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Abstract

We construct a directed social network of coaches based on tutelage, from which we examine com-

munity structure based upon connections in the network given by community-detection algorithms.

We use this approach to investigate communities of coaches from the National Football League for

American football and Major League Baseball, both sports leagues in the United States. We anal-

yse patterns amongst communities of head coaches from different types of networks and investigate

whether the history of who a coach has worked for impacts on how successful they are likely to be-

come. Communities can also be formed based upon different strategies employed by coaches, which

are studied in relation to the communities found from algorithms.
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1 Introduction

The study of networks is a rapidly growing area of research with increasingly many applications, including

the study of the world of sports. The areas studied within sports are varied, from methods on how to

rank teams [7], to analysing match-ups between the pitcher and the batter in baseball [37]. We are

interested in the lineages of coaches and patterns between them. This has previously been investigated

by Fast and Jensen [9] using probabilistic models, but we hope to take a networks-oriented approach to

this.

When analyzing how certain tactics have evolved in sports, analysts often consider ‘coaching trees’

(local groups of coaching networks) to assess how schemes have been passed from coach to coach [15].

For example, it is often remarked that in American football, a tactical scheme called the ‘West Coast

Offense’ was developed by Paul Brown and perfected by Bill Walsh, a disciple of his, and has since been

employed by many successful coaches who used to work for them [9].

Community detection in networks is often used to determine underlying patterns by grouping related

entities together. We loosely consider a community to be a collection of entities more closely connected

to each other than to others outside of the community [10,30] (for a more rigorous definition see Section

2.8). By applying a variety of community-detection algorithms, we can establish reasonable partitions

of the network into communities [21]. This has previously been done in a variety of settings [33], for

example in legislative networks [32], using data on voting similarity and in communication networks [31]

from mobile phone usage data.

In this dissertation, we study networks of coaches and apply community-detection algorithms [4,24] to

determine suitable communities in which different coaches can be placed. We study whether the notion

of communities is realistic in this setting, and if it is we examine whether ‘successful’ coaches are more

likely to be grouped together than ‘unsuccessful’ coaches. This could imply that a particular coach is

more or less likely to be successful based purely on who they are ‘similar’ to in the network. This could

be useful to predict the success of current coaches who are about to become head coaches but who have

no experience at that job.

2 Network Concepts and Definitions

In this section we will introduce important network concepts and definitions.

2.1 Definition of a Network

We define a network to be a system of interconnected entities (nodes) and their interactions (edges),

with roots linked to graph theory [29].

The simplest type of network has one type of node and one type of edge, with uniform edge weights

and without a notion of direction. We call this simple network construction a graph. Mathematically, a

graph is a set of nodes V , where each node v ∈ V represents a member of the network, in addition to a

set of edges E ⊆ V × V that describes the relationships between these nodes. We denote an edge from

i to j by (i, j). As our graph is without direction, the existence of (i, j) implies the existence of (j, i).

The ends of an edge are called stubs. The network is given by the sets of nodes and edges G = (V,E),

which can be described by an adjacency matrix (see Section 2.4). Throughout this dissertation we shall

use the notation for the total number of nodes N and the number of edges m.
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2.2 Directed and Undirected Networks

Many networks include a directionality attached to edges between nodes. In particular, all of the data

for coaching lineages will be directional. We define a directed network to be a network G where the

relationship between one node and another is not necessarily reciprocated (for example see Figure 1).

This means the presence of the edge (i, j) does not imply the existence of (j, i). If edges are reciprocated,

we have an undirected network.

(a) The directed network


0 1 1 1 1

0 0 0 0 0

1 1 0 1 0

0 0 1 0 0

0 0 0 0 0


(b) The corresponding adjacency matrix

Figure 1: A directed network.

2.3 Weighted Networks

We define a weighted network to be a network where edges have weights associated with them. A weighted

network is a collection of nodes V along with edges E ⊆ V ×V in addition to a set of weights W defined

on each edge such that W (E) ⊂ R. This gives a weighted network G = (V,E,W ). A network without

weights attached to nodes is called a binary or an unweighted network. The topology of a weighted

network refers its binary counterpart G = (V,E). For an example of a weighted network see Figure 2.

Edge weights can represent importance of an edge in the network; for example, in a friendship network

the edge weight may represent the length of time spent as friends. Both binary and weighted networks

will be considered in this dissertation.

(a) The weighted network


0 2 0 4 5

0 0 0 0 0

1.67 1 0 0 0

0 0 3 0 0

0 0 0 0 0


(b) The corresponding adjacency matrix

Figure 2: The weighted network, with larger edge weights represented by darker arrows.

2.4 Adjacency Matrices

One of the most common ways to represent a network mathematically is with an adjacency matrix [29].

If we arbitrarily label the nodes of our matrix with integers 1, . . . , N ; then we define the N×N adjacency
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matrix A with elements Aij such that

Aij =

1, if there is an edge from j to i,

0, otherwise.
(1)

In a directed network (for example in Figure 1b), the adjacency matrix is asymmetric in general.

This definition can be extended to a weighted network, so that if an edge exists from j to i then the

corresponding entry Aij is given by the weight associated with that edge, as shown in Figure 2b.

2.5 Multiplex Networks

A multiplex network [18] is a generalisation of a standard network, in which different types of edges that

exist between nodes. We have a set of nodes V , and a collection of sets of edges E1, E2, . . . , ES ∈ V ×V ,

which define the network Gmul = (V,E) where E = {E1, E2, . . . , ES}. We can consider a multiplex

network as S different layers of the same nodes with each layer having a single edge type.

The adjacency tensor for a multiplex network is given by the (N × N × S) tensor A such that the

elements Aijs satisfy

Aijs =

1, if there is an edge from node j to node i with edge type s,

0, otherwise.
(2)

For example see Figure 3.

(a) The multiplex network


0 1 1 0 0

0 0 0 0 0

1 1 0 0 0

0 0 1 0 0

0 0 0 0 0


(b) Layer of adjacency tensor for

edge type 1


0 0 1 1 1

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 0 0 0


(c) Layer of adjacency tensor for

edge type 2

Figure 3: A directed multiplex network with 2 types of node, which are represented by red and blue, respectively.

Two nodes can share multiple edge types, which we represent with magenta edges.

2.6 Temporal Networks

To examine how a network develops over time we consider a temporal network [14]. In our context, we are

only concerned with discrete-time networks, which we represent as a set of nodes V and a collection of sets

of edges E1, E2, . . . , ET ∈ V ×V , which refer to the presence of edges at different times t = 1, . . . , T of the

development of the network. If we let E = {E1, E2, . . . , ET } then we define the network Gtem = (V,E).

This definition using multiple layers is similar to the multiplex network; networks of this type are known

as multilayer networks [18].

The adjacency tensor is given by the N ×N × T tensor A such that the elements Aijt satisfy

Aijt =

1, if there is an edge between node j and node i at time t,

0, otherwise.
(3)
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We will consider temporal networks for the coaching networks, to give an added time dimension due to

the change in coaching teams from year-to-year.

2.7 Connectedness and Components

Another important property to consider is whether nodes are connected to each other. We define a path

from node a to node b in a network to be a sequence of nodes {v1, v2, . . . , vp} with v1 = a and vp = b

such that there is an edge from node vi−1 to node vi for i ∈ {1, . . . , p−1}. An undirected network is said

to be connected if there exists a path between every pair of nodes a, b ∈ V and is called disconnected if

there exists nodes a, b ∈ V such that there is no path from a to b.

We extend this definition to a directed network, which we call weakly connected if the network is

connected edge directionality is ignored. There are other notions of connectedness in directed networks

[29] but these are not necessary for this dissertation.

