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1 Abstract

The main focus of this project is modeling phytoplankton predator-prey
systems involving a resource, a prey (phytoplankton), and predators (zoo-
plankton) in order to understand the complex interactions between these con-
stituents. It is important to study these food chains, because phytoplankton
contribute to numerous biogeochemical processes in nature. They control
water quality, influence global climate by regulating carbon dioxide uptake,
and form the basis for most aquatic food chains. Because phytoplankton are
simple and small organisms with short life spans, they are relatively easy to
study. Lab and field experiments experiments can be readily combined with
theoretical analyses.

In this paper, we first investigate a food web consisting of a chain of
a single zooplankton feeding on a phytoplankton which is dependent on a
resouce. The model includes mathematically convenient approximation for
the fluctuation in resource availability and seasonal variations. We employ a
dynamical systems approach and supporting numerical simulations to study
long-term behavior. Our findings show that for long periods under forcing,
distinct regimes of species coexistence are present and can be analytically
computed. As the total nutrient content is varied, the system undergoes
several bifurcations, resulting in drastic, dynamical changes ranging from
coexistence of both species to dominance of only zooplankton to extinction
of both. A smooth seasonal transition, convenient for analytics, was also
introduced allowing for the decline of resources not to be abrupt. A food
web consisting of a resource, a phytoplankton, and two zooplankton species

competing for a single phytoplankton was also investigated. Most combina-



tions of parameters result in the dominance of one species of the zooplankton
with total extinction of the other, which reduces to the first case examined.
Using a type II functional response and considering only a narrow parameter
subset, one is able to observe some interesting dynamics when switching of
zooplankton dominance occurs. We found that the length of the growing sea-
son is directly involved in the system dynamics. The length of the growing
season can be too short for the phytoplankton or the fast growing zooplank-
ton to emerge or it can be long enough for the good competitor zooplankton

to dominate.

2 Introduction

Phytoplankton contribute to numerous biogeochemical processes and
constitute the basis for most aquatic food chains. They play an essential role
in controlling water quality and exert a great influence on the global climate
by regulating carbon dioxide (CO,) uptake.®> Moreover, changes in phyto-
plankton population can alert scientists to alterations in the environment.
Phytoplankton can also be useful in determining where ocean currents pro-
vide nutrients for plant growth and where pollutants poison the ocean and
prevent plant growth.? Because phytoplankton are small, elementary crea-
tures with short life spans, their dynamics are relatively easy to model. In
addition, laboratory and field experiments are feasible.*3

Phytoplankton require only a few things to survive: sunlight, water, and
nutrients. Chlorophyll allows phytoplankton to utilize light energy, which is
used to fix CO, to sugars and generate ATP.% Oxygen is then released as



a byproduct. Essential nutrients include COs, nitrogen, sulfur, phosphorus
compounds, Si, Fe, and other trace metals. Some species of phytoplankton
also require vitamins like thiamin or biotin to survive.?

Predator-prey models help forecast population trends and disease out-
breaks. They can also aid in the understanding of biological community
structure. The most basic kind of food chain involves a prey species feeding
off a nutrient. This can be generated to more complex models that include
species interactions. The first predator-prey model was formulated by Lotka
and Volterra. The Lotka-Volterra system consists of one predator species and
one prey species. Lotka-Volterra assumes the predator is completely depen-
dent on the prey for its food supply and that the size of the prey population
is restricted only by predation. This model shows that predators and prey
can coexist, in that both species follow stable cycle oscillations. Rosenzweig
and MacArthur expanded this model further to include consumption rates
of predators.t

Most predator-prey models do not include seasonal succession, or periodic
resetting of system dynamics, and resource variations. Seasonal forcing is
necessary to better characterize phytoplankton development, because of the
changing physical environment. In the spring, light is a limiting resource
for the phytoplankton in a lake. The water is warming and even mixing
occurs due to the lake’s wind and water currents. However, in the beginning
stages of summer, when the phytoplankton start to grow, mixing occurs
mostly in two sections: the epilimnion, or warm layer of the lake, and the
hypolimnion, or cold layer of the lake. There is also limited mixing betweeen

layers. Later in the summer, the nutrients become limited due to the now-



large biomass of phytoplankton and — as the epilimnion and the hypolimnion
approach the same temperature — there is greater mixing between layers.
As the water temperature increases during the fall overturn, phytoplankton
get pulled to the bottom when colder water sinks and nutrients rise to the
surface. Once the phytoplankton reach the bottom (cold) layer of the lake,
it becomes almost impossible for the phytoplankton to resurface, and can
obtain enough light and nutrients to survive. Thus, most phytoplankton die
off in the fall overturn.

