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Abstract

I use numerical and analytical techniques to study the dynamics
of various models of plankton food webs with and without resource
fluctuations. Plankton are ideal organisms because they are very
small, fast-reproducing organisms so they can easily be used in lab-
oratory experiments to verify any results. We can study simple food
webs to develop a better understanding of more complex food webs.
The three archetypical food webs are a single grazer with a resource
(growth), multiple grazers with a common resource (competition), and
one grazer and one predator with a base resource (predator-prey).

1 Background

Plankton are microbial organisms that live in aquatic environments. There
are two types of plankton: phytoplankton and zooplankton. Phytoplankton
are autotrophic organisms that use photosynthesis to generate their own food
from sunlight, water, and various nutrients. Zooplankton are heterotrophic
organisms that use phytoplankton as food sources themselves [2]. To under-
stand the dynamics of the phytoplankton-zooplankton systems, one could
use the analogy of self-sustaining plants and the animals that graze on them.

In 1961, Hutchinson presented the paradox of the plankton: ”The prob-
lem that is presented by the phytoplankton is essentially how it is possible
for a number of species to coexist in a relatively isotropic or unstructured
environment all competing for the same sorts of materials [1]”. Hutchinson
hypothesized that different species of plankton can coexist if they exploited
differences in other factors, such as efficiency of resource consumption under
different levels of resources.

1



One can model phytoplankton as one of two archetypes: gleaners and
opportunists. Gleaner plankton thrive on low food levels (such as dim light)
whereas opportunist plankton thrive on high food levels (such as bright light).
As a result, opportunists tend to grow faster than gleaners because resources
are usually abundant in the beginning of growth periods when phytoplankton
levels are low. After both species reach their growth potential, resources be-
come limited, and the gleaner becomes the dominant species. Figure 1 illus-
trates this trait. While it is more realistic to look at the gleaner-opportunist
trait as a continuum rather than rigid archetypes, the simplistic binary char-
acterization that we employ can prove insightful. Nevertheless, Plankton
are only opportunist or gleaners relative to other species of plankton [3]. It
is also possible for one species of plankton to outperform another in all re-
source regimes if it has a higher maximum intake (the maximum amount
of resource a species can consume) and lower half-saturation (the point at
which the resource intake is at its half capacity).

In addition to helping control the amount of carbon dioxide in the envi-
ronment, phytoplankton also form the base of many food chains in aquatic
ecosystems [2]. Because phytoplankton are so integral to the overall health
of its environment, it is important to study the changes in their population
caused by different ecological conditions such as fluctuating resources and
the introduction of other plankton species. In addition, plankton are ideal
organisms to study because they are easy to conduct experiments with due
to their high growth rate, short life span, and small size [2].

The rest of this paper is organized as follows. We first look at the competi-
tion model and find its equilibrium populations. Then we introduce resource
fluctuations and observe what happens when the period of the resource is
adjusted (Section 3). We move on to the unforced chain model consisting
of one phytoplankton population and one zooplankton population. We be-
gin by finding a way to calculate the bifurcation points, special parameter
values that cause a qualitative change in the system’s dynamical behavior
if changed [4]. Then we find a way to approximate the time series of the
system for parameter regimes close to the bifurcation point (Section 4). We
conclude by discussing our work (Section 5).
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2 The Model

Working on the assumption that the plankton populations are well-mixed in
their environment with no population drifts, one can remove the system’s
spatial dependence (a term representing diffusion of plankton from high den-
sity areas to low density area), leaving only the temporal dependence. This
allows us to model the time-dependent system using ordinary differential
equations (ODE) rather than partial differential equations.

One can use the following system of ODEs to model a system of phyto-
plankton and zooplankton

Ṗi = cpi
gi(R)Pi − mpi

Pi − hj(Pi)Zj,

Żj = czj
hj(P )Zj − mzj

Zj (1)

Here, Pi, Zj, and R denote phytoplankton population i, zooplankton pop-
ulation j, and the resource (sunlight, water, etc.) respectively. As Pi and Zj

are not necessarily integers, letting them represent discrete plankton organ-
isms does not make sense. Rather, we view them as populations densities,
which allow non-integer values. The nutrient yield from consumption and
death rates of species i are ci and mi, respectively. The plankton’s consump-
tion functions, which indicate how much resource is processed for nutrition,
are represented by gi(x) and hj(x) and modelled by the Monod function [2]

fn(x) =
vnx

x + kn

, (2)

where kn and vn denote the half saturation rate and the maximum intake
of resource by species n, respectively. This functional response, which has
a limit to the maximum intake, is called a type II response. The type I
functional response, which does not consider a maximum limit on resource
intake can be modelled by the simplified Monod function: f(x) = vx/k [2].
The type II functional response is the more realistic model, but the differ-
ence in consumption between the two models is small in systems consisting
of plankton with high maximum intake or low amounts of resources. In
these situations, a type I response may be implemented to make the analysis
tractable.

