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The study of networks has concentrated on their complex (i.e. topologically non-trivial)
structure on the one hand and dynamics on networks on the other hand. Only a little
is known about the actual interplay of complex network structure and dynamics. We
will investigate this for the case of opinion dynamics on social networks with community
structure. Therefore, we work with two opinion models, the well-known voter model
and the new “travelling competitors model” and examine the opinion spreading in the
communities. Results from computer simulations (for both models) and analytical calcu-
lations (for the voter model) are presented and interpreted in the context of social integration.

1. INTRODUCTION

A network is an abstract representation of a system
with a set of constituents and connections or interac-
tions between them. Each constituent is identified with
a node and each connection between two of those nodes
is a link. Graphically nodes are denoted with dots and
links with lines connecting those dots (see Fig. 1, 2 or
3). The generality of this network concept gives an im-
pression why networks appear in so many areas, such as
mathematics (here networks are called graphs), computer
science, (natural) science and social science. See [1] for
an introduction and [2, 3] for a review. Since this project
is about opinion dynamics, we are dealing with social
networks. Here the nodes represent individual persons
and links a possible opinion exchange between them, for
example because of a close friendship relation between
the individuals. Opinion, the position of an individual
towards a particular issue, is represented by assigning a
value to each node. A review of possibilities for opinion
values and dynamics can be found in [4]. In this pa-
per, only models with just two possible opinion values or
states b (black node) and w (white node) are considered.
Not only does this simplify the analysis and numerics
but also many decisions are in fact made between just
two alternatives e.g. buying/ not buying a product or
voting for Republicans/ Democrats [4]. Having a set of
nodes with two possible states and interactions between
them reminds of the Ising spin model for magnets. In-
deed similar update rules as the aligning of an Ising spin
with one of its neighbours have been used to model opin-
ion dynamics [5]. A very popular one is the voter model,
the details of which we will explain in section 2.2.1. This
model has been applied on different network topologies
[4], but mainly with the goal of examining the time it
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takes to reach a steady state, which is most often full
consensus (all nodes have the same opinion value) [6–8].
This state corresponds to the ferromagnetic state of a
magnet in physics or the extinction of a species in evo-
lutionary biology. In social systems, for example people
in a country voting for Republicans or Democrats, we
rather observe coexisting different opinions and a change
of the election result over time. Furthermore, people are
often part of different groups, such as electoral districts,
classes in society or ethnical groups [9]. Those groups are
referred to as communities of the network, meaning that
there are sets of nodes densely connected to each other,
but only sparsely connected to other such sets [10]. In
reality, the grouping of people can be related to their
opinion. In the simulations, we can also see an influence
of the community structure on the opinion dynamics for
the voter model. This was studied in a summer project
by James Wall [11]. He looked at the fractions of nodes
with a particular opinion state in the different commu-
nities. We will call those fractions the voting results and
denote it as β. Since it represents, what is mainly ex-
amined in opinion polls, this is a reasonable quantity to
study. In our binary opinion models it is sufficient just to
consider the voting result for one of the opinions (chosen
to be b throughout this project) since it has to add up to
one with the other voting result.

Equipped with this measure, we are able to perform
quantitative studies of the combination of two key fea-
tures of real opinion dynamical systems, the community
structure and the behaviour far from the steady state.
We do so by examining the spread of the voting results
in the communities around the mean voting result in the
network. Preliminary to this study we need to under-
stand the considered networks (section 2.1), as well as
the opinion models applied on them (section 2.2). The
results for the different networks and opinion models are
presented in turn in section 3. Finally, we draw a conclu-
sion in section 4 and give an outlook to possible further
work on the topic in section 5.
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2. MODELLING

2.1. Networks

This section will first explain the networks used in this
study. Then we will have a look how networks can be rep-
resented uniformly and clarify what is meant with “com-
munity structure”.

2.1.1. Considered Networks

1. To get an intuitive impression of the opin-
ion dynamics we will apply them on a
two-dimensional lattice (see Fig. 1) with
periodic boundary conditions in both dimensions.
The opinion configuration on such a network can
easily be visualised as done later on in Fig. 4 and
8.

FIG. 1: Sketch of a two-dimensional lattice with edge length
10.

2. The next network should provide a basic commu-
nity structure, but besides that be as simple as
possible. That is why in this network each com-
munity has the same number of nodes (community
size). Furthermore, each node has the same num-
ber of links attached to it. This number is called
the degree of the node. To achieve a community
structure, we use a part of the algorithm presented
in [12]. We introduce a mixing parameter µ which
determines the fraction of each node’s links that
connect this node to another community (external

links). It follows that a fraction of 1−µ of the links
are internal, meaning those connect nodes to other
nodes within the same community. The parameter
µ will allow us to tune the strength of the commu-
nity structure. Because of the homogeneous degree
and community size distribution, we will call this
the homogeneous network (see Fig. 2).