The main question of this research effort is how does seasonal forcing or,
more specifically, the length of the growing season affect system dynamics.
The rest of this paper is organized as follows. First, we consider a system that
includes a resource, one phytoplankton, and one zooplankton with seasonal
variation in resource availability. Subsequently, we examine a more complex

model that includes a resource, one phytoplankton, and two zooplankton.

3 Seasonal Forcing in a Phytoplankton Food
Chain with One Zooplankton Species

Periodic forcing can modeled mathematically by having one equation for
the growing season and a separate one for the dying season and assuming
that the duration of the growing season is the same each year. We nondimen-
sionalize the system so that the total season has unit period. In our model,

the growing season lasts a proportion p of the time and is governed by the



following dynamical system:

W 1(,PR—myP - f,(R)Z)
i
— =T(f-(P)P —m.Z). (1)

During the remainder of the dying season, when t € [p, 1], there are no

resources, which yields the dynamical system:

dP
5—t = T(—mpP - fp(R)Z)
A
T T(fAP)P —m.Z). (2)

The functional response represents the per capita rate of prey consumed
in unit time.! Functional responses are either linear (type I) or saturat-
ing (type II). In this model, both sets of equations incorporate a type I
functional response in which the predator consumption rate increases with
prey density until reaching a maximum consumption rate. This is written
mathematically as fp(R) = coP for phytoplankton and fz(P) = c3Z for
zooplankton. The parameter R is the amount of nutrient, P is the nutri-
ent content of phytoplankton, and Z is the nutrient content of zooplankton.
The mortality rates of the phytoplankton and the zooplankton are given by
m, and m,, respectively, and 7" represents the period. The parameter c;
is the phytoplankton’s nutrient yield from consuming resources, ¢ accounts
for losses in phytoplankton population caused by zooplankton consumption,
and c3 is the zooplankton’s nutrient yield from consuming phytoplankton.
Clearly, ¢35 < c¢o; otherwise, zooplankton would receive more nutrients from
the phytoplankton than the phytoplankton are able to hold and additional

biomass would be created from nothing. Because this system is closed, the



amount of total resources remains constant: Riqt = R+ P + Z. Depending
on the parameter Ry, various dynamical regimes are possible; the system
can either exhibit stable coexistence of both species at the end of the sea-
son (as illustrated in Fig. 1), annihilation of zooplankton and prevalence of
phytoplankton, or extinction of both species.

z
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Figure 1: Phase plane of Z vs. P for large Riyt. After ¢ = ¢; the system
jumps to (f’, 0). After t =ty it ends up at (p, Z) Finally, at time ¢t = p, it

returns to the origin.

In the long-term dying phase, (f’, Z ) = (0, 0). This is sensible biologically,
as the phytoplankton have nothing to eat and their population eventually
declines, causing the zooplankton population to die out as well. During the
time interval [0, p], the system has three equilibria for Riy¢ > R* + P*, as
indicated in the bifurcation diagram in Fig. 2; these are (0, 0), (p, 0), and
(P, Z). At (0, 0), all species are dead; this is a stable sink. The equilibrium
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at (p, 0) indicates that the zooplankton have completely died off and % = 0.
It is evident that P = Ry — R*, where R* = m,/c;. Both species coexist
t (P,Z). One finds that P = P* = m./cs. Upon substitution, we obtain

~

Z = (a(Btot — P*) —myp) /(a1 + c2).
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Figure 2: Bifurcation diagram for the parameter Ri,t. Three regimes are
possible: phytoplankton and zooplankton both coexist (I), phytoplankton
prevail (II), or neither lives (III).

As indicated by the numerical simulations for long periods (see Fig. 3),
there exists a time ¢; such that during the time interval [0, ¢1], both species
are near zero. Immediately thereafter, a stable population of phytoplankton
emerges and prevails during the time interval [¢1,%5]. From then until the
end of the growing season (i.e. for ¢t € [t2,p]), both species coexist. Right
after the resources are fully consumed, both populations rapidly decline to

zero; this occurs in the time period [p, 1].
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Figure 3: Long-term numerical simulation with period T = 1250, Rint =
8,p = 05,c1 = 07,¢c0 = 0.79,¢c5 = 0.7,m, = 1.1, and m, = 1.1. The
long-dashed line indicates the resource, the dotted line respresents the phy-
toplankton, and the short-dashed line respresents zooplankton. For ¢ € |0,
t1] both species are near zero; when t € [t1, to], a stable population of phyto-
plankton emerges and prevails; t € [ta, p] — both species coexist; t € [p, 1] —

both populations rapidly decline to zero.