The gleaner and opportunist archetypes only make sense in systems that
have type II functional responses. In a system of two competing type I
plankton, one species always outperforms the other because of the linear
nature of the responses.

3



Note that in equation 1, neither the phytoplankton nor the zooplankton
interact with each other. The plankton only interact with species of a dif-
ferent trophic level. Had there been interactions within one level, as would
be the case with symbiosis, it would be necessary to incorporate coupling
factors in the equations. For this project, we ignore such relationships.

The resource (which is sunlight for this project) is modelled by the fol-
lowing [3]

R = Iine
−a

P

i Pi (3)

Here, a is the absorption of sunlight by the phytoplankton bodies. For sys-
tems with resource fluctuations, the function which represents the incoming
light, Iin, might be taken to be a periodic step function with amplitude, Īin

and period, T . The fraction of the period in which resource is present is
denoted p. It is also possible to use a smoothly fluctuating function to model
the incoming light [3]. If the resource does not fluctuate, however, it is con-
stant function with Iin ≡ Īin for all time regimes. The system’s dynamical
behavior can change by adjusting the length of the period.

3 Phytoplankton Competition

In this section, we look at the system that consists of sunlight and two
competing phytoplankton. The phytoplankton do not directly interact, but
affect each other indirectly through consumption of resources. As this system
contains no zooplankton, Zj ≡ 0 for all j, which gives us the following system
of equations from equation 1

Ṗ1 = cp1
g1(R)P1 − mp1

P1,

Ṗ2 = cz2
g2(R)P2 − mp2

P2,

R = Iine
−a(P1+P2) (4)

Without loss of generality, let P1 be the opportunist and P2 be the gleaner.
In the absence of resource fluctuation, this system has three equilibria

(0, 0), (0,
1

a
ln(

Īin

k2

(
v2

m2

− 1))), (
1

a
ln(

Īin

k1

(
v1

m1

− 1)), 0)

The first is the trivial equilibrium where there are no phytoplankton. The
other two are the cases where one species dies off and the system collapses
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into the growth model. As there are no non-trivial solutions for the equations
above when the derivatives are set to 0, there can be no coexistence in a
system without resource fluctuation. Which equilibrium point the system
moves towards depends on both the initial conditions and the parameter
values.

Upon introduction of resource fluctuation, the system exhibits more in-
teresting dynamics. As shown figure 1, two types of behavior can occur. For
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Figure 1: Plankton times series under resource fluctuation. One unit of time
represents one period. In (a), the period is 1 day. In (b), the period is 40
days. In (c), the period is 500 days. Note in (a), the opportunist dies off
whereas in (b) both species coexist.

resource fluctuations of very small periods (figure 1a), the overall behavior
of the system does not change. The system moves towards equilibrium, and
one of the phytoplankton species dies off. For resource fluctuations of suffi-
ciently large periods (figures 1bc), however, coexistence of both phytoplank-
ton species becomes possible. In addition, the system exhibits a stable limit
cycle, a periodic curve which contains a damping term that causes all nearby
time series to converge to the curve. In the long period case, we can treat the
plankton populations as periodic multi-step functions. This method allows
us to analytically determine many qualities about the system [3]. Whether
or not coexistence is possible depends on parameter values. We focus only
on situations in which there is coexistence. Observe that, in the intervals in
which there is light, the growth patterns of the plankton behave as expected.
The opportunist is the first species to dominate as there is a large amount
of resource at the beginning of the period. Then after some time, the phyto-
plankton population becomes sufficiently high and resources become scarce
causing dominance to shift to the gleaner.
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One can approximate the time at which this change occurs by looking at
the intake of resources by the plankton.
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Figure 2: The total nutrient yield (f(R)) of the opportunist under interme-
diate resource fluctuation (T=40 days)

From figure 1b, one sees that the population levels vary greatly through-
out the period. However, from figure 2, one sees that the nutrient yield of
the opportunist stays rather even. Thus, we can approximate the nutrient
yield as a multi-step function. This allows us to use a method employed
by Klausmeier [3] to analytically find certain biologically interesting times.
However, notice the jumps in populations for the long term period (figure 1c)
is more sudden than the transition in the medium term period (figure 1b).
As the method utilized by Klausmeier treats these transitions as instanta-
neous, applying the method to medium term fluctuation systems is expected
to give less accurate results when compared to the results of the long term
fluctuation systems. Nevertheless, we can still use this method to extract
some information about the qualitative behavior of the system.