This definition can be extended for multilayer networks by considering a network aggregation of the

networks [18], where we form a matrix Ã from the tensor A so that Ãij =
∑S

r=1Aijr and then consider

whether the weighted network with adjacency matrix Ã is weakly connected.

We also define a connected component in an undirected network as a subset of nodes such that

the network formed by these nodes and the edges between them is connected. This can be extended

for a directed network to a weakly connected component which is a subset of nodes which are weakly

connected. In multilayer networks we apply network aggregation as suggested by Kivelä et al. [18], to find

connected components. We shall assume in this dissertation that connected components are maximal,

so no additional nodes can be added to a component whilst maintaining connectedness.

2.8 Communities

It is often useful to partition a network into communities. We shall consider a community to be a

grouping of nodes with relatively high edge density to other nodes in the same community, but with low

edge density to nodes in other communities [33]. Communities are an example of mesoscopic structure

which lies between macroscopic (whole world) and microscopic (individual node) structures.

As the definition of a community is not rigorous, we cannot talk about the existence of ‘optimal

communities’. Instead we often look to optimise an objective function which attempts to describe what

an optimal partition is. From this we can formulate an idea of a reasonable partition into communities

by considering community-detection algorithms (see Section 5).

Community structure is able to reveal mesoscale network features that are not immediately obvious

from the data. For example, using data obtained by a Zachary study of the social network within a

karate club which split into two karate clubs [41], community-detection algorithms can predict how the

split was going to occur based upon only friendship data [33].

3 The Sports Networks

In this dissertation, we are interested in lineage networks for sports coaches. This will be similar to work

done on mathematical lineage networks by Malmgren [22], which looks at the performance of students

in mathematics departments by considering correlations in the number of protégés that a mentor trains

(fecundity).
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(a) The NFL Network (b) The MLB Network

Figure 4: Diagrams of the binary forms of the two networks studied. Colour schemes are based upon the

communities found in Section 6 for binary directed networks. Communities are placed from the Fruchterman-

Reingold Algorithm [12] with the Kamada-Kawai Algorithm [16] to place nodes within the community.

Lineage networks have a directed edge from node A to node B if node B acted as a protégé under

node A. For our networks, the head coaches are the mentors and all assistant coaches are protégés. We

only consider situations in which B goes on to become a head coach, so all nodes in the network have

been a head coach.

So that the mean degree (see Section 4.1) of the network is large enough to give large connected

components, we sought networks that have large coaching teams where it is common that future head

coaches are found from the ranks of other coaching teams. The two networks that we studied were the

National Football League [1, 2] (NFL, a league for American football) and Major League Baseball [3]

(MLB, a league for baseball), which are both professional sports leagues in the United States. Note that

in baseball the head coach is usually called the ‘manager’, which is how we shall refer to the head coach

when discussing baseball.

For both MLB and the NFL, we shall only consider the largest weakly connected component of

coaches. In the NFL, this includes all 279 coaches for which we have data; in MLB, however, our data

for managers goes back to an era before large coaching teams became the norm. This has narrowed

the pool of potential managers to study to 443 of 697 managers. The managers analysed include all

managers except for 4 who have coached in the last 70 years. In the early days of baseball, only small

coaching teams existed, so there are fewer edges between coaches from this era.

3.1 Types of Network Analysed

We use data for the MLB going back to 1871 and for the NFL going back to 1957. t For MLB and the

NFL, we will analyse different types of networks. We use data for the MLB going back to 1871 and for

the NFL going back to 1957. The types of network studied are:

• A binary directed network, where there is an edge (i, j) if coach j was an assistant under coach i.

• A weighted directed network, where weights are given by the number of years (rounded up to

the nearest integer) that coach B coached under coach A. We consider both weighted and binary

networks to examine whether multiple years of tutelage makes a significant difference to network

community structure compared to ignoring this information.
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• A temporal network, in which each layer in the network is given by the coaching teams present at

that point in time. In MLB, due to computational constraints of the large matrices involved in

calculations, only the past 50 years were considered. This gives a weakly connected component of

309 connected coaches.

• A multiplex network for MLB, with 2 layers. The first layer is the binary directed coaching

network from above. The second layer includes playing data for coaches who are ex-players. In the

additional layer, there is an edge (i, j) if coach j played under coach i. This gives a largest connected

component of 692 managers. This is practical for MLB as a majority of coaches are ex-MLB players

whilst in the NFL this is not as common (there are 8 former players who currently have jobs as

head coaches [39], but 4 of those were career backups as players). This can be compared with

the results from the single-layer coaching network to examine whether who a player plays under

influences his coaching.

• A network of 210 ‘defensive leaders’ for the NFL. In the NFL, assistant coaches tend to work

exclusively on either offense or defence, with head coaches either being defensively- or offensively-

minded. A head coach is considered to be defensively-minded if he ever worked as an assistant

coach in a defensive role. We form edges between defensive coaches to either the head coach, if he

was defensively-minded, or else to the defensive coordinator, in a similar fashion to the standard

head coach matrix. This is interesting to examine in combination with data on defensive formations

(see Section 7.2).

I did the cleaning of all data given above in addition to any results data. Details on the processes

involved are given in Appendix B.

4 Basic Properties for the Coaching Networks

In this section we present a variety of ways for analysing networks- both from general networks theory

and also some measures relevant only to the coaching networks- which gives an idea of the features of

the networks, as well as to analyse community structure. Many of these properties are applicable to only

the single-layer networks, but we shall state where there are extensions to multilayer networks.

4.1 Network Size, Number of Edges, Weights

The simplest diagnostics for a network with adjacency matrix A are given by number of nodes N and

total number of edges m =
∑

i,j Aij . The in-degree of node j is given by kinj =
∑N

i=1Aij , giving the total

number of edges going into j [29]. Out-degree can be similarly defined as the number of edges going out

of a node i, given by kouti =
∑N

j=1Aij . This gives mean degree

c =

N∑
j=1

kinj =

N∑
i=1

kouti =
m

N
. (4)

These definitions can be extended to a weighted network where the same calculations apply; here we will

have total edge strength m =
∑

i,j Aij and mean degree strength c = m
N .

For the multilayer networks, we have to be more careful with how to generalise these definitions.

Total nodes N is the total number of nodes, not double-counting nodes that are in multiple layers. To

calculate total edges and degree, we apply network aggregation (see Section2.7), to form a matrix Ã
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NFL MLB

Binary Weight Temporal Defense Binary Weight Temporal Multiplex

Nodes 279 279 279 210 443 443 309 692

Layers 1 1 56 1 1 1 50 2

Edges 1003 2992 2992 517 1617 3749 2710 5987

Mean Degree 3.65 8.46 8.46 2.46 3.61 10.8 8.77 8.66

Table 1: Basic diagnostics of the largest weakly connected component of the coaching networks. Edges refers to

either total edges (binary) or total edge strength (weighted). Many statistics are the same for the NFL weighted

and temporal networks as the weighted network is an aggregation of the temporal network but not for MLB as

the temporal network only goes back 50 years.

from the tensor A so that Ãij =
∑S

r=1Aijr. This gives a weighted network with adjacency matrix Ã

from which we apply the methods as given above.

Note that for coaching networks we can interpret mean degree as the mean number of other coaches

that a head coach has worked under, and mean degree strength as the mean number of years a head

coach has worked as an assistant.

4.2 Win Fraction and ‘Coach Influence’ Diagnostic

To look at the success of teams coached by a head coach, we use a quantity known as win fraction, used

in many American sports, which is simply calculated for our purposes as

W =
games won + 0.5 * games tied

total games played
. (5)

When discussed in American sports, the phrase win percentage is more commonly used, but since it is a

number between 0 and 1, we shall use win fraction.