3. Moreover, we want to check the opinion dynam-
ics on real data. Therefore, we use networks from
the social networking website Facebook for various
US universities (dated 2005). An example is shown
in Fig. 3. A node represents a user and a link

FIG. 2: Visualisation of the homogeneous network (200 nodes
with degree 50) with community structure µ = 0.1. The
colours of the nodes represent their assignment to commu-
nities. The shades of grey of the links are random in order to
improve the visibility as done in [10].

a “friendship” relation between two users, estab-
lished through mutual confirmation of this status.
The networks show a community structure which
reflects the organisation at the universities [13].
On the one hand there are indeed votings taking
place on these Facebook networks. On the other
hand, we will treat those networks as surrogate for
a non-virtual social networks. Because it is a great
challenge to create artificial networks with a simi-
lar structure, those networks are considered a bet-
ter approximation to non-virtual social networks.
However, the exact quality is unknown.

2.1.2. Representation of Networks

For analysis but not at least also for computations a
network with N nodes can be represented by a N × N
adjacency matrix A defined by Aij = 1 if node i and j are
connected by a link and 0 otherwise. In our networks we
only allow an opinion exchange between different persons
and the probability for an opinion exchange (link) should
be symmetric. Therefore, the diagonal elements of A

are all zero and the matrix is symmetric. Now we can
state that ki =

∑

j Aij is the degree of node i and m =
1
2

∑

i,j Aij the total number of links in the network.
For a network with c communities, the assignment of

the nodes can be written as an N -dimensional vector C
(index vector) with integer entries between 1 and c la-
belling the communities. The opinion configuration is
represented by an N -dimensional vector O with the en-
tries 1 for b and 0 for w.
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FIG. 3: Visualisation of the Facebook network of the Caltech
University. Colours are assigned as in Fig. 2.

An example how to run opinion models (explained later
in section 2.2) on a homogeneous network including the
creation of the networks itself using Matlab is given in
Appendix A.

2.1.3. Community Structure

Since there is no strict definition of communities of
a network, the applied method of finding them is cru-
cial for whether we consider a network to have commu-
nity structure at all. Hence it is important to clarify the
method we used. Communities in the Facebook networks
are found with the popular approach of modularity opti-
misation as proposed in [14]. The modularity Q measures
the strength the community structure of a particular as-
signment C = (c1, c2, · · · , cN ) of nodes to communities.
To do that, the quantity I = 1

2 m

∑

i,j Aij δ(ci, cj) is
considered which corresponds to the fraction of internal
links in the network. It is compared to the expected
fraction E = 1

2 m

∑

i,j Pij δ(ci, cj) of those links in a

randomized model of the network (null model) where Pij

is the probability to find a link between i and j therein.
Now the modularity is defined as the difference of those
two quantities.

Q = I − E =
1

2 m

∑

i,j

[Aij − Pij ] δ(ci, cj) (1)

An often-used null model is the corresponding randomly-
rewired network where the original index vector is kept
and links are attached randomly such the degree distri-
bution stays the same as for the original network.

As an example we can calculate the modularity of a ho-
mogeneous network with mixing parameter µ. Per con-
struction the fraction of internal nodes is I = 1 − µ. In

the corresponding randomly-rewired network, the prob-
ability for a node of being connected to one the c com-
munities is the same for all of them. Because each com-
munities contains the same fraction of all nodes of the
network, a fraction of E = 1

c links are expected to be
internal. This results in

Qhom = I − E = (1 − µ) − 1

c
=

c − 1

c
− µ (2)

with δ(x′, x) =

{

1 for x′ = x
0 for x′ 6= x

Firstly, that shows that the modularity and the mixing
parameter only differ by a sign and an additional con-
stant what tells us that they are similar measures. Sec-
ondly, we can see that according to our intuition the mod-
ularity is maximized for a mixing parameter µ = 0, hence
for totally separated communities. Moreover we receive
Q = 0 for µ = c−1

c where the network corresponds to a

randomly-wired one. Q ≤ 0, which implies µ ≥ c−1
c , cor-

responds to a network where the index vector does not
reflect any community structure.

For the Facebook network the task of finding com-
munities can be reformulated as finding an index vector
which makes the community structure as distinct as pos-
sible, that means which maximizes the modularity. To
perform that computationally, the Leading Eigenvector
Method by Newman is used [15].