Because the opportunist is dominant at the beginning of the period, (that
is, in the time interval [0, t0]), we approximate the functional response as if
the system were composed of only the opportunist, giving

P1 + P2 = P1 =
1

a
ln(

Īin

k1
(

v1

m1
− 1)) = a1

After the dominance changes, we approximate the functional response as if
the system were composed of only the gleaner for the interval (t0, pT ], giving

P1 + P2 = P2 =
1

a
ln(

Īin

k2
(

v2

m2
− 1)) = a2
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During the interval (pT, T ), Iin ≡ 0. All this depends on our initial assump-
tion of treating the plankton populations as discrete multi-step function. As
the per capita growth (Ṗi/Pi) of each plankton over a cycle averages to 0, we
have the following equation

∫ t0

0

f1(Īine
a1) − mp1

dt +

∫ pT

t0

f1(Īine
a2) − mp1

dt +

∫ T

pT

−mp1
dt = 0 (5)

Solving for t0 yields

t0 =
T (pf1(Īine

a2) − mp1
)

f1(Īinea1) − f1(Īinea2)
(6)

Notice that t0 varies proportionally with T . Thus, if one normalizes the
period by substituting a new time parameter, τ = t/T , τ0, the corresponding
value of t0 for τ , is independent of T . This shows that, if we normalize
the time scale to the period of the resource fluctuation, systems of different
resource fluctuation periods qualitatively behave the same. This is illustrated
in figure 3.
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Figure 3: Comparison of the opportunist time series of two different resource
fluctuation periods. The time scale has been normalized so that one unit of
time is equal to one period. Notice that, in this normalized time scale, the
peaks of both population time series occurs at the same time

4 Phytoplankton-Zooplankton Food Chain

In this section, we look at the system that is composed of non-fluctuating
sunlight, one species of phytoplankton, and one species of zooplankton that
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feeds on the phytoplankton.

Ṗ = A(P, Z) = cpg(R)P − mpP,

Ż = B(P, Z) = czh(P )Z − mzZ,

R = Iine
−aP (7)

Without resource fluctuations, this system has three equilibrium points.
One is the trivial equilibrium where both species die out. Another occurs
when the system collapses into the phytoplankton growth model as the zoo-
plankton die out. The last and most interesting equilibrium is when there
is coexistence of zooplankton and phytoplankton. By setting Ż equal to
0, one finds that the nontrivial equilibrium population for phytoplankton is
P̂ = −kzmz

vz+mz
. The equilibrium populations are

(0, 0), (P̂ , 0), (P̂ ,
P̂ + kp

vp

(mp −
vpIine

aP̂

IineaP̂ + kp

))

Any of the equilibrium points can be attracting or repelling because their
stability depends on parameter values. Should the third equilibrium popula-
tion be unstable, however, the system will exhibit a stable limit cycle. These
two possibilities are illustrated in figure 4ab.

To determine whether the equilibrium point is unstable, one looks at the
eigenvalues [4], λ of the Jacobian:

(

∂A
∂P

∂A
∂Z

∂B
∂P

∂B
∂Z

)

If the real components of both eigenvalues are negative, then the equilibrium
population is stable, and, as time increases, the system moves arbitrarily close
to the equilibrium population. If the real component of either eigenvalues
is positive, however, then the equilibrium population is unstable, and sys-
tem moves asymptotically away from the equilibrium population. For this
case, the real components of both eigenvalues are positive, and the system
eventually settles into a limit cycle.

From this method, one can find the system’s bifurcation points. One
first sets the parameter of interest to be an indeterminate and computes the
eigenvalue of the Jacobian. Thus, as Ṗ = Pζ(P, Z) and Ż = Zη(P, Z), the
Jacobian is

(

ζ(P, Z) + PζP (P, Z) PζZ(P, Z)
ZηP (P, Z) η(P, Z) + ZηZ(P, Z)

)
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Figure 4: Plankton times series under resource fluctuation. In (a), a = 0.04.
In (b), a = 0.1. In (a), one sees a limit cycle. In (b), one sees that both
populations asymptotically approach equilibrium.

This matrix has eigenvalues

1

2
(ζ + η + 2ζPP ±

√

ζ2 − 2ζη + η2 + 4ζP ζZPZ) (8)

Then one can simply set the real components of both eigenvalues to 0 (making
sure that one does not get a double root) and solve for the indeterminate to
find the bifurcation point.

A system’s normal form is the simplest form the system takes under
linear transformations. By finding it, we can approximate the chain model
for parameter values close to the bifurcation point. To find the normal form,
one first transforms the matrix of the linear terms into an antisymmetric
matrix. Then one applies another transformation that turns the variables
into complex variables. This gives us two equations, one of which is the
complex conjugate of the other. Thus, we need only look at one. From this,
we apply one final transformation that turns the complex equation into a
system of polar equations. The normal form is derived in the appendix. The
process transforms equation 7 to the following equation:

ṙ = αr + ar3 + ...,

θ̇ = ω + br2 + ... (9)
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Here α and ω are coefficients that appear after all the transformations are
applied.

