed in a granular medium con-
sisting of photoelastic disks, which emit light when com-
pressed [7]. See Section 1.4. Image credit to Eli Owens
and Karen Daniels (used with permission).
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of this model is dependent on the precise form of the
force law it implements. In Section 5, I extend two of
the models to three dimensions and compare the re-
sults to the two-dimensional case. Finally, in Section
6, I discuss my findings and conclusions.

1.2 Spatial networks

A network is a set of nodes and an associated set of
edges that define pairwise connections between the
nodes. For a network with N nodes, we label the
nodes i = 1, 2, 3, . . . , N and label edges using the un-
ordered pair of integers (i, j), which then represents
an undirected connection between nodes i and j1.

A spatial network is a network whose nodes are
embedded in some space possessing a metric [8]. A
granular material can be used to define a network
embedded in a 2D Euclidean plane, with particles
represented by nodes that are connected by an edge
if and only if the particles are in contact. This rep-
resentation is a particularly natural one, so it seems
reasonable to expect a network-science perspective to
provide enlightening ways of analysing the structure
of granular materials.

It is important to clarify what is meant when two
particles are said to be “in contact”. If two particles
have positions xi and xj and respective radii ri and rj
when uncompressed, we define them to be in contact
if and only if |xi − xj | ≤ ri + rj .

1.3 Some definitions

A network with N nodes can be described by its ad-
jacency matrix [9], an N ×N matrix whose elements
take the values

Aij =

{
1, if i and j are connected,

0, otherwise.
(1)

A weighted network has a weight wij associated with
the edge (i, j) that connects nodes i and j. These
weights might come from the physical distance be-
tween two connected nodes, or can be the force that
two particles exert on one another. For a weighted
network, the weighted adjacency matrix is:

Wij =

{
wij , if i and j are connected,

0, otherwise.
(2)

The adjacency matrix encodes all the information
about the network and allows direct calculation of

1We can also define a directed network, in which edges are
labelled using an ordered pair of integers (i, j), which represents
a directed connection from node i to node j.

many useful quantities. For example, the degree ki
of node i is the number of nodes to which it is con-
nected. In terms of the adjacency matrix,

ki =
∑
j

Aij . (3)

A path from node i to node j is a sequence of edges
that connect a sequence of nodes starting at node i
and terminating at node j. The length of the path
is the number of edges in the path (or for weighted
networks the sum of the weights of those edges). A
geodesic path is a path between two nodes with the
shortest possible length. Geodesic paths between two
nodes are in general not unique.

A planar network is a network whose nodes can be
placed in the plane in such a way that the edges do
not intersect each other (except at the nodes).

1.4 Experimental data

Owens and Daniels [7] performed experiments on a
set of bidisperse 2D granular packings. A bidisperse
medium contains particles of two different sizes, while
a monodisperse medium contains particles of identi-
cal size. A collection of disks were cut from Vishay
PSM-4 photoelastic material, with thickness 6.35 mm
and radii r1 = 4.5 mm and r2 = 5.5 mm. Approx-
imately 1000 particles were packed into a container
with an open top, so that they were confined only
by gravity. The average packing fraction of these ar-
rangements was 0.84± 0.01, where the packing frac-
tion is defined as the fraction of the total area occu-
pied by the particles. In total 17 different arrange-
ments were studied, each of which was obtained by
manually rearranging the disks. The photoelasticity
of the particles means that the contact forces can be
estimated by comparing photographs of the system
to calibration images for known forces [6]. Data was
thereby obtained for both the contact networks and
the weighted force networks.

1.5 Network diagnostics

In network science, many diagnostics have been in-
troduced as means of quantifying the properties of
networks [9]. The beauty of applying network science
to granular materials is that even though these diag-
nostics were not introduced with granular networks
in mind, they can give insightful information about
the structure of the network and hence the structure
of the material.
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Network diagnostics can be defined for both
weighted and unweighted networks. In my analyses,
I compare only diagnostics of the unweighted contact
networks. Below I list the diagnostics that I used.
Diagnostics (with the exception of communicability
and mean shortest distance) were calculated using
code from the Brain Connectivity Toolbox [10]. See
[6, 9] for precise definitions.

� Node (edge) betweenness centrality. Node (edge)
betweenness centrality of a given node (edge)
measures the number of geodesic paths that
pass through that node (edge). This diagnostic
gives an indication of a node’s (or edge’s) impor-
tance within a network — for example, a station
in a rail network has a high node betweenness
centrality if a large number of rail routes pass
through it.