2.2. Opinion Dynamics

For our study only those models are of interest for
which the dynamics far from the steady state show a
dependence on the network’s community structure

2.2.1. Voter Model

In this simple model the complex process of opinion
formation in a social network is reduced to the fact that
an individual might change its own opinion because it
adopts the opinion of one of its friend with a different
opinion. This is modelled by choosing two connected
nodes of different opinion and copying the value from
one to the other. In fact, there are three possibilities to
perform this opinion update [6, 7]:

a) In the original voter model the node picked first adopts
the opinion of one of its friends.

b) In the reverse voter model the node picked first
spreads its opinion to one of its friends.

c) In the unbiased voter model or link-update model a
link is picked first and it is chosen equally at random
which one of the corresponding nodes adopts the opin-
ion value of the other.
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Opinion dynamics are created by repeatedly application
of the update-rule. The difference in the dynamics im-
plied by the three models just appears under inhomo-
geneous degree distributions [16]. Since that is not in
our interest, we concentrate on the unbiased voter model
where the dynamics is independent of a possible degree
correlation of the two nodes attached to the picked link.
Furthermore, we note that according to the definition
above, only a certain class of links plays a role in per-
forming an update, namely the links which connect nodes
of different opinions, called active links. That reveals an-
other advantage of the unbiased voter model: The prob-
ability of the change b → w happening in the network
is the same as for w → b since every active link is at-
tached to a white and a black node and it is randomly
chosen which one changes its opinion to the other value.
That allows us to write down the probabilities that the
following changes happen in one update or time step:

P (b → w) = P (w → b) =
1

2
. (3)

2.2.2. Travelling Competitors Model

Instead of modelling opinion dynamics as an agreement
process between friends, in this model the opinion is im-
posed on the individuals by a special person or object
(e.g. the presidential candidate or the advertisement for
a product). To spread the corresponding opinion value
with respect to the network structure, we only allow a
travelling of the person from friend to friend. That corre-
sponds to a random walk on the network [16]. To ensure
that the system stays away from consensus we take two
of those walkers, one spreading opinion b and the other
one opinion w, as they move independently through the
network. As an example we could imagine Obama and
McCain before the election, travelling to various loca-
tions in the different states and giving speeches to con-
vince people to vote for them.
It is possible that both walkers move on and hit some-
one who already has the opinion they spread. We do not
count that as an update. In all other cases the counter
is incremented by one after both walkers took their step.

3. RESULTS

We will study the two opinion models on the three net-
work types. First we look at the evolution of the opin-
ion configuration on the two-dimensional lattice. After
that we consider the homogeneous network and examine
the influence of the community structure looking at the
spread of the voting results. Finally we try to apply the
models on the Facebook networks.

3.1. Voter Model on the Two-dimensional Lattice

We start examining the opinion dynamics by applying
the voter model on the two-dimensional lattice with an
edge length of 100 nodes. As initial opinion configuration
we distribute the opinion values equally at random. This
is shown in the top left panel of Fig. 4. The following two
panels to the right show the opinion configuration after a
certain number of updates. Therein the extensively stud-
ied coarsening process of regions with the same opinion
value can be seen [17].

 t=1  t=2.5x104  t=5x104

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0.4

0.45

0.5

0.55

0.6

 t

 β
2d

FIG. 4: Run of the voter model on a two-dimensional lat-
tice with 100 × 100 nodes (top) Opinion configurations af-
ter t = 1, 2.5 · 104, 5 · 104 updates. (bottom) Fraction β2d of
black nodes in dependence of the number of updates t. The
dashed line marks the initial value of β2d.

We quantify the dynamics by considering the voting
result β2d, i.e. the fraction of black nodes in the network.
Looking at possible time evolutions of β2d (an example
is shown in Fig. 4 in the bottom panel) we see that β2d

randomly fluctuates.
To determine the probability distribution of β2d, we

have to reformulate the probabilities in Eq. 3 in terms
of the change of β2d. The transition w → b means that
we end up with one more black node than we had be-
fore. With N nodes in total in the network, that corre-
sponds to an increase of β2d by 1

N . Equivalently b → w

corresponds to β2d → β2d − 1
N . Equation 3 now reads

P (β2d + 1
N |β2d) = P (β2d − 1

N |β2d) = 1
2 and probability

0 for all other transitions. This can jointly be written
using the Kronecker-δ as defined in Eq. 3

P (β2d
′|β2d) =

1

2
δ(β2d

′, β2d − 1
N ) +

1

2
δ(β2d

′, β2d − 1
N ).

(4)
This is the master equation for a random walk on β2d

with step size 1
N [18]. Since we are dealing with networks

with around N = 1000 nodes in this project, the step size
is small 1

N ≪ 1 and Eq. 4 can be approximated by the
corresponding Fokker-Planck equation for the probability



5

distribution p(β2d, t), considering time as continuous [18]
(see Appendix B).