To compare between communities, I have developed a very simple quantitative diagnostic for a coaches

influence called coach influence (CI). This is not intended to be a complex measure to exactly rank each

coach; but to give a vague idea of which communities contain more successful coaches than others. It is

intended to be a reasonable measure when aggregated over many coaches.

To calculate coach influence, we consider 3 quantities of importance for the influence of a coach to

the development of strategy in different sports:

• Tenure, which is the number of years as a head coach.

• Out-degree, or the number of a coaches’ assistants that went on to become head coaches.

• Win fraction.

For a given coach, if they have the T th shortest tenure, the Dth smallest out degree and W th lowest win

fraction then the un-averaged coach influence CIu for the given coach is given by

CIu = T +D +W, (6)

so that larger scores represent more ‘influential’ coaches. To give a mean CI of 1 amongst coaches, we

consider the mean coach influence score, CIavg to give coach influence CI = CIu
CIavg

for a coach.

As an example, in the NFL the diagnostic ranked Don Shula the highest out of coaches, which is

reasonable given he coached for 33 years winning 67% of his games and won two Superbowls [34]. For
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NFL MLB

Rank Coach Score Coach Score

1 Don Shula 11.3 Joe McCarthy 9.3

2 Marty Schottenheimer 6.4 Davey Johnson 6.2

3 George Allen 5.8 Walter Alston 6.2

4 Bill Belichick 5.8 John McGraw 5.9

5 Tom Landry 5.0 Bobby Cox 5.7

Table 2: Top 5 coach influence scores in the NFL and MLB.

the top five coaches in NFL and MLB see Table 2, although this is intended to be a measure to be

aggregated amongst coaches within a community and not an absolute ranking of individual coaches.

5 Modularity Optimisation

For a directed network there are many different ways that one can attempt to find communities. Most

methods involve the following steps [21]:

1. Define an objective function which gives a rating of the partition into communities.

2. Use an algorithmic techniques to optimise this function.

Many methods involve the optimisation of an objective function known as modularity [30]. The

optimisation of modularity can take place in a variety of ways, including greedy algorithms [26], simulated

annealing [35], and spectral methods [20] (which we use in this dissertation). Many of these algorithms

were originally designed for undirected networks but can be extended to directed networks [21].

All of the code to calculate modularity and detect communities was written by me. For some sample

code for coding modularity and the Newman-Leicht algorithm, see Appendix C.

5.1 Definition of the Objective Function

The modularity function that we use is the directed extension given by Arenas et al. [4] to the original

method of Newman and Girvan [30]. We shall present both here as the modularity for undirected

networks helps explain it for directed networks.

For an undirected network with ci representing the community containing node i and node degree

ki =
∑n

j=1Aij , we define the modularity

Q =
1

2m

∑
i,j

Aij −
kikj
2m

 δ(ci, cj), (7)

where δ is the Kronecker delta function

δ(ci, cj) =

1, if nodes i and j lie in the same community,

0, otherwise.
(8)

This gives a value for modularity that is effectively the fraction of edges that connect nodes within

the same community minus the expected fraction of edges to connect nodes inside the community [30],

based on the configuration model [10] as the null model. Values lie between −1/2 and 1 [6]. Larger
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values for modularity are a desirable trait for partitions as this shows that the expected fraction of edges

that remain within a community is higher than would be expected from the null model.

Modularity can be used to quantify the quality of a given network partition (from communities

based upon ‘ground-truth’ data or from another method) or it can be used as a function which is to

be optimised in order to find communities. The main disadvantage of using it as an optimisation tool

is that to find the global maximum of modularity is an NP-hard problem [6]. On top of this many

partitions lie at locally maximum values of modularity which are not similar to the partitions associated

with the global maximum. This leads to maximising modularity becoming computationally impossible

for even medium sized networks, with communities found not necessarily being reasonable estimations

of partition generated from maximum modularity.

It should be noted that there has been criticism on the use of modularity as a quality function. Good

et al. [13] have pointed out that modularity scales across both network size and density, so it is often

not practical to compare modularity scores across different networks to examine which has the ‘best’

partition.

Another criticism of modularity optimisation is that in many situations, it may be more appropriate

if nodes could be members of multiple communities, for example in a social network a person can be a

member of many social groups.

For the purposes of this dissertation, we use modularity due to its simplicity and how easy it is to

use. It is also a common measure of the quality of a partition used by many other authors (for example

see [10,20,40]). However, it should be kept in mind if a coach is placed in a community by the algorithm,

then other communities may also be suitable for that coach. We should also remember the partition

given by an algorithm may not be similar to the partition which maximises modularity.

One can also generalise modularity optimisation for directed networks. The observation made by

Arenas et al. [4] was that for the null model, the presence of a directed edge from node i to node j

depends on the the out-degree of i and the in-degree of j. If i has high out-degree and low in-degree

whilst j has low out-degree and high in-degree, we would be more likely to find the edge (i, j) than (j, i).

We may define the directed modularity function

Q =
1

m

∑
i,j

Aij −
kouti kinj
m

 δ(ci, cj). (9)

This is defined so that the modularity is again given by the fraction of edges that fall within communities

minus the expected fraction of edges; similar to the undirected function but now using a generalisation

to the configuration model for a directed network [29] as the new null model. As the generalisation of

modularity is only a minor change in the definition, the same criticisms apply as the undirected definition.

5.2 Optimisation of the Modularity Using Spectral Methods

As maximising modularity is an NP-hard problem [6], we need to use an algorithm to find communities

which gives a close approximation to the maximum value of modularity whilst using little computational

time. For this dissertation, we shall use the Newman-Leicht spectral method [20] which is generalised

from the algorithm of Newman [27], but there are many other possibilities which could be utilised

(see [21,26,35]).

For the Newman-Leicht method, we first consider the problem of separating our directed network

into two communities. We define si to be +1 if node i is in community α and −1 if it is in community
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β, so that N =
∑n

i=1 s
2
i and δ(ci, cj) = 1

2 (sisj + 1). It follows from the definition of modularity that

Q =
1

2m

∑
i,j

Aij −
kouti kinj
m

 1

2
(sisj + 1)

=
1

2m

∑
i,j

siBijsj

=
1

2m
sTBs,

(10)

where we define the vector s to be the vector with elements si and the modularity matrix B with elements

Bij = Aij −
kout
i kin

j

m . Note that we use m =
∑

i,j Aij =
∑

i k
out
i =

∑
j k

in
j . The Newman-Leicht algorithm

seeks to find s to maximise modularity Q.

Spectral methods are eigenvector-based methods which require real entries for the leading eigenvector.

This cannot be guaranteed for general asymmetric matrices, so we need to symmetrise our modularity

by adding (10) to its transpose Q = 1
2msTBTs to give

Q =
1

4m
sT(B + BT)s. (11)

It is important to note that there is a distinction between symmetrising the matrix at this stage

compared to symmetrising the adjacency matrix and applying the method for undirected networks. In

particular B + BT is not equal to the modularity matrix we would have found if we had started with

A+AT. For general community-detection algorithms, if we are applying a single community to each node

rather than an in-community and an out-community, it is necessary to have a form of symmetrisation

at some point [21].

We now write the vector s as a linear combination of the orthonormal eigenvectors vi with eigenvalues

βi labelled in descending order size β1 ≥ β2 ≥ · · · ≥ βN for the matrix B + BT. We write s =
∑

i aivi,

as N orthonormal eigenvectors span RN, with ai = vT
i s. We ignore the factor of 1

4m as it does not affect

the partitions obtained, so that

Q = (
∑
i

aiv
T
i )(B + BT )(

∑
i

aivi)

=
∑
i

βi(v
T
i s)2.