� Clustering coefficient and transitivity. These two
diagnostics are closely related, and give infor-
mation about local clustering within a network.
A node with a high clustering coefficient has a
high number of connections between its neigh-
bours. Transitivity is the proportion of con-
nected triplets of nodes that also form triangles.

� Assortativity. This quantifies the extent to
which the degrees of connected nodes are cor-
related.

� Global and local efficiency. Global efficiency
quantifies how well a signal transmits through
a network, whereas the local efficiency of a node
quantifies how well a signal transmits within a
local subgraph that includes that node.

� Mean shortest distance. This is simply the mean
length of the geodesic paths in a network.

� Maximised modularity. Modularity is related
to the problem of community detection. The
aim of community detection is to partition a
network into non-overlapping communities such
that the edge density within communities is large
whereas connections between communities are
sparse. Community detection algorithms max-
imise a quantity known as modularity — the
maximised value then gives a measure of how
well the network can be partitioned into com-
munities2.

2I use the Louvain algorithm [11] to optimise the modular-
ity.

� Subgraph centrality. This diagnostic quantifies
the extent to which a given node participates in
the subgraphs of a network.

� Communicability. The communicability of a pair
of nodes attempts to describe the ease of commu-
nication between the nodes by counting the num-
ber of paths between them while down-weighting
the contributions from longer paths.

In addition to these diagnostics, I also developed two
new measures in the course of my investigations:

� tr(eA − I). This quantity is closely related to
communicability except that rather than count-
ing paths between different nodes, it counts loops
that start and end at the same node.

� Path-weighted betweenness. This diagnostic is
identical to node betweenness centrality except
that it down-weights the contribution from each
path by a factor 1/l!, where l is the length of the
path.

For diagnostics that give a value for each individual
node (or edge), I calculate the mean over all the nodes
(or edges) to provide a single number to characterise
the whole network.

2 Models

2D granular networks are highly constrained by some
basic physical principles:

� They are embedded in 2D, so they must be pla-
nar;

� The compression between two particles in con-
tact with one another is generally small com-
pared to the radii of the particles, so there is a
limit to how close any two nodes can be;

� There is a geometrical restriction on the max-
imum degree of each node: for monodisperse
disks — or bidisperse disks whose radii (r2 > r1)
are in the ratio r2

r1
< 1.3 — no particle can be in

contact with any more than six other particles3.

3Let r1 and r2 be such that n circles with radius r1 can be
packed around a circle with radius r2. Then the centres of two
adjacent smaller circles subtend an angle θ = 2arcsin r1

r1+r2
at

the centre of the larger circle (by simple trigonometry). Hence
r2
r1

= cosecπ
n
− 1. In this case n = 7, so r2

r1
≈ 1.3.
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Figure 2: From left to right, sections of packings generated by the bidisperse RGG, the p(ρ)-modified RGG, and the
force-modified RGG.

I develop different models to focus on each of these
constraints. In the following subsections, I present a
description of each model and a brief examination of
its performance. I give the network diagnostics for
each model along with experimental data in Table 1
in Appendix B.

2.1 Random geometric graph

A very crude model is the random geometric graph
(RGG) in 2D. Here we place N particles uniformly at
random within a rectangular subset of R2 (whose di-
mensions approximately match the dimensions of the
experimental setup) and connect them by an edge if
they are separated by a distance of less than 2R. We
choose R so that the edge density (the ratio of the
number of edges to the number of nodes) of the re-
sulting network matches the experimental data. Note
that these RGGs will in general not be planar net-
works. Therefore, the only constraint captured by
the RGGs is the dimensionality of the space in which
the network is physically embedded, because we use
the 2D Euclidean metric to define distance between
nodes. This model has already been studied in the
context of granular networks in [6], where the RGG is
used as a null-model network with which to compare
network diagnostics computed from the experimental
data.

We can also crudely model a bidisperse system by
assigning each particle a radius ri that can take one
of two values. We then connect two particles by an
edge if the distance between them is dij < R(ri+ rj),
where again R is a parameter that we can change to

match the edge density with experiment.

The RGG is a poor model of granular networks.
As has already been noted in [6], the network diag-
nostics are significantly different for an ensemble of
RGGs versus the experimental networks (see Table 1
in Appendix B). We find that RGGs are locally more
connected, with higher values of clustering coefficient
and local efficiency than we find in the experimental
data. This makes sense, since we have not imposed
any constraint on the maximum degree of a node, and
the non-planarity of the RGGs allows connections be-
tween particles that are physically impossible in a
real granular network. Interestingly, the bidisperse
version of the RGG fared no better in matching the
experimental data than the monodisperse version.