∂ p(β2d, t)

∂ t
=

1

2

1

N2

∂2 p(β2d, t)

∂ β2d
2 (5)

This is equivalent to a diffusion equation with diffusion
constant D = 1

N2 . The solution for the initial condition
β2d(t = 0) = 0.5 is known to be a Gaussian distribution.

p(β2d, t) =
1√

4πDt
exp

(

− (β2d−β2d(0))2

4Dt

)

(6)

That allows us to read off the expectation value and the
variance.

〈β2d〉 = β2d(0) = 0.5 and σβ2d

2 =
1

N2
t (7)

We see that the standard deviation σβ2d
grows propor-

tional to
√

t. Therefore, the system can reach consensus
due to the high deviation from the mean for large t al-
though the expectation value stays constant at 0.5. Since
we want to study the behaviour away from consensus, we
will choose t small enough that the probability of reach-
ing consensus is kept small.

3.2. Voter Model on the Homogeneous Network

The homogeneous network cannot be visualised as
demonstrative as the two-dimensional lattice, but again
we can consider the voting result β. Since the homoge-
neous network has a community structure (at least for
µ < c−1

c as defined in 2.1.3), we can furthermore look at
the voting result in each of the c communities. We will
denote the values as β∗ = {β1, β2, · · · , βc}. Since we de-
fined all community sizes to be equal in this network, the
mean value β∗ of the voting results in the communities is
equal to the voting result for the whole network β = β∗.
Figure 5 shows an example how β and β∗ evolve in time
for two different values of µ.

We already analysed the curve representing the voting
result in the whole network in section 3.1 (Eq. 6 and 7).
Looking at Fig. 5, we note that in contrast to the curves
for β, the curves for β∗ seem to depend on µ. In the
top panel of Fig. 5, we see that for a small value of µ,
which corresponds to relatively sparsely connected com-
munities, the curves for β∗ spread widely around β. For
higher values of µ however, we observe that all β∗ curves
stay quite close to the curve for β (Fig. 5 bottom). That
fits to our intuition concerning real social networks: If
groups of people are only sparsely connected, their opin-
ion development is mainly independent of each other and
the voting result in the different communities can differ
a lot. Whereas, if the groups are highly connected, there
is a lot of opinion exchange between them, resulting in
just small differences in the voting result. Now our aim
is to derive an analytical expression for the spread of the
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FIG. 5: Time evolution of the fraction of nodes with opinion
b in the whole homogeneous network (β) and in the com-
munities (β∗) for µ = 0.1 (top) and µ = 0.5 (bottom) and
N = 1000, c = 4, k = 30.

voting results in the communities around the mean value,
which means we have to find the standard deviation σβi

.
Following the calculation of β2d in section 3.1, we start
by setting up the master equation for the voting result
βi in an arbitrary chosen community i. In the homo-
geneous network, all communities are equivalent so the
statistics of βi will not depend on the particular choice of
the community i. To work with a variable which is nor-
malized to mean value 0 we introduce x = βi − β. This
transformation does not change the standard deviation:
σx = σβi

.
For determining the transition rates, we first have to

notice that only with a probability of 1
c an update hap-

pens in the considered community i. Otherwise x does
not change. This can be written as

P (x′|x) =

(

1 − 1

c

)

δ(x′, x) +
1

c
Pi(x

′|x) (8)

We continue by deriving the transition probability
Pi(x

′|x) for the change of x if the update happens in
community i. Knowing that one node in i changes its
opinion, we distinguish two possible reasons for that. Ei-
ther the picking of an attached internal or an attached
external link caused the opinion change. According to
the definition of the homogeneous network the former
has the probability 1− µ and the latter µ. If an internal
link was picked, Eq. 3 is valid and βi is randomly either
increased or decreased by 1

N/c = c
N and so is x. Similar

to Eq. 4 we can therefore write

Pi(x
′|x) = (1 − µ)

(

1

2
δ(x′, x − c

N ) +
1

2
δ(x′, x + c

N )

)

+ µ Pi,ext(x
′|x) . (9)

In the last step we have to determine the transition
probability Pi,ext when a change of x is caused by an
external active link. We approximate the average frac-
tion of black nodes in all other communities to be β.
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The fraction of black nodes in community i however,
is given by βi = β + x. That yields the probability
lb,− = (β + x) (1 − β) that a black node in i is connected
to a white node in another community. The correspond-
ing change b → w leads to a decrease of x. The proba-
bility for the opposite case of having a white node in i
connected to a black one in another community has the
probability lw,+ = (1 − β − x) β. Since we are dealing
with probability one, we have to normalize lb,− and lw,+

so that they add up to one. Approximating β by its ex-
pectation value β ≈ 〈β〉 = 0.5, we can write down the
transition probabilities.