(12)

For normalised s, a good approximation to the maximum of Q is to take s parallel to the eigenvector

v1 with largest eigenvalue β1, so that it has the greatest contribution to the sum. By construction,

entries of s take only the values +1 or -1. Thus to attempt to maximise Q under this constraint, we

pick values si to be of the same sign as the leading eigenvector vi (so that v1i > 0 implies si = +1 and

v1i < 0 implies si = −1). Hence, we have a reasonable approximation to the problem of partitioning a

directed network into two communities by maximising the modularity.

Once we have partitioned a network into two communities, we use a ‘fine-tuning’ step similar to one

proposed by Newman [28] as a modification to the Kernighan-Lin algorithm [17]. The fine-tuning switches

the community of each node (so α → β or β → α) in turn to check whether this increases modularity.

If this increases modularity, then the change is kept, otherwise disregarded. We keep looping over the

nodes until no more improvement can be made. To keep computation time down, each node is only

allowed to change community once. This works well as a fine-tuning step but is not ideal as a method

on its own, because it is sensitive to the initial partition [27].

With a method to divide a network into two communities, we then repeat the method on each of

the two new communities generated and iterate. After each stage, we need to check whether modularity
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has increased or not at each division; if not, we do not allow the division to take place. Modularity

is calculated on the entire N × N network, whilst the eigenvalue calculations on B + BT are done on

sub-networks formed of members of the community being partitioned. Once modularity can no longer

be increased, we have our final communities from the algorithm.

5.3 Extension to Temporal and Multiplex Networks

We can also extend modularity optimisation to networks with multiple layers by utilising the methods

suggested by Mucha et al. [24], which we will need for the multiplex and temporal networks. We will use

a revision of the method that is appropriate for directed networks. The method works by considering

null models for multilayer networks, which are be incorporated into the definition of modularity.

We define the adjacency tensor (Aijs) for the multilayer networks (see Sections 2.5 and 2.6), but

now we also must define inter-layer coupling (Cjrs) which connects node j in layer r to itself in layer s.

For simplicity, we take Cjrs ∈ {0, ω}. For our application, we shall always connect nodes to themselves

between layers in multiplex networks. In temporal networks, we connect nodes in adjacent layers, so

that

Cjrs =

1, if year r and year s are consecutive,

0, otherwise.
(13)

We define the out-degree in layer s as koutis =
∑n

j=1Aijs, in-degree kinjs =
∑n

i=1Aijs, the total edge

weight in layer s as ms =
∑

i,j Aijs, the total inter-layer couplings involving s as cs =
∑

i,j Cjrs, and a

normalisation constant µ =
∑

s(ms + cs). If gis is the community of the ith node in the sth layer, then

we define modularity for multilayer networks with directed intra-layer edges as

Q =
1

µ

∑
ijrs

{Aijs − γs
koutis kinjs
ms

 δ(s, r) + δ(i, j)Cjsr

}
δ(gis, gjs), (14)

where the normalisation constant µ gives us a maximal value of 1 for the modularity and γs is used as a

resolution parameter, which can be used to indicate relative importance of layers or varied uniformly to

enforce larger or smaller communities. To restore the traditional definition of modularity for a single-layer

network [30], we set γs = 1 for all s.

As explored by Mucha et al. [24], altering ω has a large impact on the community structure. In

the case ω = 0, there are no inter-layer connections between nodes, so communities will be formed only

within individual layers. For very large values of ω, edges between layers are strong, but edges between

nodes are relatively weak, so each node is in only one community, which defeats the point of considering

layered networks compared to aggregating layers. As it is still an open question what choice of ω is best,

a range of values will be investigated for multilayer networks.

Now that we have defined modularity for multilayer networks, we need to also extend the Newman-

Leicht community-detection method. We do this by turning our tensors A and C into one large matrix

B by tensor flattening [18]. If we have N nodes in S layers, this yields a (NS)× (NS) matrix where we

consider S lots of N ×N sub-matrices. Diagonal sub-matrices are the adjacency matrices corresponding

to that layer (so the sth diagonal sub-matrix has (i, j) entry Aijs for i, j ∈ {1, . . . , N}). For other

sub-matrices, if we are in the rth sub-matrix along and sth down, then we have diagonal entries of that

sub-matrix given by Cjrs for j ∈ {1, . . . , N} and all other entries are 0.

Note that for multilayer networks, it becomes computationally inefficient to run the Kernighan-Lin

‘refinement’ step for the community detection algorithm, so this process is no longer run.
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6 Comparison of Communities

Once we have found the communities for a network, it may be important to compare them to communities

found from other methods or to ‘ground truth’ partitions. Here we use only a very simple method for

comparison between communities, called the Jaccard coefficient [5].

For v ∈ V let CA(v) be the community assignment from method A of node v and CB(v) be the

community from method B of node v, then we can define a similarity measure for the partition

J =
1

N

∑
v∈V

|CA(v) ∩ CB(v)|
|CA(v) ∪ CB(v)|

. (15)

This gives a value between 0 and 1, with larger values signifying greater similarity.

To give the number some context, it can be compared to a permutation test of the communities. We

conduct the test by generating random partitions {C̃A}, {C̃B} for the null model of random community

assignment with the restriction that we keep the same number of nodes in each community as the original

partition [40]. This is repeated 10000 times to calculate a z-score for the similarity of our communities

in comparison to the null model.

Despite criticism of the Jaccard coefficient due to poor performance for hierarchical partitions [38]

(where one partition contains sub-communities of another partition), we use this measure due to it’s

simplicity and because z-scores provide an easily understood value for how significant the similarity of

our partitioning is compared to the null model.

7 Community Structure and Statistics for the National Football

League and Major League Baseball

In this section, we consider the communities obtained from community-detection algorithms and the

information they give us about mesoscopic structure.

7.1 Single-layer networks

For the single-layer networks, we can firstly examine the distribution of the number of coaches in each

community. For coaches in single-layer networks, there is a time element from when they coached not

directly represented in the network structure, so that it we investigate whether partitions group coaches

from similar eras. We can test this by plotting the middle year for each head coach (the middle year of

a coaches tenure) within a community in a cumulative diagram.

We also examine how communities have retained edges, which is calculated for some community α

by

Edges Remaining within community α =
Edges that start in α which remain in α

Total outgoing edges from α
, (16)

which is of interest to us to look at the effectiveness of algorithms at capturing a key part of the notion

of a community.

Once we have obtained communities, it also of interest to examine homogeneity of various diagnostics

between the communities, to look at whether there are inherent differences between communities. The

key diagnostics are:

• Total winning fraction for each community, to examine whether a community has more successful

coaches than others in absolute winning terms. Note that the NFL and MLB promote parity
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through measures like a cap on salaries [19], so that a coach should have the opportunity over his

tenure to turn a losing team into a winning one. This is unlike the English Premier League where

only a handful of teams have the opportunity to win in any given season [36].

• Winning fraction between communities to examine if any community has a particular advantage

over others. This could indicate that coaches in a particular community play with tactics which

give them an advantage over another community’s tactics.

• Coach influence diagnostic, a simple measure to investigate whether communities contain more

influential coaches (see Section 4.2).

7.1.1 NFL Binary Network

For the binary network, the community detection algorithm found 7 communities with modularity 0.416.

The community sizes are relatively uniform (see Table 3). These communities are also large enough

to try and infer some basic facts from them. We also see from Table 3 that all communities recorded

between 87% and 95% of outgoing edges remaining within that community.

From Figure 5a, we see that the communities divide into two groups: one containing 4 communities

which includes mostly coaches from earlier eras (1960s and 1970s) and another containing 3 communities

from later years (1990s and 2000s). Any coaches from the middle years (late 1970s to early 1990s) lie in

either group. This illustrates a temporal element to the communities derived from the binary network.