However, the RGG results are useful because they
give a baseline against which to compare the results
from the other models. Comparing any diagnostic
against its value for the RGGs allows us to get a
sense of what order of magnitude to expect, and what
constitutes a close agreement (or otherwise) with ex-
periment. We will see that all of the other models
perform significantly better than the RGGs. This is
to be expected, because each of the models imposes
constraints that are motivated by real effects in gran-
ular materials.

2.2 p(ρ)-modified RGG

There are many ways to modify the RGG model to
more accurately reflect the structure of granular ma-
terials. One of the most evidently unphysical aspects
of the simple RGG model is that two particles can
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be arbitrarily close to one another. Particles exert a
repulsive force when compressed, so there is a limit
to how close we expect to find particles to each other,
for a given packing fraction.

Define the proximity ρ, given an arrangement of
pre-placed particles, as the distance from a given
point to the nearest particle. Proximity is thus a
function of position in the plane. We can then mod-
ify the RGG model by placing particles one by one —
a point is chosen uniformly at random and a particle
is placed there with a probability p(ρ) — a function of
the point’s proximity. If p→ 0 for small proximities,
then the resulting arrangement has a constraint on
how close particles can be positioned to one another.

A simple choice for the function p(ρ) is

p(ρ) =

{
0, for ρ < 2αri,

1, for ρ ≥ 2αri,
(4)

where ri is the radius of the particle being placed.
The value of α puts a limit on the number of particles
of a given radius that can be placed in a given area. I
placed bidisperse particles into a rectangular region,
matching the dimensions and the sizes of the particles
to experiment. Given this setup, the highest value of
α that allowed the appropriate number of particles
to be placed was α ≈ 0.8. It is reasonable to use
the highest value of α (< 1) as possible, because, as
I have already noted, compressions between particles
are generally small compared to their radii and so we
should enforce as strict a constraint as possible on
how close particles can be to one another.

Particles are then connected using a similar proce-
dure to that used for the simple RGG model. Figure 2
shows particle arrangements generated from the sim-
ple RGG, the modified RGG, and the force-modified
RGG (see Section 2.4). As might be expected sim-
ply from a visual comparison of these models, the
p(ρ)-modified RGG performs much better than the
original RGG in almost every diagnostic (see Table 1
in Appendix B).

2.3 Modified lattice

A very important property of 2D packings of disks
is their tendency to crystallise into lattice-like struc-
tures [12]. Under high enough pressures, a monodis-
perse packing can crystallise into a hexagonal lattice,
which is the optimal packing arrangement for circles
in 2D. Crystallised packings do not exhibit the force
chain structure that we observe in irregular packings.
This is the main reason that Owens and Daniels used

bidisperse particles — particles with different radii
are much less likely to crystallise into regular struc-
tures.

Nevertheless, there is a definite tendency for bidis-
perse packings to locally approximate hexagonal
packings. From visual inspection, we see that 2D
packings include some regions that are reminiscent
of hexagonal lattices (See Fig. 3). This motivates
a modified lattice model, which treats granular net-
works as a perturbation of a hexagonal lattice. Start-
ing with the contact network for a rectangular section
(dimensions to match experiment) of a perfect close-
packed lattice, I remove edges uniformly at random
until the edge density matches experiment.

Figure 3: On a small scale, bidisperse particles can still
pack into a regular hexagonal structure. Original image
from Owens and Daniels [7] (used with permission).

Note that all the other models give a set of particle
positions as their output. This set contains enough
information to construct the contact network (once
R is fixed). The modified lattice model is different
in that it directly outputs the contact network. This
network does not contain enough information to re-
construct a set of particle positions. This means that,
while the other models can be visualised by plotting
the positions of the particles (as in Fig. 2) the mod-
ified lattice model is not amenable to a visual repre-
sentation. It is a model only of the contact network,
and makes no attempt to model the precise physical
arrangement of particles.

Despite this, the network diagnostics of this model
match very well to those of the experimental data
(see Table 1). The match is particularly good for
diagnostics which characterise global, system scale
properties of the network — specifically, node and
edge betweenness centrality, mean shortest distance,
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and global efficiency.