Pi,ext(x
′|x) = (10)

lb,−

lb,− + lw,+
δ(x′, x − c

N ) +
lw,+

lb,− + lw,+
δ(x′, x + c

N )

(

1

2
− x

)

δ(x′, x + c
N ) +

(

1

2
+ x

)

δ(x′, x − c
N )

Putting together Eq. 8, 9 and 11, we finally get the
complete master equation for the evolution of x.

P (x′|x) =
c − 1

c
δ(x′, x) (11)

+
1

c
δ(x′, x + c

N )

[

(1 − µ)
1

2
+ µ

(

1

2
− x

)]

+
1

c
δ(x′, x − c

N )

[

(1 − µ)
1

2
+ µ

(

1

2
+ x

)]

.

As before, we deduce the Fokker-Planck equation (see
appendix B).

∂p(x)

∂t
= −K

∂

∂x
x p(x) +

1

2
D

∂2

∂x2 p(x)

with D =
c

N2
and K =

2

N
µ (12)

Equation 12 is the equation for an Ornstein-Uhlenbeck
process [18]. It consists of a drift term linear in x with
drift constant K > 0 resulting from having more active
links attached to nodes with an opinion value which oc-
curs more often than average. Furthermore we see a dif-
fusion term with a diffusion constant D corresponding to
a random walk as discovered in section 3.1. The solution
p(x, t) is quite complicated but the variance σx

2 = σβi

2,
we are interested in, takes a reasonable simple form [18].

σβi

2 =
D

2 K

(

1 − e−2 K t
)

(13)

⇒ σβi
=

√

c

4 N µ

(

1 − e−4 µ t

N

)

(14)

The plot of the analytic results and the data from com-
puter simulations (averaged over 20 runs) are shown in
Fig. 6 where we can see that the values approximately
match. The time values t are chosen such that they are
large enough to minimize the influence of the initial con-
dition and small enough that consensus is not reached.
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FIG. 6: Dependence of the standard deviation σβ on the mix-
ing parameter µ for the voter model (k = 40). Lines represent
the graph of Eq. 14 and dots the results of the simulation.

Looking at Fig. 6 we first notice that our observation
made in Fig. 5 that the spread increases for smaller mix-
ing parameters proofs to be true. We already interpreted
that as the more independent opinion development for
groups of people with less opinion exchange between
the groups. Thinking of the mixing parameter as a
measure of social integration, we can now interpret the
progression of the curves. They show a steep decrease
for small values of µ whereas the slope decreases to zero
as µ goes to 1. Therefore performing a change of ∆µ
in the range of sparsely connected communities, the
effect in decreasing the opinion difference is relatively
large. Whereas for communities which are already
strongly connected (high µ value) the same ∆µ leads
to a small change in the opinion difference. Hence
∆µ could be regarded as a measure for the amount of
money investigated in integration and opinion exchange.
Then, in order to get the maximum effect, integration
programmes should concentrate on groups which are
strongly separated.

Considering the dependence of the curves for a fixed
N on the number of communities, we see that the spread
becomes larger with increasing c for all values of µ. As
an interpretation we could state that if a social network
is split up in more communities than another one, we
observe a bigger opinion spreading, even if the number
of nodes and the mixing parameter are the same. Having
a closer look at Eq. 14, we can note that for µ > N

4 t (e.g.

µ > 0.1 for N = 4000, t = 1 · 104) the exponential term
becomes small. Thus, for that region the curve is mainly
determined by the term σ2

β,approx = D
2 K = c

4 N µ . Firstly,
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this expression does not depend on time. Taking the limit
of large times in Eq. 14 we see that σ2

β,approx corresponds
to the variance for the stationary solution. For the times
we considered, the time dependence becomes important
as µ becomes small as it can be seen in Fig. 6 looking at
the two red curves for t = 1 · 104 and t = 4 · 104 which
start to differ as µ becomes small. Secondly, σ2

β,approx
only depends on the fraction of nodes in each community
N
c . That explains why we see the curves for N = 4000,
c = 10 and N = 2000, c = 5 overlapping for high values
of µ.

3.3. Voter Model on the Facebook Networks

In the last step of our study of the voter model, we will
apply it on real social networks, represented by the face-
book networks. Looking at the development of β∗ (Fig.
7), we see similar curves as for the case of the homo-
geneous network (Fig. 5). That encourages us to draw
predictions for those statistics from our results in section
3.2. To approximate the appropriate mixing parameter
µ as good as possible, we first calculate the average value
for each community and then we average over those val-
ues. Inserted into Eq. 14 together with the number of
nodes of the network and the number of updates set to
t = N ·10, we can calculate the standard deviation of β∗.
We compare the result to the one obtained by averaging
the standard deviation over 50 runs of the voter model
on the network. The obtained values are shown in table
I.
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FIG. 7: Fraction of nodes with opinion b for running the voter
model on the Facebook network “Caltech” in dependence of
the number of updates t.