We find the two times t; and t using linearization and the fact that the

per capita rate of change averaged over the whole period must vanish:
1 p/ ol o
0 ?d’r = Jo 7(1’7‘ = 0.

Each integral is then split into four distinct phases:

o Bdr = [ Bdr+ [* Ddr+ [P Bdr+ [ Zdr =0
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o Zdr = [ Zdr+ [P Zdr+ [P Zdr + [ Zdr =
Using linearization, these equations become
f (ClRtot—mpd7‘+f dT-l—ft dT—I—f p)dT =0
fo (—mzd7‘+ft (c3(Riot — %22) —me)dr + [} (0 d7‘+f (—m.)dT =0

Performing the integrals and solving the linear system gives the times

t = =p)my to = mz=p)tes(Bior—mp/c1)ty
1 c1Riot—myp 2 c3(Riot—mp/c1)—m

Because there are no zooplankton parameters present in the expression for
ty, it follows that the emergence of the phytoplankton is independent of
the zooplankton population. This is consistent with the fact that there are
negligibly many zooplantkon initially, so their population does not play a
role in the dynamics.

If the discontinuous nature of the equations prevents analytical manipu-
lations, then one can introduce smooth approximations so that the factors

describing resources availability decreases sharply to zero immediately after

tan™1(1000(t—p))+m/2 £1000(t—p)
- and 1 — T+¢1000(i—p) *

time p. Two suitable candidates are: —
Numerical simulations with both of these attenuation factors yield similar

results to those we observed with the discontinuous case.

4 Seasonal Forcing in a Phytoplankton Food
Web with Two Zooplankton Species

This system differs from the one described above by an addition of a sec-
ond zooplankton species. Various system dynamics developments are sum-

marized in figure 4.
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Figure 4: Transitions diagram. The system can transition from the empty
state into the state where only P exists. From the P state, either Z; can

invade. If the fast grower emerges first, then the good competitor can still

invade the system.

The growing season (lasting proportion p of the period) is governed by

the following set of equations:

Oil_}t) =T(fp(R)P — mpP — ;gi(P)Zi)
ddzti — T(eg:i(P)Zi — mu. 7). (3)

For the remainder of the season there are no resources present, so one can
set R = fr(R) = 0.

In the equations above, R is the amount of nutrient, P is the nutrient
content of phytoplankton, and Z; is the nutrient content of the zooplankton
species i. Here, f and g; are both type II functional responses (shown in
figure 5), in which the consumption rates increase with the prey densities

until reaching saturation values. The functions are given by the Michaelis-

Menton equation: fp(R) = ﬁ% and ¢;(P) = I;’ii,, where v is maximum

intake of resources and k£ is the half saturation constant. The parameter e is

dimensionless, trophic, and has a value greater than one. The mortality rates
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of phytoplankton and zooplankton ¢ are given by m, and m,, respectively.
The period is represented by T. The system is again closed, so Ry =

»
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Figure 5: Type II functional responses. P’ represents the minimum amount
of resources needed for survival of species i. It is evident that zooplank-
ton species 2 should prevail at low phytoplankton levels in this particular

situation.

If a type I functional response was implemented for the zooplankton
species, then one zooplankton would always dominate the other and the
system dynamics would reduce to the case of the chain discussed earlier.
Because type II functional responses are used, interesting behavior can be
observed for a particular combination of parameters. Zooplankton 1 has good
competitive ability when photoplankton are abundant, whereas the other is
a good competitor when phytoplankton are scarce. The two competing zoo-

plankton species then can both establish exclusive dominance as the season
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progresses, as illustrated in the numerical simulation in figure 6.

In the abstract case, we can specify the growth of the phytoplankton and
zooplankton at a very general level. Let \;, = j%jt denote the eigenvalue
of species j in state k. In the 0 state Apyp > 0, because P can invade a
monoculture of resource and Az, o < 0, because in absence of P, Z;’s are not
able to grow. The P state is characterized by: App = 0, because P has
reached an equilibrium and Az p > 0, because P has entered the system,
so Z; has enough nutrients to grow. In the PZ; state: both A\ppz and
Az, pz, = 0, because P and Z; are in equilibrium and Az, pz, > 0, because
Zy can invade the system. In the PZ, state: Appz, = Az, pz, = 0, because
P and Z, are in equilibrium, whereas Z; is dying, hence Az, pz, < 0. Let
Aj,— also denote the dying phase for species j lasting from pT" to T' during a
period.