2.4 Force-modified RGG

An obvious constraint on granular materials is that
they are formed of particles that obey physical laws.
In particular, the particles are acted on by gravity
(unless the plane is horizontal) and by forces from
the other particles and the walls of the container.
In Hertzian contact theory, the force between two
compressed particles takes the form

f ∝ δβ, (5)

[7] where δ is the total compression and β is an expo-
nent which depends on the geometry of the particles.
For the particles in the experimental data I used, the
exponent β was found to be approximately 5/4 [7].

I modify the crude RGG model by calculating the
inter-particle forces using force law (5) for a random
arrangement of particles. I then allow each particle
to move a displacement di = εfi, where fi is the total
force on particle i, and ε is a resolution parameter. I
then recalculate the forces, and repeat the process.

There are subtleties involved in choosing an appro-
priate value for the parameter ε. Ideally ε would be
taken to be arbitrarily small4 so that the system could
move smoothly and incrementally into its equilibrium
arrangement. However, reducing ε dramatically in-
creases the computation time.

A larger value of ε is useful at the beginning of the
simulation, because the particles start out clustered
together and need to move significant distances in or-
der to fill the spaces in between. However, this misses
the fine detail needed to home in on the equilibrium
arrangement, and the particles end up hopping back
and forth around their equilibrium position without
ever getting there.

To address this issue, I monitor the potential en-
ergy of the system. Since the model is supposed to
allow the particles to relax under the forces they exert
on one another, the potential energy should decrease
with every step of the simulation. The code was mod-
ified so that if after any step the potential energy
becomes higher than it was after the previous step,
the resolution parameter is tuned down by a constant
factor. This allows me to start the simulations with
a relatively high value of ε, which is then modified as
the simulation progresses so that the system is always
sensitive at the appropriate distance scales. The po-
tential energy will eventually tend to an asymptotic

4Here, ‘small’ means that the mean distance moved by each
particle is small compared to the dimensions of the container.

value, and there will come a point at which small ad-
justments in particle positions are unimportant. One
method I use to determine the moment at which this
occurs is to calculate the adjacency matrix at every
step. If the adjacency matrix remains the same for a
significant number of iterations, I judge it appropri-
ate to end the simulation. See Fig. 2 for a particle
arrangement generated using this model. For more
details on the implementation of the model, see Ap-
pendix A.

This model is the most sophisticated one that I
investigated, and is the closest to real-world granu-
lar networks because it includes more physical con-
straints than the other models. Therefore, we expect
it to perform particularly well under our network di-
agnostics. This is indeed what we find, especially
compared with the simple RGG and p(ρ)-modified
RGG models. The diagnostics for which the force-
modified RGG performs best appear to be ones that
are especially sensitive to local structure — cluster-
ing coefficient, local efficiency, modularity, subgraph
centrality, transitivity, communicability, tr(eA − I),
and path-weighted betweenness (Table 1). The mod-
ified lattice model still seems to better capture the
global properties of the networks.

For the diagnostics that are more sensitive to global
properties, the force-modified RGG is actually not
much better than the p(ρ)-modified RGG model. It
is interesting that the improvement from the cruder

Figure 4: Force chains in the force-modified RGG model.
Thickness of the lines indicates the strength of the inter-
particle forces.
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model to the more sophisticated one does not show
up significantly in the global network diagnostics.
The conclusion is striking: modelling the forces be-
tween particles causes a significant improvement in
the model’s local structure, but seems to have little
effect on the global structure.

3 Physical analysis of the force-
modified RGG

Thus far, I have focussed on using network diagnos-
tics to assess the effectiveness of the models. Since
the force-modified RGG model incorporates a force
law, it makes sense to analyse this model from a
physics perspective as well.

Figure 4 is a plot of the force chains for a parti-
cle arrangement generated by this model. I calcu-
late the forces between particles using force law (5),
with β = 5/4. Encouragingly, the force-modified RGG
model reproduces force chains that are reminiscent of
experiment (see Fig. 1).