We see that we get reasonable predictions for some
networks such as Reed or USFCA. The large relative de-
viation ∆rel in the other cases could result from a large
differences in the mixing parameters and community sizes
in the network.

Network N c 〈k〉 〈µ〉 σβ,theo σβ,sim ∆rel

Caltech 769 6 43.3 0.42 0.057 0.068 0.19

Haverford 1446 7 82.4 0.56 0.072 0.046 0.36

Reed 962 3 39.1 0.31 0.053 0.05 0.06

Simmons 1518 3 43.5 0.25 0.054 0.045 0.17

Swarthmore 1659 11 73.6 0.60 0.248 0.053 0.79

USFCA 2682 6 48.7 0.40 0.037 0.037 0.01

TABLE I: Results for determining the standard deviation of
the voting result β∗ from theory (Eq. 14) and simulation.

3.4. Travelling Competitors Model on the

Two-Dimensional Lattice

Now we switch to our second model. Again we start
examining it on the two-dimensional lattice. In the top
panel of Fig. 8 the opinion configuration for different
times is shown. In contrast to the voter model, the trav-
elling competitors model does not depend on the initial
condition. That is why a possible initial condition of ran-
domly assigned opinion values is shown in grey shades in
Fig. 8. Running the model, both walkers create continu-
ous regions of nodes with the opinion value they spread.
We also saw those regions for the voter model (Fig. 4)
and they have been growing with time. For the travel-
ling competitors model, once those regions covered the
lattice, their average size stays the same. Admittedly
the walkers keep creating those regions in areas which
previously were covered with the opinion of their com-
petitor, but effectively only the position of the regions
changes. Considering the fraction β2d of black nodes
plotted in the bottom panel of Fig. 8, we see fluctua-
tion around β2d = 0.5 as for the voter model. But unlike
there, these fluctuations now cannot lead to consensus
since that would correspond to the extinction of one of
the walkers.

 t=1000  t=25000  t=50000

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0.4

0.45

0.5

0.55

0.6

 t

 β
2d

FIG. 8: Run of the travelling competitors model on a two-
dimensional lattice (with periodic boundary conditions) with
100×100 nodes. (top) Opinion configuration after for different
times. (bottom) Fraction of black nodes in dependence of
time.
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3.5. Travelling Competitors Model on the

Homogeneous Network

We already saw that the community structure influ-
enced the evolution of β∗ for the voter model. Never-
theless the actual updates through picking an active link
have always been the same. For the new model we might
expect a change in the position of where successive up-
dates happen in dependence of the network structure.
Imagine for example a network with very sparsely con-
nected communities. For the walker that means that
there are only a few ways (links) which lead out of
the current community. Thus, he stays longer in that
community and spreads his opinion there meanwhile the
other walker might be trapped in another community.
Therefore we would expect the β∗ curves to differ more
from each other as µ decreases. We can actually see this
process looking at the evolution of β as shown in Fig.
9. Note that the evolution after t = 1 · 104 is plotted
to ensure that the initial voting result has no influence
any more. In the amber box the typical behaviour is well
visible. The walker who spreads the opinion w in com-
munity 1, so that the blue curve for the fraction of nodes
with opinion b decreases. The other walker spreads opin-
ion b in community 2, so that the curve β2 increases. In
community 3 and 4 nothing happens, the voting result
does not change.

          
0.3

0.4

0.5

0.6

 µ=0.1

 β

50 100 150 200 250 300 350 400 450 500
0.3

0.4

0.5

0.6

 µ=0.5

 t

 β

 

 

β
1

β
2

β
3

β
4

β

FIG. 9: Fraction of black nodes β in dependence of time for
running the travelling competitors model on a homogeneous
network with µ = 0.1 (top) and µ = 0.5 (bottom). See text
for explanation of the behaviour (amber box).

Apart from that behaviour, we notice that the change
of the spread depends on µ. To examine this we show
the equivalent plot to Fig. 6 in Fig. 10.

Qualitatively we see the same behaviour as for the
voter model. That means the interpretations we did in
section 3.2 are valid for this model as well. Even quanti-
tatively the values have approximately the same.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0  0.2  0.4  0.6  0.8  1

σ β

µ

c=  5, N=2000
c=10, N=2000
c=10, N=4000
c=  2, N=1000

FIG. 10: Dependence of the standard deviation of β∗ on the
mixing parameter µ for the travelling competitors model (k =
40).