From table 3, we see only small differences in win fraction for communities. The win fraction for

matches played between coaches from different communities have also been considered in Table A.10.

There are situations where members of one community appear to have advantage over members of

another, for example community 2 has a win fraction over 0.545 against 4 of the communities, but below

0.49 for the other 2.

From mean values of the coach influence diagnostic in Table 3, we see there are differences in influence

between communities. However this does not correlate with win fraction as the two communities with

lowest ‘win fraction’ have the largest and smallest ‘influence’.

7.1.2 NFL Weighted Network

For of the weighted network, the algorithm produced 12 communities with modularity 0.494. We compare

the similarity of the communities obtained from the weighted and binary networks with the community

comparison score from Section 6. The community comparison score is 0.160, with a z-score with respect

Community Number Number of Coaches Edges Held Coach Influence Win Fraction

1 35 91.2% 1.07 0.495

2 42 90.0% 1.05 0.505

3 34 90.3% 0.95 0.490

4 35 93.9% 0.96 0.487

5 31 87.1% 1.13 0.486

6 62 94.4% 0.99 0.534

7 40 88.9% 0.86 0.486

Table 3: Communities in the NFL binary network. For an explanation of measures used see Section 7.
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(a) NFL Binary Network (b) NFL Weighted Network

Figure 5: Plotting the ‘middle year’ of each coaches’ tenure.

to the null model of 28.8, which is large enough to indicate a strong statistical significance of the data.

It is to be expected that there is a degree of similarity between the two partitions derived given that

they have the same network topology.

Unlike the binary case, there are significant differences between the number of coaches in each com-

munity (see Table 4). There is also a significant difference in percentage of edge strength that remain

within communities, with only 78.6% of all edges remaining in their communities. This could be due to

the presence of smaller communities or the partition is not as good as the binary network. We also see

from Figure 5b that many communities span more eras than they do in the binary network, for example

community 3 spans all eras relatively evenly.

From Table 4, we see a larger difference in results for communities compared to the binary network.

Community 6, albeit with only 5 coaches, has a win fraction of only 0.358, which is very poor considering

results in the binary network, where no community had below 0.486. Community 10 has more coaches,

but still a low win percent at 0.440.

If we look at Table A.11 we see results in matches played between communities, with similar variation

Community Number Number of Coaches Edges Kept Coach Influence Win Fraction

1 14 57.1% 1.09 0.493

2 41 73.7% 1.12 0.522

3 55 90.0% 1.03 0.508

4 19 77.8% 1.12 0.511

5 37 75.8% 0.86 0.508

6 5 60.0% 0.69 0.358

7 37 77.1% 1.13 0.498

8 24 85.7% 0.88 0.489

9 8 75.0% 0.82 0.477

10 29 88.9% 0.72 0.440

11 6 66.7% 1.54 0.568

12 4 25.0% 1.16 0.521

Table 4: Communities in the NFL weighted network. For an explanation of measures used see Section 7.
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in results between different communities. For interactions between communities 4, 7 and 8 we have an

interesting interaction where 58% of the time community 4 beats community 7; 56% of the time, 7 beats

8 and 58% of the time, 8 beats 4. This provides a ‘rock-paper-scissors’ type relationship over the 526

matches played between communities, which may be due to tactics employed by the different teams.

We also see large differences in coach influence amongst communities from Table 4. Similar to win

fraction, differences are greater than for the binary network. This shows stronger correlations between

communities and diagnostics in the weighted network.

7.1.3 MLB Binary Network

For the MLB binary network, the Newman-Leicht method gives 8 communities with modularity 0.486,

which is similar to the NFL binary network, with a slightly higher modularity value possibly due to

scaling factors from the size of the network. Similar to the NFL binary network a large percentage of

edges remain within communities (see Table 5), with all out-edges from community 8 remaining inside.

In contrast, we also have a more varied number of coaches per community.

Figure 6a illustrates that there is a temporal element to the partitions like in the NFL binary network.

It could also explain community size differences as the largest community contains coaches who started

coaching the earliest with a relative sparsity of edges due to small coaching teams. In later years, when

coaching teams grew in size (so out-degree increased), communities become smaller in general.

We also see from Table 5 show that there is very little difference between the communities in win

fraction, with perhaps even more uniformity than in the NFL binary network. This is also applies to

win fraction between communities (see Table A.12); all communities except community 1 have a small

amount of variation in results between them.

7.1.4 MLB Weighted Network

We found 14 communities in the MLB weighted network with modularity 0.567. Similar to the NFL,

the number of coaches in each community is more dispersed in weighted networks than binary networks.

There is a similar number of communities compared to the NFL weighted network, but a much higher

proportion high proportion (86%) of edges remain within their community. From Figure 6b, we note that

the weighted network is similar to the binary network, with communities exhibiting a strong temporal

element.

The community comparison score found between the partitions of the MLB weighted and binary

networks was 0.180 with a z-score compared to the null model of 55.7. This shows a statistically significant

Community Number Number of Coaches Edges Kept Coach Influence Win Fraction

1 34 84.3% 0.98 0.508

2 83 92.2% 1.08 0.498

3 63 88.1% 0.89 0.487

4 61 96.4% 1.00 0.498

5 112 94.3% 0.98 0.511

6 47 88.4% 1.02 0.510

7 15 91.8% 1.13 0.515

8 28 100% 1.00 0.485

Table 5: Communities in the MLB binary network. For an explanation of measures used see Section 7.
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(a) MLB Binary Network (b) MLB Weighted Network

Figure 6: Plotting the decade of the ‘middle year’ of each coaches’ tenure in MLB. Communities were placed

based on the Fruchterman-Reingold Algorithm [12]. Blue colours represent earlier years and red colours represent

later years.

level of similarity with the binary network.

From Table 6 we notice homogeneity between mean win fractions of the baseball managers; in the

NFL weighted network, different communities had larger differences in win fraction, but here we see that

communities all have a win fraction between 0.46 and 0.52. This should not be surprising as advanced

baseball statistics have shown top managers only contribute approximately 5 wins per 168 game season

over a ‘replacement’ manager [8], whilst in the NFL there are often large differences between coaches.

When comparing the win fraction between communities (see Table A.13), differences in results are larger

than for single communities, but this might be partly due to a smaller sample size of games played.

In Table 6, we give coach influence for the weighted MLB network. Similar to the NFL the smaller

communities are at the extremes of influence, but there is still a difference between the larger communities.

Community Number Number of Coaches Edges Kept Coach Influence Win Fraction

1 36 83.8% 0.86 0.493

2 2 50.0% 0.67 0.485

3 29 84.6% 0.70 0.465

4 48 93.8% 1.00 0.520

5 30 78.6% 1.22 0.508

6 59 90.6% 0.94 0.501

7 18 50.0% 1.07 0.510

8 22 90.5% 1.19 0.506

9 41 84.2% 1.08 0.495

10 56 90.0% 0.94 0.492

11 3 100% 0.83 0.497

12 9 75.0% 1.35 0.510

13 25 87.0% 0.91 0.506

14 65 90.3% 1.08 0.495

Table 6: Communities in the MLB weighted network. For an explanation of measures used see Section 7.
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Thus even if some communities do not differentiate themselves in terms of winning, there are differences

in their influence.

7.2 Defensive Strategies in the NFL

In the NFL, defences work on one of two base formations, either the 4-3 (4 defensive linemen and 3

linebackers) or the 3-4 (3 defensive linemen and 4 linebackers). This works in a similar way to soccer

teams playing formations like 4-4-2 (4 defenders, 4 midfielders and 2 strikers). The key difference in the

NFL is defences will only play under one system in any given season, so it is possible to use data on

defensive formations for an entire year [1]. This gives a ‘ground-truth’ community partition for sports

coaches that can be imposed.