To investigate these matters more quantitatively,
I also examine the force distributions. In Fig. 5, I
plot the force distribution as measured in experiment,
compared to the force distribution for force-modified
RGG packings generated at the same packing frac-
tion. Note the presence of more than one peak in
the experimental distribution. The force distribu-
tion generated by the force-modified RGG has only
one distinct peak, so some aspect of the physics has
clearly been overlooked by this model. To understand
what the model is missing, we return to the force law
(5). Including the constant of proportionality, we
write it as

fij = αδβij , (6)

where we recall that δij is the total compression be-
tween particles i and j. In Hertzian contact theory,
the constant α is generally a function of the particles’
geometry. In the force-modified RGG model, the par-
ticles are displaced in increments proportional to the
resolution parameter ε, so the constant α is unnec-
essary if we assume it takes the same value for all
particles. I therefore did not incorporate it into the
force-modified RGG model. However, we would ac-
tually expect α to be a function of the radii of the
two particles. Therefore,

fij = α(ri, rj)δ
β
ij . (7)

To generate a physically more realistic force distribu-
tion, we need to determine the three values: α(r1, r1),

Figure 5: Normalised force distributions for experiment
(averaged over 17 different packings) and the force-
modified RGG (averaged over 20 realisations). The dis-
tribution from the model is scaled so that the mean force
matches experiment.

α(r1, r2), and α(r2, r2), where r1 and r2 are the two
different radii of the bidisperse particles. We then ob-
tain a force distribution that is a sum of three (single-
peak) distributions, with one peak for each distinct
value of α. This may be the mechanism behind the
more complex force distribution that we observe in
experiment.

In an attempt to improve the force-modified RGG
model, one can try to determine the values of α by
fitting to experiment. Indeed, including as much of
the known physics as possible seems an obvious way
of improving the model. However, as I shall discuss
in Section 4, the precise force law used in the genera-
tive stage seems to have little effect on the model’s ef-
fectiveness, particularly its effectiveness at modelling
network properties.

Another relevant distribution is the distribution of
compressions (i.e. the values of δij in the above equa-
tions). The δ-distribution is simpler in that it does
not depend on the different values of α, so we can
use it instead of the force distribution as a means of
comparing the model to experiment.

In Fig. 6, we compare the δ-distributions from ex-
periment and from the force-modified RGG. I used
sets of packings which were generated at the same
packing fraction as the experiments. Interestingly,
the peak of the experimental distribution is at a
significantly higher compression. For non-identical
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Figure 6: Normalised δ-distributions for the force-modified
RGG (averaged over 20 realisations) compared to exper-
iment (averaged over 17 different packings), at the same
packing fraction. I give values of δ in units of 〈r〉, the
mean particle radius.

packing fractions, we might expect to find a higher
peak compression in one than the other. However,
since both are at the same packing fraction, this is
an undesirable result. A lower peak compression sug-
gests that the force-modified RGG model generates
packings with too low a potential energy.

To investigate further, I calculate the mean poten-
tial energy of the packings generated by the force-
modified RGG model and compare to experiment.
The potential energy in both cases can be calculated
from the particles’ positions. In this calculation I as-
sume all values of α to be the same and equal to 1, so
the values are not strictly accurate and are useful only
for comparison5. I obtain the mean value 8.88×10−6

(with a standard deviation of 0.99 × 10−6) for the
experimental packings and 1.74× 10−6 (standard de-
viation 0.47×10−6) for the force-modified RGG pack-
ings.

4 Sensitivity to the force law

We have found that including a model of the forces
between particles significantly improves the RGG’s
effectiveness at describing granular network structure

5The explicit expression I use to calculate the potential be-
tween particles i and j is Vij = δβ+1

ij . This is strictly only
proportional to the potential, but since I use it only for com-
parison, this technicality is unimportant.

(especially locally). It is important to ask whether
the model’s effectiveness relies on using the correct
force law. As we saw in Section 3, the force law
could have been made more realistic by choosing cor-
rect values for the coefficients α(ri, rj), instead of as-
suming that they were all equal. Would the model
perform better with such an improvement?

To investigate how sensitive the network properties
of the model are to the force law, I generated particle
arrangements for different values of the parameter β.
As I have mentioned, for the particles used in the
experiments, β ≈ 5/4. In Table 2 in Appendix B, I
show the results for the various network diagnostics
for β = 5/4 and β = 0. The latter is an extreme
case, in which the force between a pair of particles
is independent of their compression and particles all
exert the same force on one another if they are in
contact.

Interestingly, the results for the two cases are
nearly identical. All differences are well within one
standard deviation. In the force-modified RGG we
might as well have used a force law that is simpler
both analytically and computationally, as it would
still generate networks that are good models of real
granular networks (in so far as the chosen diagnostics
can reveal).

This suggests that the important constraint on
granular networks is not the exact form of the force
law between particles but rather the fact that they
exert some force on each other. The network proper-
ties that I studied do not seem to be sensitive to the
forces between particles — however, it is important
that some repulsive force is modelled.