3.6. Travelling Competitors Model on the

Facebook Networks

We recall that we found the community structure for
the Facebook Networks using modularity optimization
2.1.3. Regarding the behaviour of the walkers we found
in the previous section, we might think of another way of
defining the community structure. We could say that a
community is a set of nodes where a random walker has a
higher probability to stay in the community as he moves
along the links than when he would equally at random
decide to stay or leave the community [19]. The latter
corresponds to a probability of leaving the community
of Pl = 0.5. For the homogeneous network this prob-
ability is Pl = µ since that is the fraction of external
links attached to each node. Consequently, the resulting
null model differs from the one used for finding the com-
munities in the Facebook networks where we considered
a network to have a community structure for µ < c−1

c .
Now the influence of the defining feature of “trapping the
walker” is only visible for µ < 0.5. Unfortunately, most
of our real networks have mixing parameters around 0.5
(see I), so that an application of the travelling competi-
tors model would not reveal the actual “positive” inter-
play of community structure and the spreading of the
opinion values.

4. CONCLUSION

Applying two simple opinion models on complex net-
works we could quantify the influence of the community
structure on the dynamics by considering the spread of
the voting results in the various communities. Although
both models had different update rules, we found a simi-
lar dependence on the community structure which fitted
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to our intuition about opinion dynamics in real networks.

We first derived the probability distribution and the
standard deviation of the voting result for running the
voter model on the two-dimensional lattice (Eq. 6). Per-
forming a similar calculation for the homogeneous net-
work, we then got an equation for the spread of the
voting result in dependence of the mixing parameter µ
(Eqn. 14). Furthermore we applied the voter model on
our Facebook networks and have been able to provide
good prediction for the resulting opinion spread (Tab.
I) if the community sizes and mixing parameters in the
Facebook networks are not too widely spread. For those
cases eqn. 14 would also allow to determine the average
mixing parameter for a network given the spread of the
voting result, number of nodes and number of communi-
ties.

Applying the travelling competitors model on the two-
dimensional lattice, we observed a similar behaviour of
the voting result as for the voter model (Fig. 8). How-
ever, for the homogeneous network we found a much
stronger dependence of the curves as for the voting re-
sults on the community structure. As a side effect of not
being able to sensible apply the travelling competitors
model on the real data we saw the importance of an ap-
propriate community finding algorithm which fits to the
considered dynamics.

5. OUTLOOK

Further studies would be necessary to determine the
generality of the curves for σβ that we found; we would
have to observe the possible changes of this curve us-
ing different other opinion models. Those models could
for example include random opinion flips or a continuous
opinion variable. We also could investigate other mea-
sures of the influence of the community structure on the
opinion dynamics, such as the mutual information or the
correlation of the β∗ curves [20]. Since those measures
can include the time evolution of the data, a detailed
study of the dependence on time and initial condition for
both models would be possible. The results of such a
study would allow a comparison of models to real data,
for instance the time evolution of election results. As pro-
posed in [11] gerrymandering phenomena could be stud-
ied therein by considering the dependence of the voting
result on their assignment to communities of different
sizes.

For the travelling competitors model, we could not ex-
press the evolution analytically so far. That would re-
quire further investigations.

Our formula for the spread of the voting result for the
voter model could be improved by considering the degree
distribution and the different community sizes.
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Appendix A

%%% MATLAB code for running the voter model
%%% on the homogeneous network

clear

%%% define parameters
N=1000; % number of nodes
c=4; % number of communities
up=10000; % number of updates
k=40; % degree of each node
mu=0.2; % mixing parameter

%%% declare matrices for network representation
A=zeros(N,N);

% adjacency matrix,
% initially zero matrix of size NxN

C=randi(c,1,N);
% index vector of length N,
% filled randomly with label {1,2,...,c }

Op=randi(2,1,N) −1;
% opinion vector of length N,
% filled randomly with 0 (w) or 1 (b)

%%% declare auxiliary variables
data=zeros(up,c+1);

% matrix of size (up x c+1) to save the voting results
% for every time step

legs=ones(1,N) * k;
% vector of length N with k in each entry,
% represents desired homogeneous degree distribution,
% used to count down free "legs" of a node
% when establishing links later on

w=0;
% counter for steps where nothing happend
% when trying to create the network

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%%% creating the homogeneous network

% fill adjacency matrix

% continue establishing links
% as long as there are 2 legs left
% and it was not tried without success
% over 1000 times before
while sum(legs) >2 && w<1000

% find the indices of all nodes
% which still have free legs
f1=find(legs >0);
% pick a random one of those nodes
i=f1(randi(size(f1,2)));

% with a probability 1 −mu
% the node is connected to another node
% in the same community
if rand > mu