By solving ṙ = 0, one can find the limit cycles of the normal form. Of
course, one still has to apply the reverse transformations on the limit cycle
predicted by equation 9 to obtain the proper limit cycle predicted by the
normal form. An example of the approximation yielded by this method is
shown in figures 4ab.

30 35 40 45 50
13.5

14

14.5

15

15.5

16

16.5

Phytoplankton Population

Z
oo

pl
an

kt
on

 P
op

ul
at

io
n

Numerical Phase Plot
Predicted Phase Plot

8 10 12 14 16 18 20
30

35

40

45

50

Time (T=18 days)

P
hy

to
pl

an
kt

on
 P

op
ul

at
io

n

Numerical plot

Approximated plot

(a) (b)

Figure 5: A comparison of (a) the numerical phase plot vs. the phase plot
predicted by finding the normal form and (b) the corresponding time series.
Here, a = â − 0.0005. Notice there is a phase drift in the time series.
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5 Discussion

Certain plankton population models can be simplified (whether it’s by ap-
proximations or transformations) while still retaining many of the same qual-
itative features. This allows us to study the simplified versions of the systems
to extract information about the original systems.

For the competition model, the analytical methods reveal that, even for
medium term fluctuations, one can predict biologically interesting times by
using rough approximations. For this project, we found the time at which the
plankton populations change dominance. We accomplished this by extending
Klausmeier’s method to medium term fluctuations by making the assump-
tion that, even though the plankton populations were smoothly changing,
we could still view them as multi-step functions. This method also showed
that systems of different fluctuation periods can still behave the same, qual-
itatively. Thus, when the time scale is normalized, the times at which bio-
logically interesting events occur are independent of the period.

We found the bifurcation points of the system with respect to a chosen
parameter. Using normal forms, one can approximate the phase plot of the
system around the equilibrium point. From this, one can also approximate
the behavior of the system near the coexistence equilibrium. However, if
one goes too far away from the bifurcation point, the approximation breaks
down.

Notice that none of the conditions used restricted our analysis exclusively
to plankton. Thus, as long as our assumptions (well-mixing, no intra-trophic
relations, etc.) are applicable to an organism of interest, our analytical tech-
niques may be used to study its food web.
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A Appendix

To find a bifurcation’s normal form, one first shifts the system so that the
equilibrium point is at the origin and the bifurcation point occurs when the
parameter of interest, µ, has a value of 0 [5]. This can be achieve by making
the substitutions: x = P−P̂ , y = Z−Ẑ, and ǫ = µ−µ̂, where the bifurcation
of equilibrium (P̂ , Ẑ) occurs at parameter value, µ̂.

Then one tries to reduce the number of variables in the systems. This
can be accomplished by introducing complex variables. One first has to
apply the linear transformation, (x1, y1)

T = S1S
−1
2 (x, y)T , where S1 is the

eigenvector matrix of the linearized system and S2 is the eigenvector matrix
of the antisymmetric matrix:

(

Re(λ) −Im(λ)
Im(λ) Re(λ)

)

This turns the system into the form:
(

ẋ1

ẏ1

)

=

(

Re(λ) −Im(λ)
Im(λ) Re(λ)

)(

x1

y1

)

+

(

f1(x1, y1; ǫ)
f2(x1, y1; ǫ)

)

(10)

Here, f1 and f2 are the higher order, nonlinear components of the equations.
One then transforms to the complex variables, setting (z, z̄) = (x1 + iy1, x1−
iy1) to obtain:

(

ż
˙̄z

)

= |λ|

(

e2πiθ 0
0 e−2πiθ

)(

z
z̄

)

+

(

g1(z, z̄; ǫ)
g2(z, z̄; ǫ)

)

(11)

One can verify that g1 and g2 are complex conjugate functions. Thus, as the
above system contains two complex conjugate equations, we only needs to
look at one, giving us the equation: ż = |λ|e2πiθz + g1(z, z̄; ǫ). As discussed
in Wiggins [5], when expanding g1 out to four terms, only the z2z̄ cannot be
eliminated for ǫ sufficiently small. This gives us the equation:

ż = |λ|e2πiθz + cz2z̄ + O(5) (12)

where O(5) denotes all terms with combined exponent greater than or equal
to 5. Expressing the coefficients as complex numbers gives |λ|e2πiθ = α + iω
and c = a + ib. By grouping like terms, one gets the following system:

ẋ = αx − ωy + (ax − by)(x2 + y2) + O(5),

ẏ = ωx + αy + (bx + ay)(x2 + y2) + O(5) (13)
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Equation 13, in polar coordinates, can be expressed as

ṙ = αr + ar3 + ...,

θ̇ = ω + br2 + ... (14)
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