5 Extension to 3D

The simplicity of the models that I have developed al-
lows a straightforward extension to three-dimensional
granular materials. Without experimental data in
3D, the best we can do is to compare the results from
the models. In Table 3 in Appendix B, I present the
network diagnostics for the force-modified RGG ver-
sus the modified lattice model. I also give results
from a 3D version of the simple RGG for compari-
son. I use the same number of particles in each model
and match the edge density as before. For the force-
modified RGG and simple RGG, I use a container
whose sides are all of equal length; for the modified
lattice, I start with an approximately cubic section
of a 3D hexagonal close-packed lattice.

We no longer observe the particularly good agree-
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ment between the force-modified RGG and modified
lattice that we saw in 2D. This is especially true of the
more local diagnostics, such as clustering coefficient
and local efficiency, for which the disparity between
the two models has significantly increased.

The force-modified RGG imposes the most realistic
physical constraints — this suggests that the results
from this model will be the most reliable and in best
agreement with real 3D granular materials. Exper-
imental data is necessary to further investigate this
possibility.

6 Discussion and conclusions

I have investigated three novel models of granular
networks. The main analysis I performed on these
models was a comparison of network diagnostics for
the unweighted contact networks. The most sophisti-
cated of these models, the force-modified RGG, pro-
vides a model not only of the contact network but
also of the weighted force network. I compared this
model’s prediction for the distributions of forces and
compressions to experiment. Then I extended the
force-modified RGG and the modified lattice mod-
els to three dimensions and repeated the analysis of
their network diagnostics, comparing their behaviour
in 3D and 2D.

The network analysis of the RGG-based models
was interesting because it illustrated how including
more physical constraints in a model improved its
performance in comparison to experiment. The sim-
ple RGG model included no constraints other than
the fact that it embedded the network in a two-
dimensional space. The p(ρ)-modified RGG model
attempted to crudely model the constraint that parti-
cle compressions are small compared to their radii by
preventing particles from being closer than 0.8 times
the sum of their radii. Finally, the force-modified
RGG model attempted to simulate the actual forces
between particles. The performance of the models
improved with each constraint — the simple RGG
performed worst, followed by the p(ρ)-modified RGG,
while the force-modified RGG was the closest match
to experiment (see Table 1).

An enlightening distinction that a network analy-
sis allows us to make is the distinction between local
and global properties of the system. Each network
diagnostic is sensitive at a characteristic size scale.
For example, betweenness centrality is related to the
number of geodesic paths that go through a given
node/edge, so its value depends on the structure of

the rest of the network. In this sense its value for
each node/edge is sensitive to global properties of the
network. The main reason I introduced path-weighted
betweenness was to create a related measure that was
more sensitive to local properties. As described in
Section 1.5, the contribution of each path to this di-
agnostic is down-weighted by a factor 1/l!, where l
is the length of the path. Consequently, this diag-
nostic is much less sensitive to large-scale structure,
and the leading contribution comes from short paths
in the vicinity of each node. A related diagnostic is
tr(eA − I), which counts the number of loops that
start and end at a given node, and in a similar way
down-weights the contributions from longer loops.

As was discussed in Section 2, the improvement
from the p(ρ)-modified RGG to the force-modified
RGG mainly shows up in the diagnostics which are
sensitive to local structure. As far as the global di-
agnostics are concerned, the force-modified RGG is
only a slight improvement on the p(ρ)-modified RGG.
The natural conclusion to draw is that modelling in
detail the forces between particles significantly im-
proves the local structure of a model, while accurate
global properties can be modelled by much simpler
constraints, like the one the p(ρ)-modified RGG is
based upon. Since it is always desirable to have a
model that gives accurate predictions with minimal
physical constraints, it is valuable to be able to iden-
tify which constraints different properties of granular
networks depend on.

An especially interesting result was found during
the investigations described in Section 4. Although
modelling the forces between particles improves the
local structure of the RGG model, none of the diag-
nostics I used appear to be affected by the precise
form of the force law. Whether or not there are any
diagnostics of the unweighted network that are sen-
sitive to the choice of force law is a question that
further investigations might shed light on.

The physical analysis of the force-modified RGG in
Section 3 brought to light one issue with this model.
It generates packings which appear have a lower po-
tential energy than the packings studied in experi-
ment. One method of overcoming this problem might
be to stop the simulation when the potential energy
reaches a certain value. This would introduce an
extra parameter to the model, but might generate
packings which more closely resemble real granular
materials. Repeating both the network and physi-
cal analyses of Sections 2 and 3 could support this
suggestion.