% find indices of nodes in same community as i
% unequal to i itself
% with free legs
% and not already connected to i
f2=find(C==C(i) & legs >0 & 1:N 6=i & A(i,:)==0);
% stop if no such link exists
if size(f2,2)==0; w=w+1; break , end ;
% else pick a random one of those nodes
j=f2(randi(size(f2,2)));

% else (probability mu) connect to a node
% in another community
else

% find indices of nodes in another community as i
% with free legs
% and not already connected to i
f2=find(C 6=C(i) & legs >0 & A(i,:)==0);
% stop if no such link exists
if size(f2,2)==0; w=w+1; break , end ;
% else pick a random one of those nodes
j=f2(randi(size(f2,2)));

end

% connect i and j with respect to A symmetric
A(i,j)=1;
A(j,i)=1;
% reset counter for steps where nothing happend
w=0;
% count down the legs which are now occupied
legs(i)=legs(i) −1;
legs(j)=legs(j) −1;

end

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%%% running the voter model

% loop through the update steps
for l=1:up,

% print a warning if consensus is (nearly) reached
% and exit the for −loop
if sum(Op)==N−10 | | sum(Op)==10

display( 'consensus warning' )
break ;

end

w=0;
% find two connected nodes with different opinion
while 1

% choose a random node
m=randi(N);
% find all friends with different opinion
f=find(A(m,:)==1 & Op 6=Op(m));
% break if such a node was found
if size(f,2) 6=0, w=0; break , end ;
w=w+1;

end
% choose a random one of those
n=f(randi(size(f,2)));

% perform opinion change
% randomly from one node to the other one
if rand >0.5

Op(n)=Op(m);
else

Op(m)=Op(n);
end

% save current voting result in data
% for each community
for i=1:c

f=find(C==i);
data(l,i)=sum(Op(f))/size(f,2);

end
% and for the mean value
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data(l,c+1)=sum(Op)/N;
end

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%%% running the travelling competitors model

% random start position of the walkers
r0=randi(N);
r1=randi(N);
% variable to remember whether an update happend
step=0;

% loop through updates
for l=1:up

% reset step to zero
% i.e. no update happend so far
step=0;

% walk with both walkers until
% an update/ opinion change happens
while 1

% find friends
f0=find(A(r0,:)==1);
% walk to a random friend
r0=f0(randi(size(f0,2)));
% change its opinion
% if it is not already the walker's opinion
% and count update
if v(r0)==1

v(r0)=0;
step=1;

end

% same for the other walker
f1=find(A(r1,:)==1);
r1=f1(randi(size(f1,2)));
if v(r1)==0

v(r1)=1;
step=1;

end

% break up if a step was taken
if step==1, break , end

end
end
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Appendix B

The Kramers-Moyal Expansion

The statistical processes we are dealing with is a
Markov processes, i.e. the value of the random variable
Y (the voting result in our case) at the next time step
only depends on its value at the current time step. Fur-
thermore, we can assume that our random variable has
a continuous trajectory if the step size of a change of the
variable is small. For those Markov processes it is gener-
ally possible to transform the equation for the transition
probability P (y′, t′|y, t) into a Fokker-Planck equation for
the probability distribution p(y, t) [18]. The equation for
this is given by

∂ p(y, t)

∂ t
=

∞
∑

n=1

1

n!

(

∂

∂ y

)n

[An(y) p(y, t)]

with moments

An(y, t) =

∫

dy (y′ − y)n P (y′, t + dt|y, t).

In many cases only the first two terms are of interest:

∂ p(y, t)

∂ t
= − ∂

∂ y
A1(y) p(y, t) +

1

2

∂2

∂ y2 A2(y) p(y, t).

One-dimensional Random Walk

The transition probability for t → t + ∆t is given by

P (y′|y) =
1

2
δ(y′|y − l) +

1

2
δ(y′|y + l) (15)

where l is the step size of the random walk. That yields

A1 = 0

A2 = l2 .

Inserted in Eq. 5 we receive a diffusion equation because
the first moment vanishes.

∂ p(y, t)

∂ t
=

1

2
l2

∂2

∂ y2 p(y, t) (16)

Ornstein-Uhlenbeck Process

Now we perform the same calculation for the master
equation 12:

P (x′|x) =
c − 1

c
δ(x′, x)

+
1

c
δ(x′, x + c

N )

[

(1 − µ)
1

2
+ µ

(

1

2
− x

)]

+
1

c
δ(x′, x − c

N )

[

(1 − µ)
1

2
+ µ

(

1

2
+ x

)]

.

Here we get

A1 =
2µ

N
x

A2 =
c

N2

and therefore

∂p(x)

∂t
= −2µ

N

∂

∂x
x p(x) +

1

2

c

N2

∂2

∂x2 p(x) .

which corresponds to Eq. 12.