In the model presented here, we let

r mpk » * * mz. ki
R=R= 12k P:Rtotal_R>andPi lrr—

vR—mp’ eiv;—mz,;

Upon subsitution we obtain,

Apo=—mp+ fp(Rit), Azi0o=—mg,

)\RP = 0, )\ZhP = —Myg, + 6ZgZ(P)

Appzy = Az,,pz, =0, Azypz, = —Miz, + eaga(PY)
Appzy = Az, 2, =0, Az, pz, = =iz, +e1g1(F5)
)\p_ = —mp, )‘Zm— = —Myz,

) 7

The switching times between various regimes can be readily computed

utilizing the equilibrium stability analysis and the linearization principles.
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Figure 6: Numerical simulation with T" = 2900, R;,; = 17, p= 0.65, ¢; =
022, v; =1, v =1, ky = 3.9, kg =20, e; = 0.3, ea = 0.7, m, = 0.14,
myz, = 0.1, and myz, = 0.1. The smallest-dashed line resprents the resource,
the solid line indicates the phytoplankton, the largest-dashed line indicates
the first phytoplankton, and the middle-dashed line indicates the second
phytoplankton.

The time ¢;, when the phytoplankton first emerges gaining a stable equilib-
rium is found from the fact that the per capita rate of change averaged over
the whole period must vanish: fol Aprdt = 0. Expanding the integral we get:

fot Y ApodT + fpl Ap_dr = 0. Solving for #; we obtain the following expression:

t = (_1+p)>‘P,7
1 AP0 ’

The analytical expressions for the emergence times to and t3 of respectively

fast growing and good competitor zooplankton species are too complex and
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will not be presented here. For ¢ € [0, t1] all species are near zero; when
t € [t1,12], a stable population of phytoplankton emerges and prevails; when
t € [t2,t3], a stable population of phytoplankton and the first zooplankton
prevails; when ¢ € [ts, p] — coexistence with phytoplankton and the second
zooplankton species; when ¢ € [p, 1] — both populations rapidly decline to
Zero.

The two competing zooplankton species dominate at different ranges of
parameter p, as illustrated by the diagram in figure 7. Depending on the
value of p, the system has enough time to reach the state of P equilibrium,
to take one of the branches in figure 4, or to switch between the zooplankton
competitors, provided, of course, that the parameters for the zooplankton

make one the fast grower and the other the good competitor.
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Figure 7: Bifurcation diagram of the successional dynamics within a period

under seasonal forcing with long period as a function of p.
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5 Conclusions

Regular, autonomous predator-prey food webs with just a resource and
few phytoplankton are readily examined using standard mathematical tech-
niques for systems of differential equations. Analytical results for and near
equilibria are possible. The main concern of this research is the effects of
seasonal forcing on system dynamics.

For the food chain with one zooplankton, both our analytical and nu-
merical findings reveal that for long periods under seasonal forcing distinct
regions of species coexistence are present and are similar to those without
the seasonal forcing. For shorter periods these approximations become unrea-
sonable and different methods are needed. Also, the system’s total nutrient
content plays a vital role in the its aggregate dynamics - several bifurcations
are present as this parameter is varied, causing severe changes in system’s
behavior: from coexistence of both species to extinction of phytoplankton to
disappearance of both.

For the food web with two zooplankton their functional responses con-
tribute significantly to the nature of the system dynamics. That is because
for most cases one zooplankton dominates the other and the system is re-
duced to the first type discussed above. Even if there are two zooplankton
species, one of which is a fast grower and the other one is the good com-
petitor, other parameters need to be adjusted in order to witness a sizable
presence of both during a period. One of the most influential parameters is
the length of the season’s growing period. For its intermediate values the
growing season is not too long so one can see first the phytoplankton and

then the fast grower emerge, but it is long enough for the good competi-
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tor to appear and drive out the other zooplankton species. The system’s
behavior can transition from phytoplankton existing alone to coexistance of
phytoplankton and one zooplankton species to a switching in dominance of
zooplankton species to extinction of all species.

For the future research the described model in a similar way can be ex-
tended to more than two zooplankton species. It is believed that similar
behavior will be observed and a hierchy of dominance between the various
zooplankton species can be established, each species having the best com-

petitive ability over the others for a fixed level of its resource.
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