To conclude, diagnostics from network science have
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made it possible to perform a much more detailed
analysis of granular materials — and models thereof
— than a purely physical approach would have al-
lowed. I have been able to examine the effectiveness
of different models at different size scales, using a set
of diagnostics that are sensitive to a wide range of sys-
tem properties. The diagnostics I have used are, how-
ever, far from a complete set, and more work could
be done examining how granular networks and their
models perform under different network diagnostics.

As discussed in Section 2, the modified lattice
model has network diagnostics that match very
well to experiment (especially on global properties).
Whether or not there are network diagnostics for
which the modified lattice shows up as a poor model
is a question that might be answered by further in-
vestigation. The modified lattice does not attempt to
model the physics of granular networks to the extent
that the force-modified RGG does, and perhaps this
is showing up in the fact that the force-modified RGG
outperforms the modified lattice on local diagnostics
(in particular communicability and tr(eA−I)). There
may however be other diagnostics for which this de-
ficiency shows up more significantly.

Network diagnostics appear to be useful and highly
sensitive tools for understanding the structure of
granular materials. Further work might uncover more
appropriate network diagnostics for application to
this area, as well as lead to a better understanding of
their dependence on the physical properties of gran-
ular materials.
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Appendices

A Force-modified RGG algorithm

The equation I used for the force acting on particle i
is

fi =
∑
j 6=i

[(1

2
(ri + rj)−

1

2
|xi − xj |

)β xi − xj
|xi − xj |

]
+(ri − xi)βx̂− (ri + xi − Lx)βx̂

+(ri − yi)βŷ − (ri + yi − Ly)βŷ

(8)

where it is understood that the terms raised to the
power β are only to be evaluated if they are positive.
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In this equation, ri is the radius of the ith particle and
xi and yi are its coordinates, being the components
of the vector xi. Two walls of the container lie along
the x and y axes, while the other two lie along the
lines x = Lx and y = Ly. The unit vectors along the
x and y axes are x̂ and ŷ, respectively. The terms
in the sum give the forces from other particles, while
the final four terms are the forces from each of the
walls.

For the realisations analysed in this report, I used
Lx = 0.29 and Ly = 0.38. As described in Section
2.4, the particles — whose positions are initially dis-
tributed uniformly at random — are moved a dis-
tance di = εfi in every step of the simulation. A
different starting value of ε is appropriate for differ-
ent values of β. I found that, for β = 1.25 and β = 0,
good starting values are ε = 8 and ε = 0.001 re-
spectively. Higher values often caused the potential
energy of the system to quickly diverge, while lower
values made the simulation unnecessarily slow. At
every step of the simulation the potential energy of
the system was calculated. The formula used for this
was

V =
∑
j 6=i

[(1

2
(ri + rj)−

1

2
|xi − xj |

)β+1
]

+(ri − xi)β+1 − (ri + xi − Lx)β+1

+(ri − yi)β+1 − (ri + yi − Ly)β+1.

(9)

Let Vi be the potential of the system after the ith

iteration. If Vi > Vi−1, then we replace ε→ ε′ = 0.9ε.
This ensures that the rearrangement of the particles
becomes more and more precise as the system gets
closer to an equilibrium arrangement.
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B Network diagnostics

Table 1: Network diagnostics for the experimental networks and models. I take means and standard deviations over 17
experimental networks and 20 realisations of each of the models.

Diagnostic Experimental networks Force-modified RGG Modified lattice

Mean SD Mean SD Mean SD

Edge density 2.101 0.0466 2.1012 0.0201 2.0972 0.0227
Node betweenness 20220 200 21275 254 20429 88
Edge betweenness 19.0082 0.1335 19.6592 0.2310 18.9846 0.1128
Clustering coefficient 0.2582 0.0108 0.2315 0.0071 0.2963 0.0084
Transitivity 0.2688 0.0078 0.2566 0.0058 0.2932 0.0062
Assortativity 0.1384 0.0218 0.2490 0.0209 0.0632 0.0270
Global efficiency 0.0763 0.0008 0.0754 0.0007 0.0769 0.0004
Local efficiency 0.3242 0.0170 0.2909 0.0111 0.3755 0.0108
Mean shortest distance 19.1953 0.1335 19.7059 4.7942 19.0068 0.0622
Maximised modularity 0.8473 0.0027 0.8449 0.0021 0.8543 0.0029
Subgraph centrality 6.8551 0.6044 7.4001 0.1720 7.8492 0.2474
Communicability 0.0690 0.0055 0.0695 0.0026 0.0727 0.0033
tr(eA − I) 7163.4 460.9 7296.1 196.1 7760.6 168.3
Path-weighted betweenness 28.7262 0.6722 28.9275 0.2751 28.9261 0.3346