Some of the ‘defensive leaders’ have coached more than one method, so we partitioned them into two

communities depending on which method they have coached more (most coaches have only coached one

method). This gives a network partition of 148 coaches coaching primarily 4-3 and 62 coaching primarily

3-4.

We found that the partition by defensive strategy gives a modularity of 0.127. We then compare it

to the result found from running the Newman-Leicht method with Kernighan-Lin refinement, but with

the restriction of only running the algorithm once to give two communities. We only consider the two

communities as our data only splits into two communities. This gave a modularity of 0.334, so that the

ratio of ‘ground-truth’ data to the algorithm is 0.127
0.334 = 0.380.

We can further restrict the modularity optimisation method by forcing the same split of coaches for

each community, to give a community of 148 coaches and one of 62. We add a step after Kernighan-

Lin refinement so that each member of one community is placed into the other in turn to find out the

modularity change for a single node. If we need to move k coaches from this community in order to get

required community sizes then we move the k coaches that cause the smallest drop in modularity. This

gives two communities of correct size. As either community could be chosen to gain/lose nodes, this

process is repeated but with role of gaining/losing switched to give two community partitions of correct

sizes.

Under this restriction, modularity from the community detection algorithm is now either 0.270 or

0.298, depending on which community gains/loses nodes, giving a ratio of ‘ground truth’ data to opti-

mised data of 0.470 and 0.426 respectively. This ratio score is a high one for the partition into defensive

categories. This illustrates that partitioning coaches in our ‘defensive’ network based upon defensive

formation is a reasonable way of partitioning the network of defensive coaches into communities.

We can also apply the ‘community comparison’ methods from Section 6 to examine how similar the

communities are when derived from ‘ground-truth’ data compared to algorithmic methods. Running the

algorithm given above, this gives comparison scores of 0.408 and 0.386. In comparison, 10000 Monte-

Carlo simulations on communities of the same size gave a mean score of 0.397. This gives z-scores of 1.26

and −1.21, neither of which show a statistically significant amount of similarity between the partitions.

7.3 Multilayer Networks

In the multilayer networks, there exists freedom in the choice of inter-layer coupling strength ω (see

Section 5.3), which will be investigated. The criteria on which we will investigate are:

• The number of communities.
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• Modularity- note these values will be higher than single-layer networks due to scaling factors (see

Section 5.1).

• The mean number of layers that a community spans. We say that a layer is in the span of a

community if the community is represented by at least one coach in that layer of the network.

• The mean number of coaches that a community spans. Similarly, a coach is in the span of a

community if the coach is a member of that community in at least one layer.

As it is still an open question for choice of ω and it is not practical to study a large range of values, we

will choose ω to try to find a mix of inter-layer communities (communities that span multiple layers) and

intra-layer communities (communities which span many coaches). ω will be found by picking a range of

values and picking ω which maximises the geometric mean of L (mean number of layers a community

spans) and C (mean number of coaches a community spans). This is still an arbitrary choice but it

is preferable to picking ω at random as it allows us to investigate communities at the balance between

inter- and intra-layer communities and so we do not pick ω towards extremal values (see Section 5.3).

The partition of communities given by this value of ω will be examined under applicable diagnostics

given for the single-layer networks (see Section 7.1). As we have relaxed the restriction of coaches

belonging to multiple communities, to calculate the mean we consider the weighted average from the

number of times a coach appears in each community. For example, if coach A appears in a community

twice (in two different layers) and coach B appears once, then coach A has twice the weighting for his

scores than coach B.

7.3.1 NFL Temporal Network

From Table 7, we see that as we increase the value of ω the number of coaches goes down but also there

is no noticeable increase in layers spanned per community. This could possibly be explained by the

decrease in number of coaches per community reducing the potential to reach extra layers. We choose

ω = 2 to investigate further as amongst values studied it maximised geometric mean. The diagnostics

for ω = 2 are given in Table A.14.

For ω = 2, the number of coaches represented in each community is quite varied, with values ranging

from 6 to 123, which is a similar distribution of community sizes to the weighted network. The larger

ω Communities Avg Layer Avg Coach Modularity Geometric Mean

0.05 13 12.3 42.5 0.275 22.9

0.1 20 13.8 39.5 0.431 23.3

0.2 58 13.3 21.8 0.701 17.0

0.5 30 16.5 31.3 0.796 22.7

1 51 13.9 17.3 0.768 15.5

2 27 21.9 28.3 0.843 24.8

5 65 15.4 11.1 0.871 13.1

10 89 17.2 7.7 0.910 11.5

20 121 16.9 5.36 0.929 9.5

50 106 14.8 4.67 0.755 8.3

Table 7: Investigating different choices of ω for the NFL temporal network. Avg Layer is mean layers spanned

per community and Avg Coach is mean coaches spanned per community.
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ω Communities Avg Layer Avg Coach Modularity Geometric Mean

0.01 5 1.4 202 0.578 16.8

0.05 5 1.6 199 0.579 17.8

0.1 5 1.80 196 0.572 18.8

0.2 6 1.83 180 0.588 18.1

0.5 6 1.83 174 0.560 17.9

1 5 1.80 182 0.522 18.1

2 4 1.75 186 0.531 18.0

5 6 2 142.6 0.585 16.9

10 21 2 34.5 0.669 8.3

Table 8: Investigating different choices of ω for the MLB multiplex network. Avg Layer is mean layers spanned

per community and Avg Coach is mean coaches spanned per community.

variety in values for both the mean coach influence and win fraction are also similar to the weighted

network. They both show a strong correlation between community membership and the ‘success’ of

coaches and the teams they coach.

7.3.2 MLB Multiplex Network

We now consider the multiplex network where the layers are given by coach→player tutelage and

coach→coach tutelage. In contrast to the NFL temporal network, as ω increases both layers spanned in-

creases and the number of coaches spanned decreases. This could be explained by the difference between

2 layers in the multiplex network compared to 56 for the temporal network. To minimise geometric

mean, ω = 0.1 is chosen (see Table 8).

Similar to the binary networks, community size are all roughly of the same order. We find from that

there are only very small differences in win fraction between the communities (see Table A.15), which is

very similar to other MLB networks.

To calculate coach influence diagnostic for the multiplex network, we consider out-degree as the

aggregation of both layers in the network. There are variations in the measure, similar to the binary

network, with community 3 made up only of coaches from the player→coach layer performing the worst.

7.3.3 MLB Temporal Network

The MLB temporal network for all 1907-2012 coaches proved to be too computationally heavy, so we

only considered the past 50 years (1962-2012) of data to be considered for analysis.

From Table 9, the MLB temporal network produces similar community structure to the NFL temporal

network as ω is increased, with layers spanned per community varying up and down in addition to coaches

spanned decreasing. Out of values for ω investigated, ω = 0.5 would be the best choice to maximise the

geometric mean. More detailed results for ω = 0.5 are given in Table A.16.

A more thorough investigation of ω = 0.5 gives results similar to the communities derived for the

MLB weighted network. The differences in win fraction between communities is neglible, and there is a

reasonable amount of difference in coach influence (for example community 14 spans 99 coaches yet have

a coach influence score of only 0.78). We also note a large difference in the number of coaches spanned

by each community.
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ω Communities Avg Layer Avg Coach Modularity Geometric Mean

0.1 11 9.1 44.9 0.431 22.0

0.2 34 12.2 26.9 0.539 18.1

0.5 19 19.6 43.9 0.670 29.3

1 49 13.9 17.6 0.853 15.6

2 51 13.9 15.4 0.859 14.6

5 47 18.0 16.3 0.88 17.1

10 83 14.6 9.1 0.914 11.5

20 80 16.8 9.0 0.921 12.3

50 135 13.6 5.1 0.937 8.3

Table 9: Investigating different choices of ω for the MLB temporal network. Avg Layer is mean layers spanned

per community and Avg Coach is mean coaches spanned per community.