Diagnostic p(ρ)-modified RGG Monodisperse RGG Bidisperse RGG

Mean SD Mean SD Mean SD

Edge density 2.1015 0.0181 2.1086 0.0398 2.1053 0.0550
Node betweenness 21495 208 4290.7 4005.6 6096.4 6746.8
Edge betweenness 19.8526 0.1838 3.9432 3.6016 5.5745 6.0640
Clustering coefficient 0.3265 0.0065 0.5503 0.0088 0.5443 0.0108
Transitivity 0.3326 0.0039 0.5915 0.0079 0.5887 0.0119
Assortativity 0.2212 0.0207 0.5907 0.0400 0.5735 0.0537
Global efficiency 0.0742 0.0006 0.0190 0.0032 0.0209 0.0050
Local efficiency 0.4284 0.0099 0.6332 0.0088 0.6261 0.0136
Mean shortest distance 19.8804 0.1706 19.4228 5.8312 20.0990 7.5789
Maximised modularity 0.8684 0.0037 0.9546 0.0021 0.9541 0.0036
Subgraph centrality 8.1630 0.1826 35.5901 22.0596 40.7119 34.3601
Communicability 0.0738 0.0031 0.4103 0.3469 0.5033 0.5832
tr(eA − I) 8165.8 208.2 39433 25148 45272 39171
Path-weighted betweenness 27.4245 0.3510 19.1524 0.5257 19.3028 0.6974
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Table 2: Comparison of network diagnostics for the force-modified RGG model with different values of β (averaged over
20 realisations in each case).

Diagnostic β = 5/4 β = 0

Mean SD Mean SD

Edge density 2.1012 0.0201 2.1010 0.0223
Node betweenness 21275 254 21020 259
Edge betweenness 19.6592 0.2310 19.4323 0.2319
Clustering coefficient 0.2315 0.0071 0.2315 0.0076
Transitivity 0.2566 0.0058 0.2586 0.0074
Assortativity 0.2490 0.0209 0.2684 0.0574
Global efficiency 0.0754 0.0007 0.0757 0.0007
Local efficiency 0.2909 0.0111 0.2943 0.0115
Mean shortest distance 19.7059 4.7942 19.5386 0.1733
Maximised modularity 0.8449 0.0021 0.8440 0.0031
Subgraph centrality 7.4001 0.1720 7.5207 0.2227
Communicability 0.0695 0.0026 0.0720 0.0039
tr(eA − I) 7296.1 196.1 7433.6 253.9
Path-weighted betweenness 28.9275 0.2751 29.0069 0.3404

Table 3: Network diagnostics for the 3D versions of the models (averaged over 20 realisations in each case).

Diagnostic Modified lattice Force-modified RGG RGG

Mean SD Mean SD Mean SD

Edge density 3.7432 0.0313 3.7385 0.0493 3.7310 0.0905
Node betweenness 5496.1 13.6 6253.4 27.4 7298.9 233.1
Edge betweenness 6.4980 0.0134 7.2524 0.0274 8.2875 0.2354
Clustering coefficient 0.1706 0.0033 0.2900 0.0056 0.5077 0.0063
Transitivity 0.1524 0.0030 0.2809 0.0044 0.4854 0.0062
Assortativity 0.1743 0.0188 0.3001 0.0242 0.4319 0.0447
Global efficiency 0.1879 0.0005 0.1685 0.0006 0.1462 0.0032
Local efficiency 0.2600 0.0086 0.4838 0.0126 0.6643 0.0051
Mean shortest distance 6.5046 0.0100 7.2524 0.0274 8.3740 0.2247
Maximised modularity 0.6653 0.0048 0.7061 0.0035 0.8392 0.0081
Subgraph centrality 55.5779 1.8141 60.7041 4.4417 1017.20 1584.2
Communicability 5.0862 0.4120 3.5704 0.3483 40.3959 63.7762
tr(eA − I) 54843 2324 59704 4442 1016100 1584000
Path-weighted betweenness 105.4764 0.6966 80.5972 0.8974 59.3594 2.0521
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