8 Summary

In this dissertation, we used data sets from the NFL and MLB to examine networks of coaching lineages.

We examined whether a coaches’ lineage influences whether their teams are successful. We found that

in MLB, amongst the networks studied, there is little difference in win fractions between communities.

This was not considered surprising given that advanced baseball statistics agreed that managers do not

have a large influence on the results of matches [8]. In contrast, for the NFL weighted and temporal

networks, there were more significant differences in win fraction. This suggests that the coaches that an

assistant works under affects future success. This could be as a result of different tactics being handed

down from coach to coach.

Looking at results between communities, there were reasonable differences in winning percentage in

the NFL, which may be an example of some coaches having an advantage over some communities but

not over others.

By studying the mean of the ‘coach influence’ diagnostic for a community we illustrated that there can

be some differences between communities for all networks studied, especially in the weighted networks.

This might imply that some communities are more important in how tactics developed in the sports than

others if their coaches were more influential.

The network properties of communities generated from the algorithm were also studied. In both

the NFL and MLB, there was a statistically strong correlation between communities generated in the

binary and weighted networks. In general, binary networks produced fewer communities with a smaller

range in community size compared to the weighted networks. Also, communities from the binary networks

retained edges within communities better than weighted networks. This could show that the communities

generated in the binary network are more sensible when considering the definition given in Section 2.8.

When considering the network of ‘defensive leaders’ in the NFL with known partitions for formations,

we showed that communities derived from this information produce a small but not insignificant modu-

larity score when compared to the score that can be made from community-detection algorithms. This

suggests the partition formed from different strategies meet the definition given in Section 2.8. However,

the community detection algorithms did not give us communities which have a statistically significant

degree of similarity to the communities derived from ground-truth data.

Multilayer networks were also studied in this dissertation, with a range of values for inter-slice coupling

ω considered. As this value increased in temporal networks, the number of layers spanned per community
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varied up and down, unlike the multiplex baseball network, where it increased. In both multiplex and

temporal networks, the number of coaches spanned descreased as ω increased. Where a single value for ω

was studied more closely, in general the multiplex network behaved like the binary single-layer networks

and the temporal networks behaved like the weighted single-layer networks.

9 Potential Extensions

There are numerous ways that we could build on our work in this dissertation. These can be split into

two areas: additional data and different methods of analysing the data.

From the perspective of additional data, it would be of interest to examine a greater variety of sports.

For example, many soccer managers learn how to manage by playing under other managers rather than

as an assistant, so this could be studied as a multiplex network as we did for MLB managers. For

more data in American football, the database could be expanded to include American college football

in addition to the professional game, as hundreds of colleges play football [25], most with large coaching

staffs, so theoretically networks of thousands of football coaches could be studied.

We could also do additional research with different methods of analysis. One of the simplest ideas

would be to study different types of community-detection algorithms; although methods that we used

were useful, there are many different methods to detect communities for directed networks [21]. We

could also study whether successful coaches are more likely to be connected to other successful coaches

by considering assortative mixing between coaches [11]. There are also opportunities to apply statistical

methods by considering statistical error of results or considering permutations in the original networks

to test for robustness of communities discovered.

One could also consider multiplex coaching networks made up different types of assistant coaches

that can exist in both MLB and the NFL, with each layer representing the different types of assistant.

For example, in the MLB, it is often remarked that bench coaches are seen as future managerial material

or former managers working as mentors [23]. These links could be to examine whether they bring an

increased likelihood of success for coaches involved.
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A Supplementary Tables

A.1 Results Comparisons

Tables for the results comparison between communities. The entry in (i, j) represents the wins fraction

of coaches in community i in matches against community j. Where fewer than 100 games have been

played between communities or for matches between communities no result is given.

1 2 3 4 5 6 7

1 - 0.455 0.534 0.459 0.505 0.518 0.503

2 0.545 - 0.566 0.560 0.489 0.469 0.549

3 0.466 0.434 - 0.520 0.523 0.445 0.511

4 0.541 0.44 0.480 - 0.471 0.428 0.518

5 0.495 0.511 0.477 0.529 - 0.466 -

6 0.482 0.531 0.550 0.572 0.534 - 0.539

7 0.497 0.451 0.489 0.482 - 0.461 -

Table A.10: Results comparison between communities in the NFL binary network. See above for an explanation.
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1 2 3 4 5 6 7 8 9 10 11 12

1 - 0.517 0.465 0.526 0.404 - 0.540 0.512 - - - -

2 0.483 - 0.522 0.519 0.482 - 0.526 0.521 0.457 0.575 - -

3 0.535 0.478 - 0.463 0.502 - 0.515 0.513 0.529 0.592 0.469 -

4 0.474 0.481 0.537 - 0.535 - 0.584 0.420 - - 0.450 -

5 0.596 0.518 0.498 0.465 - - 0.486 0.491 - 0.635 0.421 -

6 - - - - - - - - - - - -

7 0.461 0.474 0.485 0.416 0.514 - - 0.559 - 0.543 - -

8 0.488 0.479 0.487 0.580 0.509 - 0.441 - - 0.506 - -

9 - 0.543 0.471 - - - - - - - - -

10 - 0.425 0.408 - 0.365 - 0.457 0.494 - - - -

11 - - 0.531 0.550 0.579 - - - - - - -

12 - - - - - - - - - - - -

Table A.11: Results comparison between communities in the NFL weighted network. See above for an explanation.

1 2 3 4 5 6 7 8

1 - 0.497 0.527 0.426 0.503 0.408 0.508 -

2 0.503 - 0.513 0.508 0.458 0.491 0.492 0.488

3 0.473 0.487 - 0.485 0.491 0.508 0.476 0.507

4 0.574 0.492 0.515 - 0.506 0.493 0.486 0.513

5 0.497 0.542 0.509 0.493 - 0.498 0.522 0.514

6 0.592 0.509 0.492 0.507 0.502 - 0.490 0.529

7 0.492 0.508 0.524 0.514 0.478 0.510 - 0.559

8 - 0.512 0.493 0.487 0.486 0.471 0.441 -

Table A.12: Results comparison between communities in the MLB binary network. See above for an explanation.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 - - 0.519 0.493 0.492 0.467 0.499 0.603 0.487 - - - - 0.533

2 - - 0.487 0.433 - 0.437 - - - - - - - -

3 0.481 0.513 - 0.445 0.486 0.468 0.514 - - - - - - 0.502

4 0.507 0.567 0.555 - 0.511 0.502 0.534 - 0.533 - - - 0.459 0.520

5 0.508 - 0.514 0.489 - 0.508 0.505 0.479 0.537 0.529 - 0.460 0.493 0.511

6 0.533 0.563 0.532 0.498 0.492 - 0.509 0.429 0.522 0.468 - 0.462 0.535 0.467

7 0.501 - 0.486 0.466 0.495 0.491 - 0.500 0.502 0.529 0.414 0.526 0.518 0.529

8 0.397 - - - 0.521 0.571 0.500 - 0.505 0.505 0.525 0.483 0.499 0.509

9 0.513 - - 0.467 0.463 0.478 0.498 0.495 - 0.487 0.523 0.488 0.489 0.526

10 - - - - 0.471 0.531 0.471 0.495 0.513 - 0.508 0.473 0.484 0.483

11 - - - - - - 0.586 0.475 0.477 0.492 - 0.592 0.504 0.532

12 - - - - 0.540 0.538 0.474 0.517 0.51 0.527 0.408 - 0.544 0.481

13 - - - 0.541 0.507 0.465 0.482 0.501 0.511 0.516 0.496 0.456 - 0.505

14 0.467 - 0.498 0.480 0.489 0.533 0.471 0.491 0.474 0.517 0.468 0.519 0.495 -

Table A.13: Results comparison between communities in the MLB weighted network. See above for an explana-

tion.

27



A.2 Tables of Communities in Multilayer Networks

Community Number Coaches Layers Coach Influence Win Fraction

1 37 21 1.00 0.526

2 42 27 1.29 0.518

3 38 30 1.16 0.514

4 68 24 1.39 0.543

5 39 26 0.89 0.505

6 34 29 0.82 0.491

7 23 16 0.79 0.496

8 9 16 0.86 0.490

9 13 12 0.94 0.490

10 24 18 0.80 0.485

11 19 27 0.88 0.511

12 10 16 1.30 0.557

13 23 20 1.06 0.532

14 34 36 1.27 0.512

15 28 23 0.85 0.521

16 37 21 0.80 0.520

17 17 20 0.68 0.448

18 24 17 0.83 0.497

19 45 15 0.83 0.510

20 6 14 1.03 0.539

21 8 17 1.48 0.526

22 11 21 1.71 0.562

23 9 10 0.71 0.395

24 21 20 1.35 0.539

25 123 55 0.73 0.476

26 11 17 0.90 0.510

27 10 22 0.66 0.509

Table A.14: Communities in the NFL temporal network for ω = 2. ‘Coaches’ gives the number of coaches which

are a member of that community in one or more layers. ‘Layers’ refers to the number of layers which a community

has at least one member in.

28



Community Number Coaches Layers Coach Influence Win Fraction

1 156 2 0.94 0.504

2 263 2 0.94 0.501

3 101 1 0.77 0.485

4 283 2 1.06 0.500

5 178 2 1.21 0.508

Table A.15: Communities for ω = 2 in the MLB multiplex network. ‘Coaches’ gives the number of coaches which

are a member of that community in one or more layers.

Community Number Coaches Layers Coach Influence Win Fraction

1 23 8 1.20 0.508

2 33 7 0.83 0.494

3 13 9 0.78 0.509

4 30 13 0.86 0.499

5 32 11 1.31 0.520

6 46 10 0.99 0.500

7 39 18 1.23 0.510

8 29 17 1.11 0.516

9 52 32 1.09 0.513

10 34 16 0.97 0.498

11 24 15 0.79 0.478

12 17 13 0.80 0.476

13 11 11 0.65 0.488

14 99 49 0.78 0.502

15 9 14 0.85 0.523

16 34 23 1.34 0.515

17 37 27 0.67 0.484

18 42 29 1.10 0.503

19 228 50 1.00 0.505

Table A.16: Communities in the NFL temporal network for ω = 0.5. ‘Coaches’ gives the number of coaches

which are a member of that community in one or more layers. ‘Layers’ refers to the number of layers which a

community has at least one member in.

B Data Cleaning

The cleaning of data was done entirely by myself on Python exporting data from the internet, which was

then converted into a .mat file to be used by MATLAB.

To find the coaching networks for the NFL and MLB, the following process was followed for both

retrosheet and profootballarchives:

1. Find a list of all coaches and download names with corresponding URLs.

2. For each coach download all information on their page.
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3. Clean this data to give a list of triples (team,year,role) for every year in which a coach coached.

4. Disregard any coaches that were never head coach.

5. Link head coaches to any other coaches that coached for the same team in the same year.

6. Export the adjacency matrix where a 1 in (i, j) represents coach j working for coach i.

To add defensive formations data, I did the following:

1. Find out who the leader of the defence was in each year (either head coach or defensive coordinator)

and form the matrix as above.

2. Find the defensive formation used in each year by each team and associate it with the ‘defensive

leader’.

3. If different formations were used by the same coach associate the one which was used more.

4. Export a vector with the partition based on defensive formation where each entry is a single coaches’

associated formation.

To gain results data, a different process was followed for retrosheet and pro-football-reference:

1. Find the result of all matches that have ever been played.

2. Associate the result of every match with the head coach of both teams involved.

3. Be careful when dealing with teams which had multiple head coaches in the same year.

4. Export a matrix where each row/column represents a coach and the entry in (i, j) is the number

of times coach i won against coach j.

C Sample Code for Modularity and Newman-Leicht Method

All of the coding necessary for this dissertation was done by me, except for any of the graphics packages.

Here I present sample code for the backbone of this dissertation: modularity and the Newman-Leicht

method, both of which were coded in MATLAB.

C.1 Modularity

function [Q,B] = modularity(A,c)

% The modularity function returns the modularity of an adjacency matrix A

% which is split into communities with the vector c

% OUTPUT modularity Q and modularity matrix B

% We define m as the total number of edges in a network

m=sum(sum(A));

len=size(A,1);

% Vectors of in−degree and out−degree
in vect=sum(A,2);

out vect=sum(A,1);

% Get an 'in out' matrix, essentially weights for the configuration model for finding B
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in out=in vect*out vect;

% Set B is the modularity matrix

B=A−(in out/m);

% get the 'delta matrix' which returns a 1 if i and j share communities and

% 0 otherwise

delta mat=zeros(len);

for i=1:max(c)

k=c==i;

delta mat(k,k)=1;

end

% Form the 'martix' of Q, so that Q is just the sum over this matrix

Q mat=(1/m)*(B.*delta mat);

Q=sum(sum(Q mat));

end

C.2 Newman-Leicht Method

The coding for the Newman-Leicht Method includes the ‘split’ function which splits a community into

two, and the ‘adjusted kernighan lin’ (not shown; this is only intended to be a presentation of some

sample code).

function [c] = eig mod refine(A)

% Input the adjacency matrix A which we partition into communities

% using the Newman−Leicht method with adjusted Kernighan−Lin.
% The vector c gives the community number for each inputted coach

n coaches=size(A,1);

% c is the final community vector, n comms gives the total number of

% communities as the algorithm runs and comm considered is the community

% currently being split

c=ones(n coaches,1);

n comms=1;

comm considered=1;

% Find the modularity

Q last=modularity(A,c);

% The main while loop, loop until all communities have had a split attempted

while comm considered<=n comms

% Find all coaches in the community considered and form a submatrix

% of them to run the split algorithm on

k=find(c==comm considered);

Asub=A(k,k);

csub=split(Asub); %Gives 2 community assignments '1' or '2'

csubext=zeros(n coaches,1);

csubext(k)=csub;

% Form a new 'c' vector

cnew=c;

i=csubext==2;

cnew(i)=n comms+1;

cnew=adjusted kernighan lin(A,c==comm considered,cnew); %Optimises the split
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% Now we test to see if the new communities increase the modularity

% score

Qnew=modularity(A,cnew);

% If the new modularity is higher than old set results as best current estimate

if Qnew>Q last

Q last=Qnew

n comms=n comms+1;

c=cnew;

else comm considered=comm considered+1;

end

end

end

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

function [c] = split(A)

% The split function partitions an adjacency matrix A into 2 groups given by a

% vector c which is 1 for one community and 2 for the other

% Total number of edges

m=sum(sum(A));

% Find B in exactly the same way as the 'modularity' calculation

in vect=sum(A,2);

out vect=sum(A,1);

in out=in vect*out vect;

B=A−in out/m;

% Now we want to find the eigenvector of B+B' associated with the largest

% positive eigenvalue, denoted b

[b,˜]=eigs(B+B');

b=b(:,1);

% c is our vector for showing where the split occurs

c=zeros(size(b,1),1);

for i=1:size(b)

if b(i)>0

c(i)=1;

% If eigenvector has zero entries, sign of disconnectedness so will want

% to reconsider at next 'split' attempt

elseif b(i)<=0

c(i)=2;

end

end

end
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